Practice Final Exam

Note. These problems are longer than the actual exam. My advice is to give yourself 120 minutes and no distractions to write out the solutions. The first 8 problems are from the sample final and the other 3 are from Discussion Problems 10, where the respective solutions are provided.

1. Assume $x_1 = a$ and

$$x_{n+1} = \frac{2}{5 - 2x_n} \qquad \text{for } n \in \mathbb{N}.$$

(a) Assume a = 1. Show that $0 \le x_n \le 2$ for all $n \in \mathbb{N}$, and that the sequence is decreasing. Then show that $\lim_{n\to\infty} x_n$ exists and compute the limit.

(b) Now assume a = 0. Show that the sequence is increasing and that it converges to the same limit as in (a).

2. (a) Assume $A \subseteq \mathbb{R}$. Define precisely what this statement means: A is an open set.

- (b) Is the set [0, 1) open?
- (c) Is the set $\cup_{n=1}^{\infty} (n, n+1/n)$ open?
- (d) Determine the boundary and the interior of the set $[0,2] \setminus \{1\}$.

3. (a) Assume $A \subseteq \mathbb{R}$ and $x \in \mathbb{R}$. Define precisely what these two statements mean: x is a limit point of A; A is a closed set.

(b) Assume A is bounded above. Assume that $\sup A \notin A$. Show that $\sup A$ is a limit point of A.

(c) Assume A is bounded above and closed. Prove that $\sup A \in A$.

(d) Assume A is bounded above and open. Prove that $\sup A \notin A$.

4. (a) Assume $A \subseteq \mathbb{R}$. Define precisely what this statement means: A is compact.

- (b) Is the set $\{\frac{n}{n+7} : n \in \mathbb{N}\}$ compact?
- (c) Is the set $[0,1] \cup \{2\}$ compact?

(d) True or false: If A^c is compact, then A is open and unbounded.

(e) Assume A is compact and $\epsilon > 0$. Prove that there exist finitely many elements $x_1, \ldots, x_n \in A$ so that $A \subset \bigcup_{i=1}^n (x_i - \epsilon, x_i + \epsilon)$.

5. For each of the following series, determine (with proof) whether it converges absolutely, converges conditionally, or diverges:

(a)
$$\sum_{k=1}^{\infty} \left(\frac{7k+3}{8k+5}\right)^{7k}$$

(b) $\sum_{k=1}^{\infty} (-1)^k \frac{\sqrt{k}}{k^2+1}$
(c) $\sum_{k=1}^{\infty} (-1)^k \frac{1}{3k-2}$
(d) $\sum_{k=1}^{\infty} \left(\frac{1}{k} + \frac{1}{2^k}\right)$

6. Assume that $a_n > 0$ for all $n \in \mathbb{N}$. For each statement below, prove it or find a counterexample.

(a) If $\sum_{n=1}^{\infty} (a_n - 5)$ converges, then $\lim a_n = 5$. (b) If $a_{n+1} < a_n$ for all $n \in \mathbb{N}$, then the sequence (a_n) is Cauchy. (c) If $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} \sqrt{a_n}$ converges.

(c) If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\sum_{n=1}^{\infty} \sqrt{a_n}$ converges

(d) If $\limsup n^2 a_n = 1$, $\sum_{n=1}^{\infty} a_n$ converges.

7. (a) Assume (a_n) is a sequence of real numbers and $a \in \mathbb{R}$. Define precisely what this statement means: $\lim a_n = a$.

(b) Assume $\lim a_n = a$. Explain why this statement is false: There exists an $\epsilon > 0$ so that there are infinitely many terms of (a_n) outside $(a - \epsilon, a + \epsilon)$.

(c) Let $a_n = \frac{n^2 + n}{n^2 + 1}$. Compute $a = \lim a_n$. (You may use algebraic and order limit theorems, but give full justification.) (d) Let $a_n = \frac{3^n + 2^n}{3^{n+1} + 2^{n+1}}$. Compute $a = \lim a_n$. (Again, you may use algebraic and order limit

theorems.)

8. Assume (a_n) is a sequence of real numbers.

(a) True or false: If the sequence is bounded, then it has a convergent subsequence.

(b) True or false: If the sequence is unbounded, then it has no convergent subsequence.

(c) Prove: If the sequence is unbounded, and $a_n \ge 0$ for all $n \in \mathbb{N}$, then there exists a subsequence that diverges to ∞ .

(d) Assume that $\lim(4a_n - a_n^2) = 3$, and that $\lim a_n$ does not exist. Determine $\limsup a_n$ and $\liminf a_n$.

9. Assume $f : \mathbb{R} \to \mathbb{R}$ is a function.

(a) Assume that f is continuous and $K \subseteq \mathbb{R}$ is compact. Is it necessarily true that f(K) is compact?

(b) Assume that f is continuous and $K \subseteq \mathbb{R}$ is compact. Is it necessarily true that $f^{-1}(K)$ is compact?

(c) Assume that f is continuous and $A \subseteq \mathbb{R}$ is bounded. Is it necessarily true that f(A) is bounded?

(d) Assume that f(K) is compact for every $K \subseteq \mathbb{R}$. Is f necessarily continuous?

(e) Assume that f is continuous. Show that its set of zeros, $\{x \in \mathbb{R} : f(x) = 0\}$ is closed.

10. Prove that $f(x) = \sqrt{x^2 + 1}$ is uniformly continuous on $(0, \infty)$.

11. (a) Let f be a continuous function on the closed interval [0,1] with range also contained in [0,1]. Prove that f must have a fixed point; that is, show that there exists an $x \in [0,1]$ so that f(x) = x. (b) Is the conclusion in (a) true if f is a continuous function on the open interval (0,1) with range also contained in (0,1)? (c) Is the conclusion in (a) true if f is a continuous decreasing function on the open interval (0,1) with range also contained in (0,1)?