HW 6 Solutions (mostly adapted from Abbott's Instructor's Manual)

3.2.1. (b) I will use G instead of O. (b) For example, $G_n = (-1 - 1/n, 1 + 1/n)$. Then $\bigcap_n G_n = [-1, 1]$, a closed interval.

3.2.2. For the set A:

- (a) The limit of even terms is 1 and the limit of odd terms is -1. Those are the two limit points. Note than $1 \in A$.
- (b) Not closed. Every element of A is strictly larger than -1, so the limit point -1 is not included in the set.

Not open. No open interval is included in A. (Also follows from (c).)

- (c) All points of A other than 1 are isolated.
- (d) $\overline{A} = A \cup \{-1\}.$

For the set B:

- (a) Every $x \in [0,1]$ is a limit of sequence of rational numbers in (0,1) different from x, so the set of limit points in [0,1].
- (b) Not closed. Irrational numbers in [0,1] are not in B but are limit points. (The same is true for the points 0 and 1.)

Not open. No open interval is included in B.

- (c) No point of B is isolated, from (a).
- (d) $\overline{B} = [0, 1].$
- 3.2.3. (a) Neither, as $\overline{\mathbb{Q}} = \mathbb{R}$, and \mathbb{Q} contains no open intervals. Any irrational number is a limit point not in the set.
- (b) Closed, but not open. It has no limit points, and contains no open interval.
- (c) Open, as the set is equals $(-\infty,0) \cup (0,\infty)$, a union of two open intervals, but not closed, as the complement, the singleton $\{0\}$ is not open. Also, 0 is a limit point not in the set.
- (d) Neither. The infinite sum $\sum_{n=1}^{\infty} 1/n^2$ is not in the set (as it is strictly larger than any of its elements), but is in its closure. It is not open as it contains no open interval.
- (e) Closed, as it has no limit points because $\sum_{k=1}^{n} 1/k \to \infty$. Not open, as it contains no open interval.
- 3.2.4. (a) If $s \notin \overline{A}$, then for some $\epsilon > 0$, $(s \epsilon, s + \epsilon) \cap A = \emptyset$. As s is an upper bound of A, $(s, \infty) \cap A = \emptyset$. So we proved that $(s \epsilon, \infty) \cap A = \emptyset$, but this means that $s \epsilon$ is an upper bound for A, and so s is not the least upper bound for A. Contradiction.
- (b) No. If $s \in A$, then for some $\epsilon > 0$, $(s \epsilon, s + \epsilon) \subseteq A$. In particular, $s + \epsilon/2 \in A$, so s is not an upper bound for A.
- 3.2.7. (a) Assume x is a limit point of L, and pick $\epsilon > 0$. We need to show that there is an $a \in A \cap V_{\epsilon}(x)$, such that $a \neq x$. First, there is an $\ell \in L$, $\ell \neq x$, so that $|x \ell| < \epsilon/2$. Further, as ℓ is a limit point of A, there is an $a \in A$ so that $|a \ell| < \epsilon/2$, and $|a \ell| < |\ell x|/2$. Then $a \in V_{\epsilon}(x)$ as $|a x| = |(a \ell) + (\ell x)| \le \epsilon/2 + \epsilon/2 = \epsilon$. Also, $|a x| \ge |\ell x| |a \ell| > |\ell x|/2 > 0$, so $a \neq x$.

- 3.2.11. (a) As $A \subseteq A \cup B$, $\overline{A} \subseteq \overline{A \cup B}$. Similarly, $\overline{B} \subseteq \overline{A \cup B}$, therefore $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$. Moreover, $\overline{A} \cup \overline{B}$ is closed, as a union of two closed sets, and $A \cup B \subseteq \overline{A} \cup \overline{B}$, and $\overline{A \cup B}$ is the smallest closed set that includes $A \cup B$, so $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$. The two inclusions prove equality.
- (b) No. Take A_n to be closed sets, whose union is not closed, e.g., $A_n = [1/n, 1]$. Then $\bigcup_n A_n = (0, 1]$, $\overline{\bigcup_n A_n} = [0, 1]$, but $\bigcup_n \overline{A_n} = \bigcup_n A_n = (0, 1]$.