HW 7 Solutions (mostly adapted from Abbott's Instructor's Manual)

- 3.3.1. We will give a proof for $\sup K$; the proof for $\inf K$ is the same. As K is bounded, $\sup K$ is a real number. Further, by Problem 3 on Discussion 7, $\sup K \in \overline{K}$, as it is either in K or a limit point of K. As K is also closed, $\overline{K} = K$ and thus $\sup K \in K$.
- 3.3.2. (a) Not compact as not bounded. The sequence $a_n = n \in \mathbb{N}$ has no convergent subsequence as it diverges to ∞ . (We did this in class.)
- (b) Not compact as not closed. Take any sequence of rational numbers in [0,1] converging to an irrational number, say to $\sqrt{2}/2$.
- (d) Not compact as not closed. Let $s_n = 1 + 1/2^2 + \ldots + 1/n^2$. Then s_n converges to a limit not in the set, and any subsequence converges to the same limit.
- (e) Compact. The only limit point is 1, which is included in the set, so the set is closed and bounded.
- 3.3.4. (a) Compact. As a subset of the bounded set $K, K \cap F$ is bounded. As the intersection of two closed sets, $K \cap F$ is closed. By Heine-Borel Theorem, $K \cap F$ is compact.
- (b) The set is closed (as closure of a set), but not necessarily compact. For example, if $F = K = \{0\}$, then $F^c = K^c = \mathbb{R} \setminus \{0\}$ and so $\overline{F^c \cup K^c} = \mathbb{R}$ which is not bounded and thus not compact.
- (c) Not necessarily closed. For example, K = [0, 1] and $F = \{1\}$ results in $K \setminus F = [0, 1)$, which is not closed.
- (d) Compact. The set is closed as closure of a set. It is also bounded: $K \cap F^c \subseteq K$ and therefore, as K is closed, $\overline{K \cap F^c} \subset K$, and therefore, as K is bounded, $\overline{K \cap F^c}$ is bounded. Therefore, $\overline{K \cap F^c}$ is compact by Heine-Borel Theorem.
- 3.3.5. (a) Yes, as it is closed and bounded.
- (b) No. Take $K_n = [-n, n]$. Then $\bigcup_{n=1}^{\infty} K_n = \mathbb{R}$, which is not compact. (c) No. Take A = (0, 1), K = [-1, 1]; then $A \cap K = A$, which is not closed thus not compact.
- (d) No. Take $F_n = [n, \infty)$. These are closed nested intervals, but $\bigcap_{n=1}^{\infty} F_n = \emptyset$.
- 3.3.11. (b) Let x_n be an increasing sequence of distinct *irrational* numbers, with $x_1 < 0$, that converges to $\sqrt{2}/2$, say $x_n = \sqrt{2}/2 1/n$. Then $\mathcal{C} = \{(x_1, x_2), (x_2, x_3), \ldots\} \cup \{(\sqrt{2}/2, 2)\}$ is a pairwise disjoint infinite open cover of $[0, 1] \cap \mathbb{Q}$ with no finite subcover in fact, if we remove *any* set from \mathcal{C} , we no longer have a cover
- 3.3.13. Such sets must be finite: as singletons are closed, and every set is covered by its singletons, a clompact set must be a finite union of singletons, thus finite. On the other hand, every finite set is clopen, as any cover of a finite set admits a finite subcover.

.