

Math 25, Fall 2014.

Oct 31, 2014.

MIDTERM EXAM 1

KEY

NAME(print in CAPITAL letters, *first name first*): _____

NAME(sign): _____

ID#: _____

Instructions: Each of the ~~5~~⁴ problems has equal worth. Read each question carefully and answer it in the space provided. *You must show all your work for full credit. Carefully prove each assertion you make unless explicitly instructed otherwise.* Clarity of your solutions may be a factor when determining credit. Calculators, books or notes are not allowed. The proctor has been directed not to answer any interpretation questions.

Make sure that you have a total of 5 pages (including this one) with 4 problems.

1	
2	
3	
4	
TOTAL	

1. (a) Assume (a_n) is a sequence of real numbers, and $a \in \mathbb{R}$. Define precisely what this statement means: $\lim_{n \rightarrow \infty} a_n = a$.

$$(\forall \epsilon > 0) (\exists N \in \mathbb{N}) (\forall n \geq N) (|a_n - a| < \epsilon)$$

(b) Assume (a_n) is a sequence of real numbers. Define precisely what this statement means: (a_n) is bounded.

$$(\exists M > 0) (\forall n \in \mathbb{N}) (|a_n| \leq M)$$

(c) Let $a_n = \frac{2\sqrt{n} + 1}{2\sqrt{n} - 3}$. Using only the definition in (a), prove that $\lim_{n \rightarrow \infty} a_n = a$ for some $a \in \mathbb{R}$. (Identify a first.)

$a = 1$. Fix an $\epsilon > 0$. We need to find an N so that $n \geq N$ will guarantee that $|a_n - 1| < \epsilon$.

$$\left| \frac{2\sqrt{n} + 1}{2\sqrt{n} - 3} - 1 \right| < \epsilon$$

\Updownarrow

$$\left| \frac{4}{2\sqrt{n} - 3} \right| < \epsilon$$

$n \geq 4$

\Updownarrow

$$\frac{4}{2\sqrt{n} - 3} < \epsilon$$

\Updownarrow

$$\frac{4}{\epsilon} < 2\sqrt{n} - 3 \Leftrightarrow 2\sqrt{n} > \frac{4}{\epsilon} - 3 \Leftrightarrow n > \left(\frac{2}{\epsilon}\right)^2$$

(d) Is the sequence (a_n) from (c) bounded?

$$\text{Take } N = \left\lfloor \left(\frac{2}{\epsilon}\right)^2 \right\rfloor + 1.$$

Yes, every convergent sequence is bounded.

2. (a) Recall that $n! = 1 \cdot 2 \cdots n$ is the product of first n natural numbers. Prove by induction that for all $n \in \mathbb{N}$, $n \geq 4$ implies that $2^n < 3(n-1)!$.

$$(n=4) \quad 2^4 < 3 \cdot 3! \quad , \quad 16 < 18 \quad \checkmark$$

($n \rightarrow n+1$) Assume $2^n < 3(n-1)!$ and $n \geq 4$. Then

$$\begin{aligned} 2^{n+1} &= 2 \cdot 2^n < 2 \cdot 3(n-1)! \leq n \cdot 3(n-1)! = 3n! \\ &= 3((n+1)-1)! \end{aligned}$$

$$\text{So } 2^{n+1} < 3((n+1)-1)!$$

(b) Use (a), or any other method, to prove that $\lim_{n \rightarrow \infty} \frac{2^n}{n!} = 0$.

$$\text{By (a)}: \quad 0 < \frac{2^n}{n!} < \frac{3(n-1)!}{n!} = \frac{3}{n}$$

As $\frac{3}{n} \rightarrow 0$ as $n \rightarrow \infty$, the same must be true for $\frac{2^n}{n!}$ (by order theorems)

3. Find

$$\bigcap_{n=1}^{\infty} \left(1 - \frac{1}{n}, 2 + \frac{1}{n}\right).$$

Carefully prove your assertion.

This intersection equals $[1, 2]$.

Clearly $x \in [1, 2]$ implies (that $x \in (1 - \frac{1}{n}, 2 + \frac{1}{n})$ for $n \in \mathbb{N}$), so that $[1, 2] \subseteq \bigcap_{n=1}^{\infty} (1 - \frac{1}{n}, 2 + \frac{1}{n})$.

We now show that $x \notin [1, 2]$ implies

$x \notin \bigcap_{n=1}^{\infty} (1 - \frac{1}{n}, 2 + \frac{1}{n})$. We look at two cases:

- If $x > 2$, $\frac{1}{n} < x - 2$ if n is large enough, and so $2 + \frac{1}{n} < x$ for large enough n , $x \notin (1 - \frac{1}{n}, 2 + \frac{1}{n})$.
- If $x < 1$, $\frac{1}{n} < 1 - x$ if n is large enough, and so $x < 1 - \frac{1}{n}$, and $x \notin (1 - \frac{1}{n}, 2 + \frac{1}{n})$.

In either case, there exists an n so that

$$x \notin (1 - \frac{1}{n}, 2 + \frac{1}{n}), \Rightarrow x \notin \bigcap_{n=1}^{\infty} (1 - \frac{1}{n}, 2 + \frac{1}{n}),$$

This proves that $\bigcap_{n=1}^{\infty} (1 - \frac{1}{n}, 2 + \frac{1}{n}) \subseteq [1, 2]$.

The two inclusions show that

$$\bigcap_{n=1}^{\infty} (1 - \frac{1}{n}, 2 + \frac{1}{n}) = [1, 2].$$

4. (a) State the definition of $\sup A$ for a set $A \subset \mathbb{R}$.

$$b = \sup A \text{ if }$$

(i) b is an upper bound for A , i.e., $a \leq b$ for every $a \in A$, and

(ii) for every upper bound c for A , $b \leq c$.

(b) What do you need to assume about a set $A \subset \mathbb{R}$ to ensure that $\sup A$ exists?

A has to be bounded above ($\exists b \in \mathbb{R}$ so that $a \leq b$ for every $a \in A$), and $A \neq \emptyset$.

(c) Let $A = (0, 2)$ and $B = A \cap \mathbb{Q}$. Find $\sup A$ and $\sup B$. Carefully prove your assertions.

$$\sup A = \sup B = 2.$$

Clearly, $\sup A \leq 2$ and $\sup B \leq 2$.

We claim that $\forall \varepsilon > 0$, $\exists r \in B$ so that $r > 2 - \varepsilon$. This is true as there exists an $r \in \mathbb{Q}$ in the interval $(2 - \varepsilon, 2)$ by density of rational numbers. This implies that $\sup B = 2$ and that $\sup A = 2$ (as such r is also in A).

(d) Assume that $A \subseteq \mathbb{R}$. Assume also that A is bounded above and that $A \cap \mathbb{Q}$ is nonempty. Is it necessarily true that $\sup A = \sup(A \cap \mathbb{Q})$? ~~True, False, Uncertain~~

No. Take $A = (0, 2) \cup \{1 + \sqrt{2}\}$.

Then $A \cap \mathbb{Q} = (0, 2) \cap \mathbb{Q}$ as $1 + \sqrt{2} \notin \mathbb{Q}$.

$$\sup A = \max A = 1 + \sqrt{2}$$

$$\sup(A \cap \mathbb{Q}) = 2$$