MAT 135A

Geometric Distribution

October 29, 2013 Indrajit Jana

A Geometric(p) random variable X counts the number of trials required for the first success in independent
trials with success probability p.

Properties:

(1) Probability mass function: First of all notice that we need at least one trial to get the first success,
therefore the lowest value of X is 1. And we may need 100,234, 10000000, - -- etc. trials to get the first
success, therefore there is no maximum value of X (unlike Binomial distribution). So X can take values
1,2,3,... i.e., any positive integer.

We want to compute P(X = n). In other words we want to compute the probability that we have (n—1)
“failure”s in first (n — 1) trials and the first “success” occurs at nth trial. Obviously by the independence of
trials we have P(X =n) = (1 — p)" " !p.

(2) Computation of E[X]: By the definition of expectation we have
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Therefore we have S — (1 — p)S = % i.e., S = L. Consequently we have

Alternative Method: Define a function
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Differentiating the function f with respect to p we obtain (using the definition of f given by )
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On the other hand differentiating @ with respect to p we obtain

Comparing the above two we have
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(3) Computation of Var(X): From the

Var(X

definition of variance we have

) = E[X?] — {E[X]}*.



To compute E[X?],
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Now we want to compute the value of T. Proceeding as ,
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So we obtain pT = 1% — %. Therefore Var(X) is given by
Var(X) = E[X?] - {E[X]}?

= pI'— = (since E[X?] = pT as in () andE[X] = 1/p)
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Alternative Method: This method is similar as the alternative method described above
the same function f (defined in ) twice with respect to p we get
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On the other hand, differentiating @ twice with respect to p we get
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Now we notice that
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Therefore we have
Var(X) = E[X?] - {E[X]}?
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