This will be the solutions to #1:

#1 Let R be the triangular region with vertices (0,0),(2,0), and (3,2).
Compute the volume of the solid above R whose top is given by the
surface z =2 4+ + y + xy.
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Please refer to the picture above. We are moving the dx in the x
direction, so the first curve we see is ¢ = %y. This is the lower bound.

The second curve we see is x = %y + 2, giving us the upper bound.
Thus,
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If we change the order of the integral we will need to divide the region
R into two regions R; and Ry. So,
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Moving dy in the y direction for R; we see that the lower bound equa-
tion should by y = 0 and the upper bound should be y = %m For Ry
the lower bound is y = 2x — 4 and the upper bound is y = %a:’ Thus,
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Both integrals should be equal.



