ANSWERS TO ODD-NUMBERED EXERCISES

Chapter 1
SECTION 1.1, pp. 11-13
1. D: (—00,00), R:[1,00) 3. D:[—2,00), R:[0,00)

5. D: (—00,3) U (3,00), R:(—00,0) U (0, c0)
7. (a) Not a function of x because some values of x have two

values of y
(b) A function of x because for every x there is only one possible y
9. A = ﬁxz p = 3x
4
mor=-L a=op v=2
V3 3V3
\/20x2 —
B. L - 20x* — 20x + 25
4
15. (—o0, )
4 1 J)=5-2x
2k
Eya— N "
L
_ab
19. (=00, 0) U (0, c0) y
o Fo =1
Il
1
EEEaN R
-2
21. (=00, =5) U (=5,=3] U [3,5) U (5,00)

23. (a) For each positive value of
x, there are two values of y.

(b) For each value of x # 0,
there are two values of y.

Iyl =x

27.

-2 1

X, 0=x=1
29.(a)f(x—{ 2 l<x=2
2, 0=x<I1
0, 1I=x<2
(b) f(x) = 2 2=x<3
0, 3=x=4
—X, -1 =x<0
31. (a) f(x) =41, 0<x=1
“lx+3 1<x<3
%x, -2=x=0
(b) f(x) = —2x + 2, 0<x=1
-1, 1<x=3
33.a) 0=x<1 (b -1<x=0 35. Yes

37. Symmetric about the origin

2F y=—x3

Dec. —00o < x < o0
41. Symmetric about the y-axis

y— 0| 2 4
Dec. —o00o < x = 0;
Inc.0 =x <
45. No symmetry

Dec.0 = x < 0

47. Even 49. Even 51.
55. Neither 57. Neither
63. t = 180 65. s =24
69.(a) h (b) f (¢) g
75.C=502+\V2)h

39. Symmetric about the origin

Inc. —0o < x < 0 and
0<x<o

43. Symmetric about the origin

0dd
59. 0dd  6l.

67. V= x(14 — 2x)(22 — 2x)
71. (a) (—2,0) U (4, 00)

Inc. —00 < x < ©

53. Even
Even
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Chapter 1: Answers to Odd-Numbered Exercises

SECTION 1.2, pp. 18-21

L. Dy:—o0<x<o00,Dy:x=1,Rp:—00<y<oo,
R,:y=0,Ds1, =Djpy =Dy Rpry:y =1, Rpp:y =0

3. Dji—00<x <00, Dyi—00<x<o00,Rp:y=2R:y=1,
Df/g:—oo<x<oo,Rf/g:0<yS2,Dg/f:—oo<x<oo,

5@ 2 ()22 () ¥*+2
® —2 (@ x+10 (h) x*—6x>+6

(d) x>+ 10x +22 (e) 5

45. ¥
7.13- 3 9. xF]
' " Vax + 1 —2 -1 12
11. (@) f(gkx)) (b) j(gx) (c) glgx)) (d) j(i(x) ' 0 >
© gh(f)) ® () ~ \/
13. g(x) fx) (fog)) ol
(@ x—7 Vi Vx -7
(b) x+2 3x 3x+ 6 47. 49.
) x? Vx =35 Var =5 e 2 F ' |
X x ’ P\ T 2
@ x — 1 x—1 o ; ;/; * 1r :
©iTp 1tx ; ST
® 1 i x B \ |
151 ()2 (© 2 A0 (-1 MO0 -2f :
i I 51. v 53.
17. (a) f(g) = [x T 1, g(f(x) = Vil
(b) Dy.p = (—00,—1] U (0,00), Dyoy = (—1,00) 3 k
(© Rpe = [0,DU (1,00, Reey = (0,000 s MU
19. g(x)=x2_x1 21 V(D) =42 — 81 + 6 N )
2.(@) y=—(+ 77 (b) y=—(c— 47 codpre

25. (a) Position 4 (b) Position 1 (¢) Position 2 (d) Position 3 55 s
27. (x + 22+ (y + 3> =49 29. y+1=(x+1)7° )
y y 3
x2+y2:49 y+1:(xtl)

31.

-/

(x+2)2+(+3)2=49

y=Vx + 0.81

y=x

y=2x-17

37.

X

57. R:[2.3]

y=2fx)

y

y=fn-1

L 1

(b) D:[0,2], R:[-1,0]

-1

/N

y

1

(d D:[0,2], R:[~1,0]




Chapter 1: Answers to Odd-Numbered Exercises A-3

() D:[-2,0], R:[0,1] (® D:[1,3].R:[0,1] SECTION 1.3, pp. 27-29
A A 1. @) 87m (b) SST’Tm 3. 8.4in.
L
ok 5.0 - —27/3 0 /2 3m/4
y=f(x+2) S
T i+ ) sin 6 0 V3 0 1 1
. . 1
L N T T2 s : cos 0 -1 _% 1 0 5
(@ D:[-2,0], R:[0,1] () D:[-1,1], R:[0,1] an 0 3 0 UND 4
R
L cot 0 UND 1 UND 0 -1
or V3
y=fx) y=—flc+D+1 sec 0 -1 -2 1 UND -\V2
1 L
: csc§f UND  _ 2 UND | NG
V3
-2 - of " -1 0 ! 7. cosx = —4/5, tanx = —3/4
1,1
9.y=37-3 6Ly=;+-5 6.y= Vil 9.sinx:_T8,tanx=_\/g
65 = 4—)6—2 67 =1—27% 11 sinx:—L COSX = —
o 4 Y V5 V5
13. Period 7 15. Period 2
69. y 71. y , .
2L u y =cos mx

— N W R W
T

- i y =sin 2x /\ \ /\
E y=(x*1)3+2 X L - X
T m 0 1 2
1 1 1 1 1 1 1 1 x 2
—2F —3-2-1 1 2 3 4 5
-3k i L

" -1 -1F

17. Period 6 19. Period 27
y y
73. y 75. y

= _T
}’:*sin% - Y Cos( 2)
a4k
1
N /\ /\
X
2F 0 6\

-2+ I -1

[SIEN
<
v
3
=

il 21. Period 27 23. Period /2, symmetric
/ about the origin
717. y

s

s = cot 2t

=|x2-1]

|
3

|
[SIE}
=
SIE|
3

79. (a) Odd (b) Odd (¢) Odd (d) Even (e) Even
(f) Even (g) Even (h) Even (i) Odd
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25. Period 4, symmetric about

29. D : (—o0, 00),

Chapter 1: Answers to Odd-Numbered Exercises

the y-axis R:y=-1,0,1
N y
i
i
§= SSC%’ y = [sinx| y=sinx
—2m LT I oo ™ 2m
1 ———b—L ¢ = X
. . [ ¢ ——
-3 -2 - 1 2 3 -1
F
39. —cos x 41. —cos x 43. \/61_ V2 45. \/21_ Vo
2+ V2 2-\V3 7w 27 4w 5w
47. 7 49. 1 51. 3 3°3° 3
7 m S7 37 .
53 656 59. V7 =265  63. a= 1464
_ asinf
05 r = ng )
67. A =2,B =2, 69. A=—-_,B=4,
C=—-mD=— 1
y C = O,D = T

-3

SECTION 1.4,
1.d  3.d

p- 33

5. [-3,5] by [—15,40]

)

=xt—ad+15

9. [~5,5] by [~6,6]

y

7. [~3.6] by [—250,50]

y

50

L gt |

foy=x"=5x*+ 10

,6] by [=5,4]

s f@=x\9-x Al
4L y=2x— 323
N

3+

2k 2r

1 L
1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 1 1 1
—5—4 [2-1 123 45 21 K1 2 45 6

— 4k B

_5_ -

13. [-2.8] by [-5, 10]

y
B _ x+3
8 = x+2
6
Q
T T 1 _I | I x
—10-8-6-4 ‘72_ 246810
L4 -
Lol
- 8
21. [—10,10] —6,6]
f(x)
| N I .
~10- —6— 4 6 8 10

”{Tﬁﬁﬂy

[—1.25,1.25]
y
10|
y = sin 250x
05
oo\ Yooy "
T o
29.[ 5 15}by[ 0.25,0.25]
y y=x+%sin30x
02|
01|
e o 0z "

—02}F

15. [~3,3] by [0,10]

y

D WA Lo ® OO

23.

_ 62— 15x+6
42— 10x

27. [—1007, 1007 ] by
[~1.25,1.25]

y
) = cos (L)
y
10, 0
1 1 1 1 1 1
300 300"
05k
—1ok
31.

P+ (=2 =9

\ 1/

X



33.

35.
Y f(x)=—tan 2x

= N W B

y

2.0
1.5

—-20

f(x) =sin 2x + cos 3x

7.
y=2"-1 5( y=2%-1
4
3
2k
1+
S G
-2
11. 16'/4 =2 13. 412 =2 15. 5 17. 14V3 19.
2. D:—oo < x < oo} R0 <y <1/2

31

33.

35

Dm0 <t<oosR: 1 <y<oo
. x = 2.3219 27. x = —0.6309
1

29. After 19 years

t/14
. (@ A@) = 6.6(5) (b) About 38 days later

~11.433 years, or when interest is paid
. 2% = 2815 x 10

SECTION 1.6, pp. 48-50

1
7

3. Not one-to-one
9. One-to-one

. One-to-one
. Not one-to-one

5. One-to-one

4

11.

A-5
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D:(0,1] R:[0,00) 13. D: [~1,1] R: [~m/2, /2]

y

17. Symmetric about the line y = x
y
1

y=\1-x*
O=x=1

19.
23.
25.
27.

29.

31.

33.

35.

37.

39.

41.

43.

X

3 6
) = Vax — 1 21 F7l0) = Vi + 1
Tl = Vx — 1

flx) = Vx; D: —00 < x < 00, R: —00 < y < 00
) = Vx — 1;D: —co < x < 00} R: —00 < y < 00

_ 1
Flo)=——=;D:x>0;R:y>0

Vix
Fl(x) =2;_+13;D:—oo<x<oo,x# 1;

R:—0c0 <y <oo,y#2
floy=1—Vx+ 1;D:—1 = x < o0
Ri—c0o<y=1
2x + b
() = .
o =T
D:—oco < x <oo,x#1,
. 1
(@) ') =
(b) The graph of ! is the line through the origin with slope
1/m.
@@ f'o) =x—1

Ri—c0o <y <ooy#2

(b) f~'(x) = x — b. The graph of f!is a line parallel to the
graph of f. The graphs of fand f~! lie on opposite sides of
the line y = x and are equidistant from that line.

(¢) Their graphs will be parallel to one another and lie on
opposite sides of the line y = x equidistant from that line.

(@) In3 —2In2 (b) 2(In2 — In3) (c¢) —In2

1

2

(%)
(@ In5 (b) In(x —3) (¢) In b

(d) %1n3 (e) In3 + sIn2 (O %(31n3 — In2)
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45. (a) 72 (b) é ©F @1 b1 (© -y

49, 2t 51. &'+ b 53. y = 2xe" + 1
55. (@) k=1In2 (b) k= (1/10)In2 (¢) k = 1000 In a

57. (@) t = —101n3 (b)t——M ()t—M

k In.2
59. 4(In x)? 6l. t = In3 63. t = ¢/ — 1)
65.(@ 7 () V2 (©75 (2 (e 05 (f —1

67. (@) Vx (b) x> (c) sinx 69. (a) % (b)3 (02

71. (a) —7/6 (b) 7/4 (¢) —7/3 73. (a) m (b) 7/2
75. Yes, g(x) is also one-to-one.
77. Yes, f o g is also one-to-one.

n@f@=@&ﬁ;)@fm=m4ﬁﬁ)

© f00 = CtD(®f®=ﬁT
8l.(a) y=Inx—3 () y=Inx—1)
@© y=3+In(x+1) @ y=Inx-2)—4
€ y=In=x) ) y=¢
83. = —0.7667
1 /12
85. (a) Amount = 8(5) (b) 36 hours

87. =44.081 years

PRACTICE EXERCISES, pp. 51-53
C2
4T

5. Origin 7. Neither 9. Even

13. Odd 15. Neither

17. (a) Even (b) Odd (¢) Odd (d) Even (e) Even

19. (a) Domain: all reals (b) Range: [—2, 00)

21. (a) Domain: [—4,4] (b) Range: [0,4]

23. (a) Domain: all reals (b) Range: (=3, 00)

25. (a) Domain: all reals (b) Range: [—3, 1]

27. (a) Domain: (3,00) (b) Range: all reals

29. (a) Domain: (—oco, —1] and [3,00) (b) Range: (—00, 5]

31. (a) Domain: (—oo, 0) and (0, c0) (b) Range: [—4, 4]

1. A=ar% C=2mr,A = 3. x=tan6,y = tan’> 6

11. Even

33. (a) Increasing (b) Neither (c) Decreasing (d) Increasing

35. (a) Domain: [—4,4] (b) Range: [0,2]
{1 -—x, 0=x<l1
37. flx) =

x, 1=x=2

\/7 () x,x#0

41. (@) (fe)(n) = —x,x ==2,(g°Hilx) = V4 — x*
(b) Domain (f ° g): [—2, c0), domain (g° f): [—2,2]
(c) Range (f°g): (—oo,2], range (g° f): [0,2]

43. y y

39. (a) 1 (b)

(d)

45. Replace the portion for x < 0 with the mirror image of the por-
tion for x > 0 to make the new graph symmetric with respect to
the y-axis.

y

y=lx

Il
=

47. Reflects the portion for y < 0 across the x-axis

49. Reflects the portion for y < 0 across the x-axis

51. Adds the mirror image of the portion for x > 0 to make the new
graph symmetric with respect to the y-axis

53-(a)y=g(x—3)+% (b) y=g(x+%)—2
© y=gn @ y=—g® (@ y=5

® y=gGxy
55. y 57.
(boy=e g
TT~—_
ok
59. Perlod T 61. Period 2
y=cos 2x

AAN
IAVAVAL

63.

2 2<.()s X —*
//\\ /
1177

1 b=V3 (b) a=2V3/3 c¢=4V3/3
b _a

67. (@) a tan B (b) ¢ = sin A

69. =16.98 m 71. (b) 47

73. (a) Domain: —co < x < oo (b) Domain: x > 0

75. (a) Domain: =3 = x =3 (b) Domain: 0 = x =4

EY=

[§)

X

13
W[y -

65. (a) a




Chapter 2: Answers to Odd-Numbered Exercises A-7

77. (fe g)(x) = In(4 — x?) and domain: —2 < x < 2; 21. (a) y
(g° f)(x) = 4 — (Inx)> and domain: x > 0;
(f o f)(x) = In(In x) and domain: x > 1;
(g°)(x) = —x* + 8x> — 12 and domain: —co < x < oo.

)
=3
S

)
S

Profit (1000s)

o (— . j z 1 1 1 x
83. () D: (~00,00) R[ 27 2} S0 11 12 15 14
®) D: [~1,1] R:[-1,1] e
) ’ ’ ’ (b) = $56,000/year
85. (a) No (b) Yes , (©) ~$42.000/year
= (%) = = VP = =42,
87. ﬁg He) (?/’;) x (@) = Vo = x 23. (a) 0.414213,0.449489, (V1 + h — 1)/h (b) g(x) = V&
e S 1+h 1.1 1.01 1.001 1.0001
L A V1+h 1.04880 | 1.004987 | 1.0004998 | 1.0000499
y=x!
. . . . (\/1 +h— l)/h 0.4880 | 0.4987 0.4998 0.499
B 1 2"
1.00001 | 1.000001
- 1.000005 | 1.0000005
-2 0.5 0.5
(¢) 0.5 (d) 0.5
ADDITIONAL AND ADVANCED EXERCISES, pp. 53-55 25. (a) 15 mph, 3.3 mph, 10 mph  (b) 10 mph, 0 mph, 4 mph
1. Yes. For instance: f(x) = 1/x and g(x) = 1/x, or f(x) = 2x and (¢) 20 mph when ¢ = 3.5 hr
gx) = x/2, or f(x) = ¢" and g(x) = Inx.
3. If f(x) is odd, then g(x) = f(x) — 2 is not odd. Nor is g(x) even, SECTION 2.2, pp. 71-74 .
unless f(x) = 0 for all x. If f is even, then g(x) = f(x) — 2 is 1. (a) Does not exist. As x approaches 1 from the right, g(x)
also even. approaches 0. As x approaches 1 from the left, g(x)
5. y approaches 1. There is no single number L that all the
x| +]y[=1+x values g(x) get arbitrarily close to as x — 1.
/ )1 (0 (@ 1/2
3. (a) True (b) True (c) False (d) False (e) False
1 x (f) True (g) True (h) False (i) True (j) True (k) False
2 5. As x approaches O from the left, x/|x| approaches —1. As x ap-
B proaches 0 from the right, x/ |x approaches 1. There is no single

number L that the function values all get arbitrarily close to as

19. (a) Domain: all reals. Range: If @ > 0, then (d, c0); if a < O, x—0.

then (.—oo, d). 7. Nothing can be said. 9. No; no; no 11. —4 13. -8
(b) Domain: (¢, 00), range: all reals 15.3  17.-25/2 19.16  21.3/2  23.1/10
21. (a) y = 100,000 — 10,000x,0 = x = 10 (b) After 4.5 years 25. —7 27. 3/2 29. —1/2 31 -1 33. 4/3
In (10/3) 35.1/6 374 39.1/2  41.3/2 43 -1
23. After ————5— = 15.6439 years. (If the bank only pays interest -1/ . -1/ -3/ .
In 1.08 y v P 45.1 47.1/3 49 Vad—=x

at the end of the year, it will take 16 years.)

25 x=2x=1 27,1/ 51. (a) Quotient Rule (b) Difference and Power Rules

(¢) Sum and Constant Multiple Rules
53.(a) =10 (b) =20 (¢) -1 (d) 5/7

55.(a) 4 (b) —21 (¢) —12 (d) —-7/3

Chapter 2 5.2 59.3 6L 1/(2V7)  63. V5

SECTION 2.1, pp. 61-63 65. (a) The limit is 1.

1. (a) 19 M) 1 67. (a) f(x) = (x* — 9)/(x + 3)

3 -4 ®) 3V3 s x | =3.1]-3.01|-3.001 | —3.0001 | —3.00001 | —3.000001
7. (a) 477 (b) y:w4x_9 f(x) | —6.1 | —6.01 | —6.001 | —6.0001 | —6.00001 | —6.000001
12‘ EZ; fz 23 i _ f';x_jl 6 X | —29]-299|-2999 | —2.9999 | —2.99999 | —2.999999
13. (a) —9 () y=-9x -2 f(x) | =5.9|-5.99 | —=5.999 | —5.9999 | —5.99999 | —5.999999
15. (a) —1/4 (b) y=-x/4-1 () lirESf(x) -6

17. (a) 1/4 () y=x/4 +1

19. Your estimates may not completely agree with these.
@1 po, | Po, | Pos | Pos

43 | 46 | 49 | 50

(b) =50 m/sec or 180 km/h

The appropriate units are m/sec.
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69. (a) G(x) = (x + 6)/(x*> + 4x — 12)

31. L=-3, 6 =0.01
35. L=4, 6=0.75
55. [3.384,3.387]. To be safe, the left endpoint was rounded up and

33. L=4, 6=005

the right endpoint rounded down.

59. The limit does not exist as x approaches 3.

SECTION 2.4, pp. 88-90

1. (a) True (b) True (c) False (d) True

(e) True (f) True (g) False (h) False
(i) False (j) False (k) True (1) False
3. () 2,1 (b) No, 1in£1+ fx) # lin217 fx)

(¢) 3,3 (d) Yes,3
5. (a) No (b) Yes,0 (¢) No
7. (a) ¥ (b) 1,1 (c) Yes, 1
7{,\'3, x#1
1 y=
0, x=1
-1 1 '
aF
9. D:0=x=2,R:0<y=1landy=2

() [0,HU,2] (© x=2 () x=0

y

x -59 —5.99 —5.999 —5.9999
G(x) | —.126582 | —.1251564 | —.1250156 | —.1250015
—5.99999 | —5.999999
—.1250001 | —.1250000
x —6.1 —6.01 —6.001 —6.0001
G(x) | —.123456 | —.124843 | —.124984 | —.124998
—6.00001 | —6.000001
—.124999 | —.124999

(©) 1in360(x) =-1/8 = —0.125
71. (a) f(x) = &> — D/(|x|—1)
x —1.1 | =1.01 | —1.001 | —1.0001 | —1.00001 | —1.000001
fx)| 21| 201 | 2.001 | 2.0001 | 2.00001 | 2.000001
x -9 =99 | —.999 | —.9999 | —.99999 | —.999999
fx) | 1.9 | 1.99 | 1.999 | 1.9999 | 1.99999 | 1.999999

(c) lirglf(x):2
73. (a) g(0) = (sin6)/6
0 1 01 .001 .0001 .00001 | .000001
2(0) |.998334 | .999983 | .999999 | .999999 | .999999 | .999999
0 -1 —.01 —.001 | —.0001 | —.00001 | —.000001
g(0) |.998334 | .999983 | .999999 | .999999 | .999999 | .999999

(g;rr})g(0>=1

75. (a) f(x) = x/0=9
X 9 99 999 9999 |.99999 | .999999
f(x) | 348678 | .366032 | .367695 | .367861 | .367877 | .367879
x 1.1 1.01 1.001 1.0001 | 1.00001 | 1.000001
f(x) | 385543 | 369711 | .368063 | .367897 | .367881 | .367878

limlf(x) ~ (.36788
77. ¢ = 0,1,—1; thelimitisOat ¢ = O,and l at¢c = 1, —1.

79.7 8L.(@5 (b5 8.(@0 (b)O
SECTION 2.3, pp. 79-82
1. 5 =2 ¢ 1 ) x
1 5 7
3.6=1/2 - > x
-7/2 -3 -1/2
5.8=1/18 ¢ ' > x
4/9 1/2 4/7
7.6=01 9.86=7/16 1.8=V5-2
13. 5 =036  15. (3.99,4.01), & = 0.01
17. (-0.19,021), 6§ =019 19. (3,15), 6§ =5
21. (10/3,5), 6=2/3

23. (—V4.5,-V35), 8=V45-2=0.12
25. (V15,V17), 6=V17T -4 =012
0.03) 5 — 003

27. (2—'7,2+7

m

29.

11D\._O
0 1
1. V3 13. 1

2
15.2/V5  17. (@@ 1 (b) —1

19. a) 1 (b) —1 21. (a) 1 (b) 2/3 23. 1 25. 3/4
27. 2 29. 1/2 31. 2 33. 0 35. 1 37. 1)2
39. 0 41. 3/8 43. 3 45. 0
51. 6 = &2, 1i1151+ Vx—=5=0
55. (a) 400 (b) 399 (c) The limit does not exist.
SECTION 2.5, pp. 100-102
1. No; not defined at x = 2
3. Continuous 5. (@) Yes (b) Yes (c¢) Yes (d) Yes

7. (a) No (b) No 9.0

11. 1, nonremovable; 0, removable 13. All x except x = 2
15. All xexcept x = 3,x = 1 17. All x

19. All x except x = 0 21. All x except nm/2, n any integer
23. All xexcept n7r/2, nanoddinteger  25. Allx = —3/2
27. All x 29. Allx 31. All x except x = 1
33. 0; continuous at x = 7 35. 1; continuous at y = 1
37. \6/ 2; continuous at t = 0 39. 1; continuous at x = 0

41. g3) =6 43. f(1) = 3/2 45. a = 4/3
47. a = —2,3 49. a =5/2,b=-1/2
73. x = 1.8794,—1.5321,—-0.3473 75. x = 1.7549
77. x = 3.5156 79. x = 0.7391
SECTION 2.6, pp. 112-115
1. (@) 0 (b) =2 (¢) 2 (d) Does notexist (e) —1
(f) oo (g) Doesnotexist (h) 1 (i) O
3.(@a -3 (b) -3 5. () 1/2 (b) 1/2 7. (a) —5/3
(b) —5/3 9. 0 11. —1 13. (a) 2/5 (b) 2/5



15.
21.
31.
41.
49.
55.
57.
59.
63.

67.

69.
71.
73.
75.

79.

85.
99.

@O0 (o 17. @) 7 (b) 7 19. @) 0 (b) O
(@) oo (b) c© 23. 2 25. © 27. 0 29. 1
00 33. 1 35.1/2 37. © 39. —0

—00 43. 45. (a) o (b) —o0 47. >

o0 51. — 53. (a) o (b) —c0 (¢) —0 (d) co
(@) —oo (b) co (¢) 0O (d) 3/2

(@) —oo (b) 1/4 (¢) 1/4 (d) 1/4 (e) It will be —co.
(@) —o0o (b) © 61. (@) co (b) co (¢) oo (d) oo
y 65. ¥

101

Domain: (—oco, c0), Range: [4,7)

Domain: (—oo, 00), Range: (—1, 4)

Domain: (—oo, 0) and (0, 00), Range: (—oo, —1) and (1, co)

Here is one possibility. 77. Here is one possibility.
y y

[ (12

L
Sl
b
\
o
wh
s

Here is one possibility. 81. Here is one possibility.

y

=<, x#0
[x| 1

0 1 2 3 4 5

At most one 87.0 89. -3/4 91. 5/2
(a) For every positive real number B there exists a corresponding
number & > 0 such that for all x

c—6<x<c¢ = f(x)>B.

(b) For every negative real number —B there exists a corre-
sponding number 6 > 0 such that for all x

c<x<c+é = fx)<-B.

Chapter 2: Answers to Odd-Numbered Exercises

(c) For every negative real number —B there exists a corre-
sponding number 6 > 0 such that for all x

c—6<x<c¢ = f(x)<-B.

A-9

105. 107.
y y
| 2
of | v
skoales A
4 : / ///
37
I// 2
2_,’: y= x_l=x+l + ll
y=xtl gt !
E I\
/// 2 :
W |
109.
y y
- s
A
y=== |
Na-x2 g fF !
L L .
= v
V&I
T
: x=2]
113. 115. At oo: 0o, at —oo: 0
y
3 L/
2
v:x2’3+%
17 3
N R
-3 -2 —1\ 12 3
\F
F
s
PRACTICE EXERCISES, pp. 116-117
1. Atx = —1: limr fx) = lin}+ fx) = 1,s0
x—— x——
lim1 f(x) = 1 = f(—1); continuous at x = —1
Atx = 0: lim f(x) = lim f(x) = 0, so lim f(x) = 0.
x—0" x—0" x—0
However, f(0) # 0, so fis discontinuous at
x = 0. The discontinuity can be removed by
redefining f(0) to be 0.
Atx = 1: hnll, f(x) = —1 and linll+ f(x) =1, so
X—> X—
liml f(x) does not exist. The function is
x—
discontinuous at x = 1, and the discontinuity is
not removable.
y
y=fx)
1 -—
—|1 0 i *
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3.(a -21 (b4 ©0 M1 (1 (7

@ -7 (h) —% 5.4
7. (a) (—o0, +00) (b) [0,00) (€) (—o0, 0) and (0, 00)
(d) [0,00)

13. 2x 15. _4171

25. —©

9. (a) Does notexist (b) 0 11.

17. 2/3 19. 2/7 21. 1 23. 4
27. 0 29. 2 31. 0
35. No in both cases, because lim f(x) does not exist, and lim f(x)
does not exist. =l =l
37. Yes, f does have a continuous extension, to a = 1 with
f(1) = 4/3.
39. No 41. 2/5 43. 0 45, —oc0 47. 0 49. 1
51. 1 53. —m/2 55. @ x=3 (Mb)x=1 (¢) x=—-4
57. Domain: [—4, 2) and (2, 4], Range: (—o0, c0)

09 [—

ADDITIONAL AND ADVANCED EXERCISES, pp. 118-120
3. 0; the left-hand limit was taken because the function is undefined
forv > c.
5. 65 < t < 75; within 5°F 13. @ B b)A (©0A d) A
21. (a) ;Ii)l’%) ry(a) = 0.5, HEIR (@) =1

(b) lin}) r_(a) does not exist, limﬁ r(a) =1
a— a——

25.0 27. 1 29. 4 31. y = 2x
37. —4/3
39. (a) Domain: {0,1,1/2,1/3,1/4,...}
(b) The domain intersects any interval (a, b) containing 0.
) 0
41. (a) Domain: (—oo, —1/7] U [—1/(2m),
—1/Bm] U [—1/@m), —1/Gm)] U -+ U [1/(5m),
1/(@m)] U [1/Gm). 1/@m)] U [1/m, 00)
(b) The domain intersects any interval (a, b) containing 0.
() 0

3. y=xy=—x

Chapter 3

SECTION 3.1, pp. 123-125
1. Pimy = 1,Pimy =5
S5.y=2x+5

Y

3. Pimy =5/2,Pmy =—1/2
7. y=x+1
y

9. y=12x + 16
y

y=12v+16 y=x

I
-2

(=2, -8)¢ -8

1l.m=4,y —5=4(x — 2)
13. m=-2,y —3=-2(x—3)
15. m =12,y — 8 = 12(t — 2)
Py 2=
19. m = —1 2. m = —1/4
23. (a) Itis the rate of change of the number of cells when ¢ = 5.
The units are the number of cells per hour.

(b) P'(3) because the slope of the curve is greater there.

(¢) 51.72 = 52cells/h
25. (—2,-5) 27. y=—(x+ 1),y =—(x — 3)
29. 19.6 m/sec 31. 67 35. Yes 37. Yes
39. (a) Nowhere 41. (a) Atx =0 43. (a) Nowhere
45. (a) Atx =1 47. (a) Atx =0

17. m =

SECTION 3.2, pp. 130-134

2 1 2
1. —2x,6,0,—2 3. —=,2,—= ——=—
X P4 33
5.5 3 1.3 7. 60 9.
2V360 2V3 27 2V2 Qt+ 1)
11 gq‘/2 B.1-20 1532 -5
2 2
17— y-a=-la-6 196
x—2)Vx — 2’ 2
—1 —1
21.1/8  23. 27. (b 29. (d
/ (X + 2)2 (X _ 1)2 ( ) ( )
3.a) x=0,1,4 33
(b) Y 2r o—0
4T fon(—4,6) _1'

o0-0 ?67891011

el

—8-6-4-202 4 6 8

35.(a) i) 1.5°F/hr ii) 2.9 °F/hr
i) 0°F/hr iv) —3.7 °F/hr
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(b) 7.3°F/hr at 12 p.m., —11 °F/hr at 6 P.M. ds dr _se' — ¢

as _ qap '’ = — el ar _
© Sope 35. i 3t 37. y T ex 39. ds 2
9 y=‘;—f 41. y =223 —3x — 1,y" = 6x> — 3,y" = 12x, y* = 12,
CE/hr) 6 y® = 0forn =5
T\, 43. y' =3 +8x + 1,y" =6x + 8,y" =6,y" =0forn = 4
0 24 6 8\O 12 1o 45. y' =2x — Ix %y =2 + 14x73
6k dr d’r dw d*w
6 ar _ apa A7 _ 1555 aw _ _ o _ 4 W _ 5 3
N 47. 40 30 16 126 49. & z 1, &2 27
ik
dw 5. d*w - 5
LS = 6ze%(1 + 2), S0 = 6e%(1 + 4z +
‘ _FO+ R~ fO) 51 &z 6z¢*(1 + z), P 6e*(1 + 4z + 27°)
37. Since hhr{)k S 1
- 53. () 13 (b) =7 (¢) 7/25 (d) 20
Lo SO+ R - f0) x,5
while lim —————— =0, $5. (@ y=-g+3 () m=—4a 01
0+ h) — fO - Qy — -
f/(0) = lim Mdoes not exist and f(x) is not (© y=8— 15y =28+ 17
h—0 h 57.y=4x,y=2 589.a=1,b=1,c=0
differentiable at x = 0. 61. (2,4)  63.(0,0),(4,2) 65 y=—16x + 24
1+ h) — f(1 _ _

29, Since lim f( ) — ) _ 5 while 67. (al) y = 2x +721 (©) (2,6) 6?.2 50 71.a 3
h—0* h 73. P'(x) = na,x" ' + (n — Da,_x"* + -+ + 2a,x + aq,
fa+nm—fH 1 D=1 fa+n = f(1 75. The Product Rule is then the Constant Multiple Rule, so the latter

Py h X ra = it h is a special case of the Product Rule.

does not exist and f(x) is not differentiable at x = 1.
41. Since f(x) is not continuous at x = 0, f(x) is not differentiable at
x = 0.

77. (a) %(uvw) = uow' + w'w + u'vw

d
(b) a(lhuzuﬂﬁ = iy’ + wpus'uy + wu usuy +

fO + h) — (0)

43. Since lim = 3 while ,
h—0+ h uy uyuz ity
0+ h) — fO d
Ilin(}i w = 0, f is not differentiable at x = 0. (c) 2 ) = iy gty Uy Uyl U, T
45. (a) -3 =x =2 (b) None (c) None ot wuy o,

47.(a) 3=x<0,0<x=3 (b) None (¢c) x=20
49.(a) "1 =x<0,0<x=2 (b) x=0 (c) None

79, 4P _ __ nRT 2an’
AV Wby V3

SECTION 3.3, pp. 142-144 SECTION 3.4, pp. 150-154

1 dl:_zx@:_z 1. (a) —2m, —1 m/sec
*dx > di? (b) 3 m/sec, 1 m/sec; 2 m/sec?, 2 m/sec?
ds _ , 4 @ _ _ 3 (c) Changes direction at 7 = 3/2 sec
3.4 = 157 — 151,55 = 301 — 60r 3. (@) —9m.—3m/sec
dy ) . d% (b) 3m/sec, 12 m/sec; 6 m/sec?, —12 m/sec?
5. o 4t — 1+ 26 e 8x + 2¢* (¢) No change in direction
5. (a) —20m,—5 m/sec
d 6 1 d? 18 2
7. 72/ =g ?,7;; = (b) 45m/sec, (1/5) m/sec; 140 m/sec?, (4/25) m/sec?
p 2 (¢) No change in direction
9. @ _ 12x — 10 + IOx’S,% =12 — 300 7. (a) a(l) = —6 m/sec?, a(3) = 6 m/sec?
dx dx (b) v(2) =3m/sec (c) 6m
1 dr_ =2 5 d*r _2_5 9. Mars: = 7.5 sec, Jupiter: = 1.2 sec
tds 38 2¢7ds? st S 11. g, = 0.75 m/sec?
13,y = —5¢* + 1222 — 2x — 3 13. (a) v = =32, [v| = 32¢ft/sec, a = —32 ft/sec?
1 19 (b) t = 3.3 sec
15. y =3x2 + 10x + 2 — Z 17. y' = G 27 (¢) v = —107.0 ft/sec
2 2 15. (@) t=2,t=7 (b)3=r=6
19. g'(x)=x +x+24 21.@:t —2t2—21 () (d)
(x + 05) dt (] + t) [v] (m/sec) a J
1 1 . A T
23, fi(s) = —F—F—— 25, v = —— + 2732 Speed 3 o—o
Vs(Vs + 12 X2 3 g N
_4)63_3)(2"1‘1 1_||A||A|||| f
27. y' = 29. y' = —2¢* + 3¢¥ LV Vo o
Y @ — D2* + x + 1)? Y ¢ ¢ o 2 4 6 s 10 ' :2:12345675910
9 -3 O=——0O
31. ' = 3x% + xPe* 33,y = 1x5/4 — 2™ —4r
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17.

19.

21.
23.
25.

27.

(a) 190 ft/sec (b) 2sec (c) 8 sec, O ft/sec

(d) 10.8 sec, 90 ft/sec  (e) 2.8 sec

(f) Greatest acceleration happens 2 sec after launch

(g) Constant acceleration between 2 and 10.8 sec, —32 ft/sec

(a) %sec, 280 cm/sec  (b) 560 cm/sec, 980 cm/sec?

2

(c) 29.75 flashes / sec

C = position, A = velocity, B = acceleration

(a) $110/machine (b) $80 (¢) $79.90

(a) b'(0) = 10* bacteria/h  (b) b'(5) = 0 bacteria/h
(¢) b'(10) = —10* bacteria/h

dy ¢
(a) 712 ! )
(b) The largest value of % is 0 m/h when 7 = 12 and the smallest
dy
value OfE is —1 m/h when 7 = 0.
(©

29. 4.88 ft, 8.66 ft, additional ft to stop car for 1 mph speed increase

31.

33.

6250

t = 25 sec, D=—"—""m
9
N
600 - s =200t — 167
400
ds _ _
200 o =200 -3
1 1 1 1 1 t
12
./
—200 ‘15 =-32
dr*

(a) v = 0 whent = 6.25 sec

(b) v > 0when 0 = ¢ < 6.25= the object moves up; v < 0
when 6.25 < t = 12.5= the object moves down.

(¢) The object changes direction at t = 6.25 sec.

(d) The object speeds up on (6.25, 12.5 ] and slows down on
[0, 6.25).

(e) The object is moving fastest at the endpoints + = 0 and
t = 12.5 when it is traveling 200 ft /sec. It’s moving slowest
at t = 6.25 when the speed is 0.

(f) When ¢ = 6.25 the object is s = 625 m from the origin and
farthest away.

2 \

0r ds_g-n B _32 1247

S dr \ /t

(@) v=0whent = 6%}7\/6%0

(b) v < Owhen6 _3\/B< < 6 +3\/Bz
the object moves left; v > 0 when 0 = ¢ < 6_37\/5 or
64_37\/6 < t = 4= the object moves right.

(c) The object changes direction at t = % sec.

(d) The object speeds up on (6 - SVE, 2) U (6 * 3\/E, 4}

6 — \/B) U (2,6 +3\E>_

and slows down on {0, 3

(e) The object is moving fastest at # = 0 and t = 4 when it is

+ A/
moving 7 units /sec and slowest at = 6_3715 sec.
+ \/
f) Whent = 63715 the object is at position s = —6.303
units and farthest from the origin.
SECTION 3.5, pp. 158-160
1. —10 — 3sinx 3. 2xcosx — x%sinx
2 7 . .
5. —cscxcotx — —= — — 7. sinx sec?x + sinx
Vx €
el
9. (¢*secx)(l — x + xtanx) 11. sz
(1 + cotx)
13. 4 tan x sec x — cscx 15. 0
17. 3x%sinxcosx + x3cos?x — x3 sinx
19. sec’r + et 21. % 23. —0(f cos § + 2 sin §)
— csc

25. secHcscH(tan @ — cotf) = sec> @ — csc? 6 27. sec’q
g*cos g — g*sing — gcosq — sing

' (¢ — 17

33. (a) 2cscPx —cscx  (b) 2secdx — secx

35. y

29. sec’q 31

y=—x—-7

I\A 1 1 1 | X
=372 —INg 7. /2 7752#/2{277
—1
y=-1 @m/2, -1
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y . d
37. yoseex 19. y = e, u = —5x, dy = —5¢*
i : 2. y =€ u=5—"7x dy = =767
] ] : ’ T dx
: 2 _ 1 4 o csc 6
i @/4,»2) 23. N 25. (cos3t — sin5t) 27. oot + csc B
T N SO 29. 2xsin*x + 4x?sin’xcosx + cos2x + 2xcos > xsinx
SR N STNCT TS N R A )
—m/2-m/3 0 /4 w/2 * 3< L)z (X + 1)4
. 1 x| 4 —
2x?
39. Yes,at x = 7 41. No 43. Yes, at x = 0, 7, and 27 5
- 35. (1 — x)e™ + 3x%"  37. [2x2 — 3x + 3 | ™2
45. 4,71 gt 2
+ sec x
39. Vasec?(2Va) + tan(2V) 41, ESeextany
. ) . 5 s 0( ) ( ) 2V7 + xsecx
| gl 43. ﬁ 45. —2sin(6%)sin 20 + 26 cos (20)cos (62)
: : cos
: ' :
H (m/4, 1) |
' ' t+ 2 t g2 _g?
E y=2-Z 41 47. (20 n 1)3/2)C0S( 1 1) 49. 20e sm(e )
— yra— 8 sin (2
ECC ol 51, 2msin(mt — cos(mt —2) 53 —omeD
R . : (1 + cos?2t)
o2 L | 55. 10'0 tan®t sec?t + 10¢° tan'O¢
| 1 dy . B
: (/4. —1) : 57. i =27 sin (mt — 1)+ cos (t — 1)+ ™D
47. (@) y=—x+7/2+2 (b)) y=4-\3 =31°( + 4) B 3 o
49. 0 51 V3/2 53, —1 55. 0 59. 703 4y 61. —2cos(cos (2t — 5))(sin(2t — 5))
57. —\V2m/sec, V2 m/sec, V2 m/sec?, /2 m/sec’ 2 / ;
59.c=9 6l (a) sinx (b) 3cosx — sinx 63. <1 + tan <12)) (tan <12)sec2(12>>
(¢) 73 sinx + xcosx o
63. (@) i) 10cm i) Sem i) —5V2 ~ —7.1cm 65, —— W) e 6 an (sin® 1) sec? (sin® 1) sin7 cos ¢
(b) i) Ocm/sec ii) -5V3 =~ —8.7 cm/sec V1 + cos(£?)
lll) *5\/7 = —7.1 cm/sec 69. 3(2[2 _ 5)3 (18t2 _ 5) 71. é(l + 1)(1 + %)
SECTION 3.6, pp. 166-169 73. 2csc2(3x — DeotBx — 1) 75. 16Q2x + 1> (5x + 1)
L 12 3. 3cosGr+1) 5 —B8X 77. 2Q2¢° + De*
2 Vsinx 79. f'(x) = 0forx = 1,4; f"(x) = 0forx = 2,4
7. 2mx sec? (mx?) 81. 5/2 83. —m/4 8.0 87. -5
dy dydu 89.(a) 2/3 () 27r+5 (¢) 15— 87 (@) 37/6  (e) —1
_ — 5. Sdu _ 54,9
O Withu = (2x + Doy =02 00 = Guax = 2 ® V2/24 (@ 5/32 () -5/(3V17)
10(2.X + 1)4 91. 5 93. (a) 1 (b) 1 95. y = 1 — 4x
. dy  dydu 97. (@) y=mx+2—a (b) 7/2
11 Withu = (1 — (x/7)),y = u 3& = du dx = 99. It multiplies the velocity, acceleration, and jerk by 2, 4, and 8,
1 -8 respectively.
s _ X
e ()13 e
7 7 101. v(6) = Tm/sec, a(6) = — ——m/sec>
dy dy du 5 125
13. With u = ((x*/8) + x — (1/x)),y = u*: — = =
/ / dx  dudx SECTION 3.7, pp. 172-174
s (x 1\ _ (¥ 1/ x 1 —2xy — y? 1 -2y
414-*4-1—!—*2 74*+x—} *+1+f2 1, ——— -~ 3,
4 x 8 4 x X2+ 2xy 2x + 2y — 1
d d
15. Withu = tanx,y = sec u : & _ Ddu_ -2 + 3% —x* +x 1
dx  du dx 5. 7. ——— 9. cosycoty
5 xzy -+ y y(x + 1)?
(sec u tan u)(sec’x) = sec (tan x)tan (tan x) sec’x
dy dydu —cos”(xy) — ¥ -y

17. With u = tanx,y = Y dude 3ulsec’x = 1 —— 13. 2 |
3tan’x (sec’x) ysin{ 5 | = cos{ | + xy
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2 2x _ + 3 —
15, 20 e 3 Ve g o
3 cos (x + 3y) Vo
2 2
/7_)7‘: //:_y - X
21. y' = ¥y 7}}3
dy  ye® + 1 dy  (2xHr+y? — 2x0)e” — x2 — 1
23, - = , Ty =
dx y dx? 33
25 y! — \/§ yH: 1
Vy+1 2(Vy + 1)
32 6x(1 — cosy)> — 9x*siny
27.y' = Ly = 3
1 — cosy (1 — cosy)
29. -2 3. 2, ):m=—-1,-2,—-1):m=1
_7 _1 __4 .
33.(a)y74x > (b) y= 7x+7
_ 1 8
35.(@a) y=3x+6 (b)yf—§x+§
_6 .6 -7 1
37.(21)y—7x+7 (b) y= 6x 6
2 2
39.(a)y=—%x+7r b) y=2x— 5+
_ _ __x 1
41. (a) y = 27x — 27 (b) v oy + 277
43. Points: ( and( ) Slope: —
\/1
45.m——1t<4,2) —\ft(42
47. (3.2 m=—2L (3, -2):m 28—7; (3,2):m =
(3, _2):m=_28l
49. (3,—1)

55.
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dy Y+ 2y gr
dx x>+ 3xy% dy

SECTION 3.8, pp. 183-184

L@ flo=3-3
(b) y
3[y:f(x):2x+3
v=rlw=3-2
32/ 0 . i
- 3
-3/2 /
© 2,1/2
3@ fl =33
by

y=flx)=—4x+5

X
o| §\ 5
4

() —4,—1/4

X2+ 37 gy
v+ 2y’ dy

5.

17.

23.

31.

37.

41.

45.

47.

49.

51.

53.

57.

63.

69.

77.

81.

85.

91.

95.

OG-0

(b) y

-2k

(c) Slope of f at (1, 1): 3; slope of g at (1, 1): 1/3; slope of f at

(=1,—1): 3;slopeof gat (—1,—1): 1/3

(d) y = Oistangentto y = x* at x = 0; x = 0 is tangent to

y=\3/);atx=0.

(oo

2\/(; + 1)

): 2x + 1
1 2Vx(x + 1)

L1/9 9.3 1L %+ 1 13.2/t 15 —1/x

1 — 0 2

6+1 ¢ 19. 3/x 21. 2(Inf#) + (In?)

Plhx 25 LI L g9 L

I x(1 + In x)? xlnx
3x+2

2005(111 9) 33. —m . m

tan(In 6
(In 6) 39, 10x 1
0 2+1 21 -

V6 + 3(sin 0)(2(6 3 + cot 0)

1 1] .,
t(t+1)(t+2){ T 2}—3t+6t+2
0+5 1 1
0c050{0+5 0+tan0}
xVa? + l[l X 2 }

(x+ D¥LY 2+1 3+ 1D
13/xx—2) /1 1 2 _
3 211 x+x—2 241 55. —2tan6
Lot so 1/ + e 6L el — rsinn
ye¥ cos x dy y*— xylny
T . o= . 2%Inx
1 — ye’sin x dx x> — xylnx
n5 \ovs ) 1 3
(2\/)5 71. mx 73. 0102 75. “Ind
2(In r) o 5
r(In 2)(In 4) "Gt Dx—1)
1
sin(log; 6) + cos(10g7 0) 83. B
?(logz 3)3loet 87. % 89. (x + 1)*( T + In(x + 1))
(\/i) (h;[ + ;) 93. (sin x)*(In sin x + x cot x)
3y —xyln 1 —xyln
(lm)(lnx) 97, ¥ 2xy y : ylny
X —x x*(1 + Iny)



SECTION 3.9, pp. 189-191
L () 7/4 ®) —7/3 (¢) 7/6
. (@) —7/6 (b) m/4 (¢) —7/3
. (@ 7/3 (b) 37/4 (¢) 7w/6
(@) 3w/4 ) 7/6 (¢) 2m/3
L1/V2 1L —1/V3 130 @2
—2x V2

9.0 20 = B e
|25 + 1|1\/S2Ts 27 o2 + J\iﬁ

\/% 3. 2%(_11+ 0 33 (tan“x)il + 1%
— _ )

|e’|\/(:’t)2 —1 \/ezfl— 1 37 1zi 52 3.0

8\V2
P
41. sin ' x 43. 0 45. 137

51. (a) Defined; there is an angle whose tangent is 2.
(b) Not defined; there is no angle whose cosine is 2.
53. (a) Not defined; no angle has secant 0.
(b) Not defined; no angle has sine V2.
63. (a) Domain: all real numbers except those having the form

o N Ut W

15. 7/2

25.

29.

35.

% + km where k is an integer; range: —7/2 < y < 7/2

(b) Domain: —co < x < o0; range: —00 < y < 00
65. (a) Domain: —oo < x < oojrange: 0 =y =7

(b) Domain: =1 = x = l;range: -1 =y = 1
67. The graphs are identical.

SECTION 3.10, pp. 196-199

dA dr _ _
1. - 27Trdt 3. 10 5. -6 7. =3/2
9. 31/13 11. (a) —180 mz/min (b) —135 m?/min
v _ _adh av _ dr
13. (a) i dr (b) = 27hr di
&V _ i
(c) a =™ + 27hr dt

15. (a) 1 volt/sec (b) _§ amp /sec

© ®_L(dv_vr
dt d Idt
) 3/2 ohms /sec, R is increasing.
ds _ X dx
17. (a) 7Y S
B _x A, Y b
dt X2 4y2dt N2y dt
de _ _ydy
© 4 = ¥
dA 1 do
19. (a) o Zabcosed
dA 1 do | 1 da
(b) E E abco 95 + 2bS d
dA 1 do | 1 da db
(C) E Eab 967 + 2b Gdi + ECISandf

21. (a) 14 cm? /sec, increasing (b) 0 cm/sec, constant
(c) —14/13 cm/sec, decreasing
23. (a) —12ft/sec (b) —59.5ft*/sec (c) —1rad/sec

25. 20 ft/sec

17. @ /2

27.

29.

31.
35.
37.

41.
43.

45.

A-15
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(a) % = 11.19 cm/min (b) %:
(a) m/mm (b) r = V26y — y’m

14.92 cm/min

dr 5 .
© 4 =~ 288 ™/min
1 ft/min, 407 ft*/min ~ 33. 11 ft/sec
Increasing at 466/1681 L/min?

—5m/sec 39. —1500 ft/sec

%in./mm, 3 in?/min

(a) —32/V13 = —8.875 ft/sec

(b) db,/dr = 8/65 rad/sec, db,/dt = —8/65 rad/sec
(c) db,/dr = 1/6rad/sec, db,/dt = —1/6 rad/sec

—5.5 deg/min 47. 127 km/min

SECTION 3.11, pp. 209-211

1.
7.
15.

17.
19.

23.

27.

29.

31.

37.

39.
41.
43.
45.
51.

55.
61.

63.
65.

L(x) = 10x — 13 3. L(x) =2 5. Lx) =x— 7
4
2x 9. —x—5 11. 12x+3 13. 1 — x
F(0) = 1. Also, f'(x) = k(1 + x)*"1, so f/(0) = k. This means
the linearization at x = 0 is L(x) = 1 + kx.
(a) 1.01 (b) 1.003
3 2 — 2x2

3x2 — dx 21, ———d
( RV 1+

L=y 5
————dx  25. 5Vx) dx
3Vy + x 2Vx (5v2)

3

(4x?) sec? 3 dx
%(cse(l - 2\/);)cot<1 — 2\/);)) dx

1 Vi 2x 2xe”

ceV¥dx 33. d 35. d.

2\/,}6 1+ l-i-ezxz)C

e — 1
(a) 041 (b) 0.4 (c) 0.01

(a) 0.231 (b) 0.2 (¢) 0.031

(@ —1/3 (b) —2/5 (c) 1/15

dV = dary dr 47. dS = 12xydx 49. dV = 2mryh dr
(a) 0.087 m> (b) 2% 53. dV = 565.5in’

(@) 2% (b) 4% 57. %% 59. 3%

The ratio equals 37.87, so a change in the acceleration of gravity
on the moon has about 38 times the effect that a change of the
same magnitude has on Earth.

Increase V = 40%

@ i) by = fla) ii) by = f'(a) iii) b, =
(b) O() = d oW =1-(—1+ -1y

2

© 0w =1+5-7

(f) The linearization of any differentiable function u(x) at x = a
is L(x) = u(a) + u'(a)(x — a) = by + b;(x — a), where b,
and b, are the coefficients of the constant and linear terms
of the quadratic approximation. Thus, the linearization for
f(x)at x = 0is 1 + x; the linearization for g(x) at x = 1 is
1 — (x — 1) or 2 — x; and the linearization for h(x) at

f(a)
2

1 +x+ x2

0 x
X—OISI+2.
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67. (a) L(x) =xIn2 +1 = 0.69x + 1 95. (a) y
(b) y ¥ 1

y=2"
141
1 y=(n2)x+1

3+

y=(In2)x + 1 y=2 8: - 0 : (b) Yes (c) No
04
/ L L L L L i L L . -ir
3 21 ol 1 2 3 0 Tor Zos ol os 1 "
f(x):{ Xz -1 sx’<0
PRACTICE EXERCISES, pp. 212-217 - 0=x<1
1. 5x* — 0.25x + 0.25 3. 3x(x — 2) (b) Yes (c) Yes
5. 200 + D22 + 4x + 1)
7. 3(6% + sec @ + 1)2(20 + sec 0 tan 0)
59 3 1
1 99. <7, 7) and (7, —7)
9. PRV 11. 2sec?x tanx 274 2 4
2Vi(1 + Vi) 101. (—1,27) and (2, 0)
13. 8cos’(1 — 2f)sin(1 — 21) 15. S(sec f)(sec ¢ + tan £)° 103. (a) (=2,16),(3,11) (b) (0,20),(1,7)
17 0cos® + sinf g, 08 V20 105. "‘
" \V20sin6 © V26 ¥=tanx

2 2 2 yeogrrgal
21. xcsc ) tesel 3 )eot| ¥ 1+ (/4. 1)

23. %x'/zsec (202 16tan (2x)? — x2]

-2 —m/4 /4 /2 i
25. —10x csc?(x?) 27. 8x3sin(2x2) cos(2x2) + 2x sin?(2x?)
—(+1 1 —x -1
29. 873 ° (x + 1)3 33. 1 1/2 (=m/4, —1) 71_)7:7%x7%71
2)C2 1 + X
—2sin6 S5x + cos 2x 1
35, ————— 37. 3V2x + 1 39. —9{—} .- .
(cos6 — 1)? X (522 + sin 20)°2 107 1 109. 4
i y= L 9 cy = Ay —
41, —267/5 43. ye™ 45. 25111.97209039 = 2cot 0 111. Tangent: y = 1~ + e normal: y = 4x — 2
sin
1 7
113. Tangent: y = 2x — 4, normal: y = —-x + =
47. (1n22)x 49. —87(In8)  51. 18x*° senty YT TN
| 115. Tangent: y = —%x + 6, normal: y = ;ix - %
53. (x + 2)*(In(x + 2) + 1)  55. — : |
I —u 117. (1, 1):m = -3 (1, —1): m not defined
57. . 59. tan"'(r) + — 119. B = graph of f, A = graph of f’
V1 — x*cos'x L+ 2 121 y
61 Loz + sec”!'z 63. —1 65 T 2 . 2( 4.3) 9 y = fx)
: m : Tox+3 ‘ \
_ (6, 1)
-3 —dy +2 y 1 L
67. ————— 69. —% 1. ——— x
4x — 4y'/3 2y(x + 1)? -1 | 1 46
D etanx dp  6q — 4p 123. (a) 0,0 (b) 1700 rabbits, = 1400 rabbits
73. —-1/2 75 y/x  T1. . 79. dg " 37 + 4q 125. —1 127. 1/2 129. 4 131 1
dr P a 133. To make g continuous at the origin, define g(0) = 1.
81. ds (2r — D)(tan2s) 202 + D[ 2y
135, ———| + tan2x
83. (a) d’y  —2xy? — 2 ®) dy  —2xy* — 1 Veos2x Lx° + 1
Wy oy 137 5{(r+ I — 1)H TS U N
85. () 7 (b) =2 (¢) 5/12 (d) 1/4 (e) 12 () 9/2 C=2¢+3yf 1+l -1 1=-2 1+3
(g 3/4 1 . . iflnsing
V32 _ 139. ——=(sin ) ——— + 6coth
87.0  89. %cos(em) or. -1 93 2 Vo 2
4 2 2t + 12
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as _ dr 9 5V5
141. (a) d (4mrr + 2h) di 5. h=—4k= Ja="5"
ds _ dh 7. (a) 0.09y (b) Increasing at 1% per year
(b) 27rr . . R
dr dr 9. Answers will vary. Here is one possibility.
ds _ dr . dh :
(c) o (4mr + 2mh) dt + 2mr dt
dr_ _ r dh
@D =2 ha
143. —40 m?/sec 145. 0.02 ohm /sec 147. 2 m/sec 0| !
_2 _ 125 : 11. (a) 2 sec, 64 ft/sec (b) 12.31 sec, 393.85 ft
19 @ r=35h (b) ~yp ft/min 15 v TP yew + Diny
Ly =

Y+ 1) — ¥ylnx

17. (a) m=—% b)ym=—-1,b=m

151. (a) %km/sec or 600 m/sec (b) %rpm

_ T — 2
153. (@) L(x) = 2x + = 19. (a) a = %, b= % 21. fodd=> f" is even
A 25. h' is defined but not continuous at x = 0; k' is defined and
L y=tanx continuous at x = 0.
-7
y=2x+ (7 —2)/2 27. 75 rad/sec
— '/4 '/4 x 31. (a) 0.8156ft (b) 0.00613 sec
R K (c) It will lose about 8.83 min /day.
(=m/4 —1) -
Chapter 4
V24 — ) SECTION 4.1, pp. 227-229
(b) L(x) = —\V2x + — 1. Absolute minimum at x = ¢,; absolute maximum at x = b
, 3. Absolute maximum at x = ¢; no absolute minimum
; y ' 5. Absolute minimum at x = a; absolute maximum at x = ¢
; ; 7. No absolute minimum; no absolute maximum
: : 9. Absolute maximum at (0, 5) 11. (¢) 13. (d)
i 1 15. Absolute minimum at 17. Absolute maximum at
E - : x = 0; no absolute X = 2; no absolute
; VAT ; maximum minimum
P/ y = e Y o y
i i y=g®
: 1 : 1+
“x/2 /A 0 w2 /
y = — Ex E 4 —)/4 1
Y V2x + ( )/ ¢ L N
155, L) = 15v + 05 157, ds = 0 g I
. L(x) = 1.5x . . =
V2 + hf
159. (a) 4% (b) 8% (¢) 12% 19. Absolute maximum at x = 7r/2; absolute minimum at

x=37/2
ADDITIONAL AND ADVANCED EXERCISES, pp. 217-219
1. (a) sin 20 = 2sin O cos 0; 2cos 20 = 2sin O (—sin ) +
cos 6 (2cos 0); 2cos 20 = —2sin?f + 2cos?H;cos 20 = 3

cos’0 — sin’6 /\
(b) cos 20 = cos*6 — sin?0; —2sin 20 = ] .

2cos 6 (—sin #) — 2sin O (cos 6); sin 20 =
cos 0sin 6 + sin 6 cos 6;sin 20 = 2sin 6 cos 6 3l

3.(@) a= l,b:0,c:—% (b) b =cosa,c = sina
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21. Absolute maximum: —3;
absolute minimum: —19/3

1 1 1 1 1 x
-2 -1 0 1 2 3
ok
ok
(3,-3)
3k
Abs
—4r max
)y —2,_
(=2, —19/3) y=5x-3
Abs —6r —2=x=3
min -7+

25. Absolute maximum: —0.25;
absolute minimum: —4

(2, —0.25)
Abs max

0.5, —4)
Abs min

29. Absolute maximum: 2;
absolute minimum: O

y

y= e (0, 2) Abs max
—2=x=1 '\
1
¢ L L x
(=2,0) —! 0 1
Abs
min -1r

33. Absolute maximum: 2/ V3;
absolute minimum: 1

Abs max Abs max
(/3.273)  @as3,213)
1.2
1.0 y=cscx

2,1
081 7/3<x=2m/3 XL/S )

min

1 1 1
0| 7/3 w/2 2m/3

37. Absolute maximum is
1/e atx = 1; absolute mini-
mum is —e at x = —1.

Y Absolute
maximum

(=1, -e)=3
Absolute _
minimum

Chapter 4: Answers to Odd-Numbered Exercises

23. Absolute maximum: 3;
absolute minimum: —1

y

(2,3) Abs

3 max
y:xzfl
2r —l=x=2

& 1

x
,\0/1 2
70, —1) Abs

min

27. Absolute maximum: 2;
absolute minimum: —1

I L1 X
- 1 2 3 4 5 6 7 8
~1
(=1, =D
Abs min

31. Absolute maximum: 1;
absolute minimum: —1

y

(/2, 1) Abs max

- 0
72 5ml6

I
—7/2

1 y=sin, —m/2=60=57/6
(=7/2,—1)
Abs min

35. Absolute maximum: 2;
absolute minimum: —1

Abs
min 3, 1)

39. Absolute maximum value
is(1/4) + Indatx = 4
absolute minimum value is 1
at x = 1; local maximum at
(1/2,2 = In2).

. Abs max at G,% +]n49

1.5F

125F 7@ =1+

1+
075 | Abs min at (1, 1)

025+

41.

43.

45.
47.
49.
51.
53.
55.
57.

59.

61.

63.

65.

67.
69.
71.
73.
75.

77.
79.

81.

Increasing on (0, 8), decreasing on (—1, 0); absolute maximum:
16 at x = 8; absolute minimum: O at x = 0

Increasing on (—32, 1); absolute maximum: 1 at § = 1; absolute
minimum: —8 at § = —32

x=3

x=1,x=4

x =1

x=0and x = 4

x=0and x =1

x=2and x = —4

Critical point

or endpoint Derivative | Extremum Value

__4 0 Local max | 127413 ~

X 5 25 10 1.034
x=0 Undefined | Local min 0

Critical point

or endpoint Derivative | Extremum | Value
x=-2 Undefined | Local max 0

x=-V2 0 Minimum -2

x=\V2 0 Maximum
x=2 Undefined | Local min

Critical point

or endpoint Derivative | Extremum | Value
x =1 Undefined | Minimum 2

Critical point

or endpoint Derivative | Extremum | Value
x=-—1 0 Maximum 5
x=1 Undefined | Local min 1
x=3 0 Maximum 5

(a) No

(b) The derivative is defined and nonzero for x # 2. Also,
f(2) = 0 and f(x) > 0O for all x # 2.

(¢) No, because (—o0, c0) is not a closed interval.

(d) The answers are the same as parts (a) and (b), with 2
replaced by a.

y is increasing on (—o0o, co) and so has no extrema.

y is decreasing on (—oo, 00) and so has no extrema.

Yes

g assumes a local maximum at —c.

(a) Maximum value is 144 at x = 2.

(b) The largest volume of the box is 144 cubic units, and it oc-

curs when x = 2.

'U02

E + So

Maximum value is 11 at x = 5; minimum value is 5 on the inter-
val [—3, 2]; local maximum at (=5, 9).

Maximum value is 5 on the interval [3, co); minimum value is
—5 on the interval (—oo, —2].

SECTION 4.2, pp. 235-237

1.

12 31 s+ )1-% <t
a



7. %(1 +V7) = 122,11 = v7) = —0509

'3

9. Does not; fis not differentiable at the interior domain point

11.
17.

29.
33.

35.

37.

39.

43.

47.
51.

53.

57.

61.

71.

x = 0.
Does 13. Does not; f'is not differentiable at x = —1.
(a)
s SN :
if) R '
iii) _f g 3 x
iv) o ¢+ 9 YO !
Yes 31. a4 (b)3 (¢) 3

x? X x*
(a)E+C (b)§+C (C)Z-FC

@i+c mx+lic @s-Ll4c
(a) _%COSZI + C (b) 25in% +C
1 .t
(c) *ECOSQZ + 2s1n§ + C
fx) = x* — x 41. fx) =1+

e

2

_ 1 — cos(mt)

s =492+ 5t + 10 45, 5 = -

s=¢e + 19t + 4 49. s = sin(2r) — 3

If T(?) is the temperature of the thermometer at time 7, then

T(0) = —19 °C and T(14) = 100 °C. From the Mean Value

Theorem, there exists a 0 < #; < 14 such that

T(14) — T(0)
14-0

temperature was changing at t = #, as measured by the rising

mercury on the thermometer.

Because its average speed was approximately 7.667 knots, and

by the Mean Value Theorem, it must have been going that speed

at least once during the trip.

The conclusion of the Mean Value Theorem yields

= 8.5°C/sec = T'(ty), the rate at which the

1 1
b a_ _1_ ,fa=b\_ _ _
P C2=>C(ab)_a b=c = Vab.

f(x) must be zero at least once between a and b by the Intermedi-
ate Value Theorem. Now suppose that f(x) is zero twice between
a and b. Then, by the Mean Value Theorem, f'(x) would have

to be zero at least once between the two zeros of f(x), but this
can’t be true since we are given that f'(x) # 0 on this interval.
Therefore, f(x) is zero once and only once between a and b.
1.09999 = f(0.1) = 1.1

SECTION 4.3, pp. 241-242

1.

(a) 0,1
(b) Increasing on (—oo, 0) and (1, c0); decreasing on (0, 1)
(¢) Local maximum at x = 0; local minimum at x = 1

. (a) —2,1

(b) Increasing on (—2, 1) and (1, co); decreasing on (—oo, —2)
(¢) No local maximum; local minimum at x = —2

. (a) Critical pointat x = 1

(b) Decreasing on (—oo, 1), increasing on (1, co)
(¢) Local (and absolute) minimum at x = 1

.(a) 0,1

(b) Increasing on (—oo, —2) and (1, 00); decreasing on (—2, 0)
and (0, 1)

A-19
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(¢) Local minimum at x = 1

9. (a) —2,2
(b) Increasing on (—oo, —2) and (2, 00); decreasing on (—2, 0)
and (0, 2)
(¢) Local maximum at x = —2; local minimum at x = 2
11. (a) —2,0
(b) Increasing on (—oo, —2) and (0, c0); decreasing on (—2, 0)
(¢) Local maximum at x = —2; local minimum at x = 0
m 27 41
13. (a) 5, ?, T
(b) Increasing on (2?77, 4%), decreasing on (0, %), (%, 2?77),
and (4%, 277')
. 47 ..
(¢) Local maximum at x = 0 and x = 3 local minimum at
x = 2?77 and x = 27
15. (a) Increasing on (—2, 0) and (2, 4); decreasing on (—4, —2) and
©0,2)
(b) Absolute maximum at (—4, 2); local maximum at (0, 1) and
(4, —1); absolute minimum at (2, —3); local minimum at
(=2,0)
17. (a) Increasing on (—4,—1), (1/2, 2), and (2, 4); decreasing on
—1.1/2)
(b) Absolute maximum at (4, 3); local maximum at (—1, 2) and
(2, 1); no absolute minimum; local minimum at (—4, —1)
and (1/2,—1)
19. (a) Increasing on (—oo, —1.5); decreasing on (—1.5, co)
(b) Local maximum: 5.25 at t = —1.5; absolute maximum: 5.25
att =—1.5
21. (a) Decreasing on (—oo, 0); increasing on (0, 4/3); decreasing
on (4/3, 0)
(b) Local minimum at x = 0 (0, 0); local maximum at
x = 4/3(4/3,32/27); no absolute extrema
23. (a) Decreasing on (—oo, 0); increasing on (0, 1/2); decreasing
on (1/2, )
(b) Local minimum at 8 = 0 (0, 0); local maximum at
0 = 1/2(1/2,1/4); no absolute extrema
25. (a) Increasing on (—oo, 00); never decreasing
(b) No local extrema; no absolute extrema
27. (a) Increasing on (—2, 0) and (2, co); decreasing on (—oo, —2)
and (0, 2)
(b) Local maximum: 16 at x = 0; local minimum: 0 at x = *2;
no absolute maximum; absolute minimum: 0 at x = =2
29. (a) Increasing on (—oo, —1); decreasing on (—1, 0); increasing
on (0, 1); decreasing on (1, co)
(b) Local maximum: 0.5 at x = % 1; local minimum: 0 at
x = 0; absolute maximum: 1/2 at x = = 1; no absolute
minimum
31. (a) Increasing on (10, co); decreasing on (1, 10)
(b) Local maximum: 1 at x = 1; local minimum: —8 at x = 10;
absolute minimum: —8 at x = 10
33. (a) Decreasing on (—Z\ﬁ, —2); increasing on (—2, 2);

decreasing on (2, 2\/5)

(b) Local minima: g(—2) = —4, g(2\/§) = 0; local maxima:
g(—Z\@) = 0, g(2) = 4; absolute maximum: 4 at x = 2;
absolute minimum: —4 at x = —2
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35

37.

39.

41.

43.

45.

47.

Chapter 4: Answers to Odd-Numbered Exercises

. (a) Increasing on (—oo, 1); decreasing when 1 < x < 2,
decreasing when 2 < x < 3; discontinuous at x = 2;
increasing on (3, co)

(b) Local minimum at x = 3 (3, 6); local maximum at
x = 1 (1, 2); no absolute extrema

(a) Increasing on (—2, 0) and (0, co); decreasing on (—oo, —2)
(b) Local minimum: —6V2atx = —2; no absolute maximum;
absolute minimum: —6V/2 at x = —2

(a) Increasing on (foo, -2/ \ﬁ) and (2 / V7, oo); decreasing
on (—2/V7,0) and (0,2/V7)

(b) Local maximum: 24\3/2/77/6 =~ 312atx = 72/\ﬁ; local
minimum: —24V/2/77/6 ~ —3.12 at x = 2/\V/7; no abso-
lute extrema

(a) Increasing on ((1/3) In (1/2), o), decreasing on
(=00, (1/3)In (1/2))

(b) Local minimum is ﬁ at x = (1/3) In (1/2); no local
maximum; absolute minimum is ﬁ atx = (1/3)1In(1/2);
no absolute maximum

(a) Increasing on (¢!, 00), decreasing on (0, ¢ ")

(b) A local minimum is —e™! at x = ¢!, no local maximum;
absolute minimum is —e~! at x = ¢!, no absolute maximum

(a) Increasing on (0, =) and (1, 00); decreasing on (¢2, 1)

(b) local maximum is 4/¢? at x = e~%; absolute minimum is 0
at x = 1; no absolute maximum

(a) Local maximum: 1 at x = 1; local minimum: 0 at x = 2

(b) Absolute maximum: 1 at x = 1; no absolute minimum

49. (a) Local maximum: 1 at x = 1; local minimum: O at x = 2
(b) No absolute maximum; absolute minimum: 0 at x = 2
51. (a) Local maxima: —9 atr = —3 and 16 at t = 2; local mini-

mum: —16att = —2
(b) Absolute maximum: 16 at + = 2; no absolute minimum

53. (a) Local minimum: O at x = 0
(b) No absolute maximum; absolute minimum: 0 at x = 0
55. (a) Local maximum: 5 at x = 0; local minimum: 0 at x = —5

57.

59.

andx = 5
(b) Absolute maximum: 5 at x = 0; absolute minimum: 0 at
x=-5andx =5

(a) Local maximum: 2 at x = 0;
local minimum: L atx =2 —\V3
4V3 -6
(b) No absolute maximum; an absolute minimum at

x=2-1V3

(a) Local maximum: 1 at x = 7/4;
local maximum: O at x = 77;
local minimum: O at x = 0;
local minimum: —1 at x = 37 /4

61. Local maximum: 2 at x = 7/6;
local maximum: V3 at x = 27,
local minimum: —2 at x = 77/6;
local minimum: V/3 at x = 0
63. (a) Local minimum: (7/3) — V3 at x = 27/3;

local maximum: O at x = 0;
local maximum: 77 at x = 271

65. (a) Local minimum: 0 at x = 7 /4
67. Local minimum at x = 1; no local maximum
69. Local maximum: 3 at = O;

local minimum: —3 at 6 = 27

71.
y y y y
v =f) \./ / &’%
1 1 1
/.\ y= 1) y = £
ol Tl ol ol |
(a) (b) (c) )

89. Decreasing; ! = -

1
1
1
1
:
ol 2

77.a =—-2,b =4
79. (a) Absolute minimum occurs at x = 7 /3 with

f(m/3) = —In 2, and the absolute maximum occurs at
x = 0 with f(0) = 0.

(b) Absolute minimum occurs at x = 1/2 and x = 2 with
f(1/2) = f(2) = cos (In 2), and the absolute maximum
occurs at x = 1 with f(1) = 1.

81. Minimum of 2 — 21In2 = 0.613706 at x = In 2; maximum of

latx =0
83. Absolute maximum value of 1/2¢ assumed at x = 1/Ve
aft 1,
PR G
87. Increasing; dx 9¥

-1

1 o5
dx 3"

SECTION 4.4, pp. 251-255

1. Local maximum: 3/2 at x = —1; local minimum: —3 at x = 2;
point of inflection at (1/2, —3/4); rising on (—oo, —1) and
(2, o0); falling on (—1, 2); concave up on (1/2, 00); concave
down on (—oc0, 1/2)

3. Local maximum: 3 /4 at x = 0; local minimum: 0 at x = *1;

3 3
points of inflection at <f \/g, #) and <\ﬁ, %),

rising on (—1, 0) and (1, co); falling on (—oo, —1) and (0, 1);
concave up on (—oo, - \/?;) and (\/5, oo); concave down on

(=V3,v3)

5. Local maxima: 2, V3 atx = —27/3, T + V3 at
3 2 3 2
x = ar/3; local minima: —% - ?atx = —7/3, 2% — ?

at x = 277 /3; points of inflection at (—7 /2, —7/2), (0, 0), and
(7/2, 7 /2); rising on (— /3, 7 /3); falling on (=27 /3, —7 /3)
and (7 /3, 27 /3); concave up on (— /2, 0) and (7 /2, 27 /3);
concave down on (—27/3, —/2) and (0, 77/2)

7. Local maxima: 1 at x = —7/2 and x = 7/2,0at x = =27

and x = 27; local minima: —1 at x = —37 /2 and x = 37/2,
0 at x = 0; points of inflection at (—r, 0) and (77, 0); ris-

ing on (=37 /2,—/2), (0, 7 /2), and (37 /2, 27r); falling on
(=2, —3m/2), (—1/2,0), and (77/2, 37 /2); concave up on
(—2ar, —) and (7, 27r); concave down on (—7r, 0) and (0, 7)



4
3
y:xz—4x+3 2

1
T B B

x
-4 -3 -2-10 IN2 /3 4
ety
-2 Abs min
13. y
(2, 5) Loc max
Infl i
(11 20
1 F
T T N R T [N
-3 -1y Lfro2
0, =3)
Loc min y= —23+ 6223
17. v
y=x4*2:(2
1
Loc max
0.0
1 1 1 1 X
-2 —1 1 2
Abs min Abs min
(=1L =D / B \ 1, -1
C1nB =59 | (13 -579)
Infl r Infl

x
Loc min
25.
y
Loc max ( -
- IEY 27, 2\3m — 2
10 (477/3, 43w/3+ 1) AN
8 -
o /G, 5\ = 1)
I oc min
s (3712, 3\37/2)
21 (7r/2, \5377/2)
I I I L .
0 / /2 T 3m/2 27w
0, -2) -
Abs min y=\3x —2cosx

Chapter 4: Answers to Odd-Numbered Exercises

11. ¥ 27.
Loc y:x3—3x+3 y
y = sin x cos x
| Abs max
(/4. 1/2) Infl Loc max
(7/2,0) (7, 0)
1 L .
0,0 /4 w/ 3m/4 S
Loc min
@Bm/4, —1/2)
- Abs min
x 29. y
2 y=x
Vert tan
atx =0 \1 P
3r 1 1 1 1 1 1
-3 -2 -1 1 2 3
20 Infl ~ (0,0)
@n Inf
I -2
1 1 1 1 1 X
-2 -1 0 1 2 3 4
L 3. 3s. v
-2 i y=2x-3.%"
y=@x-27+1 I Cusp, Loc max . X2/3(§ - )
1 (O’P) L A ; 2
19. - | s
(3,27 Y A
271 Abs max a,-n Infl (1,3/2) Loc max
af Loemin (~1/2.3&)
(2. 16), y=dxd — x4 L
15 Infl |
1 1 1 1
°C EPRRNFEE (CNOFR
Infl - -5+ Cusp
0024 " X Loc min
1 2 3 4
37. Abs max 39. y
s (24 (0,4) Abs max
sk
ok
23. y Loc max
Abs max (72\5 0) y (0.0) Inf (74- > (4.0)
o em2m ! L L — X Abs min Abs min
y=x+sinx -2 -1 | 1 2(2\‘32,0)
Loc min
(7, )
7 | :
Infl -3 y=x\8 —x
(-2, -4) ¢
Abs min | Abs min
X
0 T 2
41. y 43 v
il L @2
6F y= 8x Abs max
i N 2 2+
,x273 ! (3, 6) Loc min x*+4
YEAT A 1
2 1(1, 2) Loc max I T N B [
i 12
L |/1' L A+ ©,0)
-8 —6 —4 24 6 8 Y —2 Infl
=23, -\3
oF ( \Inﬂ N ) -2 -2 L
Abs min
—4F
—6F
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3 o o
4s. X 71. y” = 2 tan 0 sec” 6, -5 < < >
X
Cusp
Abs min
- b v
-2 (—1,0) (1,0) 2
Abs min Abs min t < 2
49. ¥ 51. y
y=IG-x? | Loc max L‘:C:m;;
(0,1n3) Abs max
-6 A TNG -
) H/‘\h ) Loc min Infl t=3l
-3 —2lf1 1\2 3 2
} 1k } Abs min
I |
—2r _ 2 —5/3 1o 2 s
; . ; 75,y =5+ 1) / 77. )" = 3% /-ng /
L |

53. ¥

(In2,1-3In2)

P

Inflection

65. y" = 4(4 — x)(5x* — 16x + 8)
Loc max
x=28/5

Loc min

y = In(cos x)

59. y'=1—2x

Loc max

Loc max

69. y' = —% csc? g,
0<6<2m
0=m

Abs max

Infl

Loc max

-2 x <0
79.y =4 = 81.
J {z x>0

Infl
vert tan
x=0

x=1
Abs min

Infl

Loc min

Va
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89. y 91. y 107. y 109.
: : ; ; —— 040 ——0++++
i i i i . | 1 |
: : i =522 : M= '
I I y=—— 1 . There are points of inflec-
' ' 21 AN (=1,0) :
Y HE AL L ) Ly tionat x = =3, x = —1,
! ! “f AR -3 2 I\ 3 —
' - x .- | [ . 2,0) and x = 2.
-1 I BT i WL S X
- | -2/ -1 ! K (-2.-1) —2
' ' R s | N T SO RRELLS .
x=-1 tx=1 S 1. ++++o0--o0+0—-- There are local maxima at
v ! AN ’. .
E : e AN " m PR * x=—1and x = 4. There is
' ' :’/\‘: s alocal minimum at x = 2.
i o -——0—-—0 0——- . . .
K v 1 | | ! . There are points of inflection

-3 0 3

93, y at x = 0 and x = 3.
e ! 2 113. (a) Towards origin: 0 = ¢ < 2 and 6 = ¢t = 10; away from
: T orig: 2 =t=6and 10 =7 =15
: (b) 1=21=61=10
i o (© t1=51=71=13
E . (d) Positive: 5 =t = 7, 13 =t = 15; negative:
o 0=r=57=i=13
! 115. =60 thousand units
A 117. Local minimum at x = 2; inflection points at x = 1 and
S x=15/3
119. —1,2 121. b = -3 127. a=1,b=3,c =9

129. The zeros of y' = 0 and y” = 0 are extrema and points of
99. y oo inflection, respectively. Inflection at x = 3, local maximum at
x = 0, local minimum at x = 4.

200

y=x5—5x4—240

131. The zeros of y' = 0 and y” = 0 are extrema and points of
inflection, respectively. Inflection at x = —\/2; local maximum
at x = —2; local minimum at x = 0.

y
' = dx(x> + 8)
100 J
23

—50F y= %xs +16x2 - 25

103. (5 T o 10k
Point | y y PR 100
P -]+
0 SECTION 4.5, pp. 262-263
o |+ 1L.—1/4 3.5/7 5.1/2 17.1/4 9. -23/7
R |+ — 11.5/7 13.0 15 —-16 17. -2  19. 1/4
s |1o|— 2.2 23.3 25 -1 27.In3 29 ﬁ 31. In2
T | —|— 3.1 35.1/2  37.In2  39. —co  41. —1)2
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43. -1 45. 1 47. 0 49. 2 51. 1/e 53. 1
55. 1/e 57. e'/? 59. 1 61. & 63. 0 65. 1
67. 3 09. 1 71. 0 73. oo 75. (b) is correct.

77. (d) is correct. 79. ¢ = % 81. (b) % 83. —1

3
87.(a) y =1 (b)y=0,y=§

89. (a) We should assign the value 1 to f(x) =
continuous at x = 0.

(sin x)* to make it

05 1 15 2 25 3

(¢) The maximum value of f(x) is close to 1 near the point
x = 1.55 (see the graph in part (a)).

SECTION 4.6, pp. 269-276
1. 161in., 4 in. by 4 in.
3.@ (x,1 —x) (b) Ax) = 2x(1 — x)

() 1 5 Square units, 1 by %

14 _ 35 2450.
5.?X?X§ =7 in?
. 80,000 m?; 400 m by 200 m
9. (a) The optimum dimensions of the tank are 10 ft on the base
edges and 5 ft deep.
(b) Minimizing the surface area of the tank minimizes its weight
for a given wall thickness. The thickness of the steel walls
would likely be determined by other considerations such as

structural requirements.
1L9X 18in. 137 15 hir=8:w

17. (a) V(x) = 2x(24 — 2x)(18 — 2x)
v

N

(b) Domain: (0, 9)

Maximum
1600 - x = 3.3944487 V =

1200 -

800 -

400 H

1309.9547

1 1 1 1 X
2 4 6 8

(¢) Maximum volume =~ 1309.95 in® when x = 3.39 in.
(d) V'(x) = 24x> — 336x + 864, so the critical point is at
x=7-— \/E, which confirms the result in part (c).
() x =2in.or x = 5in.
19. =~2418.40 cm?
21. (a) h =24,w = 18
(b) v

10000
8000
6000
4000
2000

0 [ R B L1
5 10 15 20 25 30 35

(24, 10368)
Abs max

23.

25.

27.

29.

33.

37.

39.
43.

45.
49.
51.

53.

55. x

59.

65.

73.

If r is the radius of the hemisphere, & the height of the cylinder,
37 \1/3 3p\1/3
and V the volume, then r = | 5— and h = | — .
51 81 m
(b) x= (¢) L = 11in.
. . - _ 2w 4
Radius = \6111, height = 1 m, volume = ?m
1 31. % m, triangle; M m, circle
9 + \V3m + V37
%x 2 3@ 16 () -1
_2v2 4
T3 3

@ 4+ 2 (b) (%)(4 +1n2) 41 Area8 whena = 2

(a) v(0) = 96 ft/sec (b) 256 ftatt = 3 sec

(¢) Velocity when s = 0 is v(7) = —128 ft/sec.

~46.87ft  47. (a) 6 X 6\V3in.

(@) 4V3 X 4V6in.

(a) 10w =~ 31.42 cm/sec; when t = 0.5 sec, 1.5 sec, 2.5 sec,
3.5 sec; s = 0, acceleration is 0.

(b) 10 cm from rest position; speed is 0.

(@) s = ((12 — 120)* + 6412

(b) —12 knots, 8 knots

(¢) No

(d) 4\/13. This limit is the square root of the sums of the
squares of the individual speeds.

ﬂv—’ﬂ §7. 5 + 50
(a) /;lm (b),/zkm 63. 4 X 4 X 3 ft, $288
M—E 71. (@) y = —1

(a) The minimum distance is ?

(b) The minimum distance is from the point (3/2, 0) to the point
(1, 1) on the graph of y = V/x, and this occurs at the value
x = 1, where D(x), the distance squared, has its minimum
value.

¥ D) D=~ 2+

2.5

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
I
1

SECTION 4.7, pp. 279-281

1.x2=—§§ 3.x=—§@ .x=@
3721 2 314945 22000
7. x, is approximately 2.20794 9. x, is approximately 0.68394
11. x;, and all later approximations will equal x;.



13.

15.

19.
21.
25.
31.

33.

V= \5;,x20
- V=x,x<0

The points of intersection of y = x* and y = 3x + 1 or

y = x> — 3x and y = 1 have the same x-values as the roots of
part (i) or the solutions of part (iv). 17. 1.165561185

(a) Two (b) 0.35003501505249 and —1.0261731615301
+1.3065629648764, +0.5411961001462 23. x = 045
0.8192 27. 0, 0.53485 29. The rootis 1.17951.

(a) For xy = =2 or xy = —0.8, x; — —1 as i gets large.

(b) For x, = —0.5 or x5 = 0.25, x; — 0 as i gets large.

(¢) For xo = 0.8 or xy = 2, x; — 1 as i gets large.

(d) For x, = —\/27/7 or xy = \/5/7 Newton’s method does
not converge. The values of x; alternate between — \/27/ 7 and
\/21/7 as i increases.

Answers will vary with machine speed.

SECTION 4.8, pp. 287-291

1.

@ B5 ©% s

3. (@ x3 (b) —%x’3 (c) —%x’3 + x2 + 3x
5. (a) —} (b) —% (©) 2x +§
3
7. (@) V¥ ) Vx (o) 2\3{;+ 2Vx
9. (a) x23 (b) x'* (¢) x'

15.

17.

19.

21.

23.

25.

31.

35.

39.

45.

.(@ Inx (b) 7Inx (¢) x —5Inx

. (@) cos(mx) (b) —3cosx (c) —%cos(mc) + cos(3x)

(@) tanx (b) 2tan <;ﬁ) © _%tan <321)

(@) —cscx (b) écsc(Sx) (c) 2csc (%x)

(a) %e% (b) —¢™ (c) 2¢72

1 X ;1 —X 1 é *
m3> ® 2" © ln(5/3)(3)

(a)

(a) 2sin’'x (b) %tan’lx (c) %tan’1 2x

2 2 4 2

ThxtcC 27.t3+tz+C 29.%—%+7x+C

11X x 3 o

F-3-3+vC BoFec

%x3/2 + %x“/S +C 3747 - %ym +C

w+iic aavi-iic 43 -2sinc+cC
Vi

721c0sg + C 47. 3cotx + C 49. f%csce + C

51.

55.

59.

63.

69.
83.

85.

87.
93.
97.
101.

105.

109.
113.
115.

117.

119.
123.

125.
127.
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le_ —X X i
3¢ S5¢* + C 53. —¢ +1n4+C

4secx —2tanx + C 57. —lCOSZX-i‘COtx-i‘C

2
5+ S“;;‘” +C 6L In|x| —Stan'x + C
3x(V3+D)
-+ C 65. tanf + C 67. —cotx —x + C
V3 +1

—cosf +6 +C
2

cd (X . x _
(a) Wrong: dx(2$mx+ C) =5 sinx + 5 COsX =

2

. X
xsinx + Ecosx

(b) Wrong: %(—x cosx + C) = —cosx + xsinx

(c) Right: %(—x cosx +sinx + C) = —cosx + xsinx +

cosx = xsinx
3 2
((Zx +1) N C) _ 32x + 1)*(2) _

(a) Wrong: a 3 3

dx

202x + 12

(b) Wrong: %((Zx + 1)+ 0 =302x + D)) =
6(2x + 172

(¢) Right: %(m + 1P+ 0) = 6(2x + 1)

Right 89. (b) 91. y=x>—Tx + 10
y:—l 2 _1 95, y = ox'3 4+ 4

X 2 2 :
s=t+sint+ 4 99. r = cos(mh) — 1
v=%sect+% 103. v=3sec't— 7
y=R - A+l W0 r=1+2-2

y=x>—4x>+5
y =22~ 50

111. y = —sint + cost + £ — 1

y=fx

|
AW =
T

1

y=xfx4/3+§ 121. y = —sinx — cosx — 2

(a) (i) 33.2 units, (ii) 33.2 units, (iii) 33.2 units
(b) True
t=88/k k=16

(@) v =1087%— 6t (b) s = 43 — 482
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131. (a) —Vx+C (Mb) x+C (¢) Vx+C
@d-—x+C @©@x—Vx+C ) x—Vx+C

PRACTICE EXERCISES, pp. 292-296

1. Minimum value is 1 at x = 2.

3. Local maximum at (=2, 17); local minimum at (%, —%)
5. Minimum valueisOat x = —1 and x = 1.

7. There is a local minimum at (0, 1).

9. Maximum value is % at x = 1; minimum value is — 2

11.
13.
15.

17.

21.

23.

25.
33.

The minimum value is 2 at x = 0.
.. o1
The minimum value is — g at x =

. . T ..
The maximum value is - at x = 0; an absolute minimum value

2
isOatx = 1and x = —1.
No 19. No minimum; absolute maximum: f(1) = 16;

critical points: x = 1 and 11/3

Absolute minimum: g(0) = 1; no absolute maximum;

critical point: x = 0

Absolute minimum: 2 — 2In2 at x = 2;

absolute maximum: 1 at x = 1
Yes, exceptat x = 0 27. No
(b) 0.855599677 2

Global minimum value of 1 atx = 2

31. (b) one

y=-xX+ 62— 9x+3

latx=fl.

39. 2
41. (a) t=0,6,12 (b) t=13,9 (¢) 6 <1< 12
do<r<612<r< 14
43. y
15|
3
8|
3
2l
1r ' 6
I G 6\ '
ok
47. y
5001 (6, 432)

y=x8—x)

55. ¥ 57. ¥

5 5 1

4 5 y=sin"'(1/x)

TN !
1 1 1 1 1 1 X

) —1 1 2 3

Q] i
- 2

-2
-3
—4

59. (a) Local maximum at x = 4, local minimum at x = —4,
inflection point at x = 0
(b) x5

Loc max

Loc min

x=—4
61. (a) Local maximum at x = 0, local minima at x = —1 and
x = 2, inflection points at x = (1 + \/7)/3

Loc max

63. (a) Local maximum at x = —\/2, local minimum at x = \6,
inflection points at x = * 1 and 0
(b) Loc max




71.
89.
101.
107.
109.

111.

113.

117.

121.

125.

129.

133.

137.

141.
143.
145.
147.

149.

151.

5 79. 0 81. 1 83. 3/7 85. 0 87. 1

In10 91. In2 93. 5 95. —c0 97. 1 99, bk
—00 103. (a) 0,36 (b) 18,18 105. 54 square units
height = 2, radius = V2

x =5 — \/5hundred = 276 tires,
y =2(5 — V/5) hundred =~ 553 tires

Dimensions: base is 6 in. by 12 in., height = 2 in.;
maximum volume = 144 in?
4
x5 = 2.1958 23345 115. XZ + %xz - Tx+ C
wr-tic e -1 4
t or+s

®*+ 12+ C 123. %(1 + x4+ C

s 1
10tan 10 + C 127. —ﬁcsc V26 + C
1 . X X2
2x—sm2+C 131.3lnx—2+C
lyverve 1. 277 4c
2 2 —-7

1
> 139. y=x—y— 1

r= 452 + 432 — 8¢
Yes, sin!(x) and —cos™!(x) differ by the constant 77 /2.
1/°V/2 units long by 1/Ve units high, A = 1/V/2e =~
0.43 units?
Absolute maximum = 0 at x = ¢/2, absolute minimum =
—05atx =05
x = =1 are the critical points; y = 1 is a horizontal asymptote
in both directions; absolute minimum value of the function is
¢ V22 at x = —1, and absolute maximum value is ¢¥2/2 at
x = 1.
(a) Absolute maximum of 2 /e at x = ¢2, inflection point
(€%, (8/3)e /%), concave up on (e, 00), concave down
on (0, e%/3)
Absolute maximum of 1 at x = 0, inflection points
* 1/\/2, 1/\/@), concave up on (—oo, —1/\6) U
1/V2,00), concave down on (—1/V2,1/V2)
(c¢) Absolute maximum of 1 at x = 0, inflection point (1, 2/e),
concave up on (1, co), concave down on (—oo, 1)

3 et |x| + C

(b)

ADDITIONAL AND ADVANCED EXERCISES, pp. 296-299

1. The function is constant on the interval.
3. The extreme points will not be at the end of an open interval.
5. (a) Alocal minimum at x = —1, points of inflection at x = 0
and x = 2
(b) A local maximum at x = 0 and local minima at x = —1 and
+
x = 2, points of inflection at x = I_%ﬁ
9. No 11. a=1,b=0,c =1 13. Yes
15. Drill the hole at y = h/2.
17 r:LforH> 2R,r = Rif H = 2R
: 2(H — R) ? B
19. 12 and 5

5
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10 5 1 1
2.5 M3 ©5 W0 (0 — B
1
® 5 M3
c—b c+b b?* — 2bc + 2 + 4ae
B.@ 57 b G © .
c+b+t
@ 5
1 1
25.m0:1—§,m1:g
27. s = ceM N
1000
800
600
400
200
0
29. (a) k = —38.72 (b) 251t
31. Yes,y=x+ C 33. yy = 2\3—6173/4 39. 3

Chapter 5
SECTION 5.1, pp. 308-310

1.
3.

(a) 0.125 (b) 0.21875 (c) 0.625 (d) 0.46875
(a) 1.066667 (b) 1.283333 (c) 2.666667 (d) 2.083333

5. 0.3125, 0.328125 7. 1.5, 1.574603
9. (a) 245cm (b) 245cm 11. (a) 3490 ft (b) 3840 ft
13. (a) 74.65 ft/sec (b) 45.28 ft/sec (c) 146.59 ft
31
15. 16 17. 1
19. (a) Upper = 758 gal, lower = 543 gal
(b) Upper = 2363 gal, lower = 1693 gal
(c) =314h, =324h
21. (a) 2 (b) 2V2 = 2.828 (¢ 8sin(%) =~ 3.061

(d) Each area is less than the area of the circle, 7. As n
increases, the polygon area approaches 7.

SECTION 5.2, pp. 316-317

6(1) 6(2)
1412+ 1
3. cos(l)m + cos(Q)m + cos(3)7 + cos(4)m = 0
. . T LT V3 -2
5. sin7 — siny + sing- = ——5—
7. All of them 9. b
6 4 1 5 1
11. 13. — 15. — kI~
b2 s 200
17. (@) =15 (b) 1 (© 1 (d) —11 (e) 16
19. (a) 55 (b) 385 (c) 3025 21. =56 23. 73
25. 240 27. 3376 29. (a) 21 (b) 3500 (c) 2620
31.(a) 4n (b) ecn (¢) (B* —n)/2  33.2600 35 —2\/3
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37.(a) vy (b) v 51. Using n subintervals of length Ax = b/n and right-endpoint

@,3) .L @3 values:

f@) =x*—1, fo=x>-1, b
0=x=2 0=x=2 Area = | 3x%*dx = b’
Left-hand Right-hand 0

2+ 2

53. Using n subintervals of length Ax = b/n and right-endpoint

values:
1r b
Area =/ 2x dx = b?
\ 0
a=0c a1, ! o Gotiaa-2 55.av(f) =0 ST av(f) =—2 59, av(f) =
-/ 61 (@) av(g) = ~1/2 (b) av(e) = 1 (9) av(®) = 1/4

R - 63. cb—a) 65 B)3—a/3 61.9
69. b*/4 —a*/4  71. a = 0 and b = 1 maximize the integral.
© 73. Upper bound = 1, lower bound = 1/2

75. For example, / sin(x?) dx = / dx =1
0

f@=x*—1,
0=x=2
Midpoint

b
71. f(x) dx = / 0dx =0 79. Upper bound = 1/2
SECTION 5.4, pp. 339-341
1. —10/3 3. 124/125 5.753/16 7.1 9.2\V3
ofetafic o ! 1.0 13. -7/4 151 —% 17. 2 _4\5 19. —8/3
21.-3/4 23.V2-V8+1 25 -1 27.16

29. 7/3 31. 27/3 33. *(4’7 —27) 35. *(e -1

'
r £
)
f

39. (a) (b)
J _ 1 5
37. V26 — V5 39. (cos\/,;)(z\/)» 41. 4t
f(x) =sinx, f(x) =sinx, 1
Lefthand | Righthand | | |___ 43. 3% 45 V142 47.-ox Psine 49,0
—t x — N\ X 51.1 53, 2xeV/¥ 55,1  57.28/3  59.1/2
51:7W3:0 ('4 w E [ o - L'4:7T \/777.
_.,_,.|_ - 6l. 7 63. ——
(c) y 65. d, since y’ = ; and y(7r) =/ %dt -3=-3
2 1 1 2 ™
fjx)zsin;c, [ 43. 3 - M - 6n2’ 3 . s O) /0 ) \ \
Midpoint . b,since y' = secx and y(0) = [ sectdr + 4 =
e 5124220 1 . 0
n
" s ntl s 69.y=/sectdt+3 71. (1 + In1)?
47. 2 + _— 2
6 62 6 5
73. gbh 75. $9.00
77. (a) T(0) = 70°F, T(16) = 76°F, T(25) = 85°F
SECTION 5.3, pp. 326-329 (b) av(T) = 75°F
3 | 79. 2x — 2 81. —3x +5
1. / X2 dx / (x2 = 3x) dx 5. / = dx 83. (a) True. Since f is continuous, g is differentiable by Part 1 of
2 the Fundamental Theorem of Calculus.
7 d (b) True: g is continuous because it is differentiable.
- /456” * (¢) True, since g'(1) = f(1) = 0.

(d) False, since g"(1) = f'(1) > 0.

(e) True, since g’(1) = 0 and g"(1) = f'(1) > 0.

(f) False: g"(x) = f'(x) > 0, so g" never changes sign.
(g) True, since g'(1) = f(1) = 0 and g'(x) = f(x) is an

9.a) 0 (b) =8 (¢) =12 () 10 (¢) =2 () 16
11. (@) 5 (b) 5V3 (¢c) =5 (d) —5
13. (a) 4 (b) —4 15. Area = 21 square units

;Z izz _ 27:4 jaiglﬁftsumts 2. 2?/ 4Area 25.2'[752 sguaalge units increasing functtion of x (because f'(x) > 0).

27. (@) 2w (b) 7 29. 1/2 31. 37%/2 33.7/3 85. (a) v = % = di f) dx = f(t) =v(5) = f(5) = 2m/sec
35.1/24  37.34%2  39.b/3 4l.—14 L4

43. -2 45. —7/4 47. 7 49. 0 (b) a = df/dt is negative, since the slope of the tangent line at

t = 5 is negative.



3
(¢) s =/ fx)dx = %(3)(3) = gm, since the integral is the
0

area of the triangle formed by y = f(x), the x-axis, and
x = 3.

(d) r = 6, since after t = 6 to t = 9, the region lies below the
X-axis.

(e) Atr = 4 and ¢t = 7, since there are horizontal tangents
there.

(f) Toward the origin between ¢ = 6 and ¢ = 9, since the veloc-
ity is negative on this interval. Away from the origin between
t = 0 and t = 6, since the velocity is positive there.

(g) Right or positive side, because the integral of f from 0 to 9 is
positive, there being more area above the x-axis than below.

SECTION 5.5, pp. 348-349

1.

13.

15.

17.

21.

25.

29.

33.

37.

41.

45.

47.

51.

57.

61.

67.

69.

75.

é(Zx +4°+C 3. —%(x2 +573+C

. %(sz + 4x) + C 7. —lcos3x +C

3

A secr + € 11. —6(1 — P2 + C

2
LG = 1) = gsin(202 - 2) + C

(a) —%(cot220) + C (b) —%(CSCZZG) +C
—%(3 -2+ C 19 —%(1 -0+ C
(=2/(1+ Vx))+Cc 23 %tan(?)x +2)+C

1. ofx ’i_ ¢
5 sin (3) + C 27. (18 1) + C

_2 32 I S
3cos(x +1)+C 31. eos2r = 1)

sin?(1/6
—sin(l? - 1) + C 35. —(7/) +C

+C

2

2 32 12 2 1)
3(1+x) -2(1 +x)/-+ C 39'32_)6 + C

2 3\ 1 ., 1 I
27(1 x3) +C o B S DR G- D HC

B R S X BT B PR
=0+ -0 =31 -0 +C

1

T L@ ) 49—

e+ ¢ 53 2tan(eV*+ 1)+ C 55 In|lnx| + C

+C

z—In(1+ &)+ C 59. %tan’1 (%) +C

SN+ C 63, %(sin"x)3 + C 65 Injtan'y| + C
6 6
- b e
@ 2 + tan’x ®) 2 + tan’x
6
© 2 + tan’x

ésin V32r—124+6+C T3 s= %(3# — =5

s:4t—2sin<2t+%) +9

Chapter 5: Answers to Odd-Numbered Exercises ~ A-29

77. s = sin(2t - %) +1006+1 79. 6m

SECTION 5.6, pp. 355-359
1. (a) 14/3 (b) 2/3  3.(a) 1/2 (b) —1/2
5.(a) 15/16 )0 7.(@ 0 () 1/8 9. (@4 (b) 0
11. (a) 506/375 (b) 86,744/375  13. (@) 0 (b) 0
15.2V3  17.3/4  19.32 -1  21.3  23. 7w/3
1

2 L
25. ¢ 27. In3 29. (In2) 31. na 33. In2

35. In(2 + V3) — ? 3.7 39.w/12 41 27/3

43. V3 -1 45 —w/12  47. w2/32  49. 16/3
51.2%2 53, 7/2  55.128/15  57.4/3  59.5/6
61.38/3  63.49/6  65.32/3  67.48/5  69. 8/3

71. 8 73. 5/3 (There are three intersection points.) 75. 18
77. 243/8 79. 8/3 81. 2 83. 104/15 85. 56/15

4

4
87.4 8.3 -7 9Lw/2 932 951/2

97.1  99.In16 10L. 2  103. 2In5

105. @) (+Ve,e) ) c=48 (¢) c =4/

107. 11/3  109. 3/4  111. Neither ~ 113. F(6) — F(2)
115. (a -3 ()3  117. [ =a/2

PRACTICE EXERCISES, pp. 360-363
1. (a) About 680 ft (b) & (feet)
h (feet)

700
600
500
400
300
200
100

L—L L L 5 7(sec
of 2 4 6 3 (sec)

3. (@ —1/2 (b) 31 (c¢) 13 (@) O

5 0
5. / Qx—D)"Vax=2 1. / cosgdx =2
1 .

9. (@ 4 ()2 (¢) =2 () —27 (e) 8/5
11. 8/3 13. 62 15. 1 17. 1/6 19. 18

7 V2 8V2 -7
21. 9/8 23. ED) + -5 1 25. 4 27. B a—
29. Min: —4, max: 0, area: 27 /4 31. 6/5 33. 1

3.y :/ <%‘”) dr—3 39,y =sinx
5

41. y = sec’'x + 2m x>1 43. f(x) = e*/2712

3
45. —4(cos0)'2 + C  47. 62+ 0 +sin(20 + 1) + C
3
49. %+ % +cCc sl f%cos(Ztm) +C
53, tan(e" —7) + C  55. ¢+ C 57, _13“7
1 2 N S
59. n(9/25) 6L —3(nx?+C 63 5 2(37)+C
3i—og — ﬁ —i(x— 1
65. 5sin 2r— 1)+ C 67. ) tan ( VG ) + C
1 412x—1 Ve
69. Zsec T + C 71. e V¥ 4+ C




A-30  Chapter 6: Answers to Odd-Numbered Exercises

- 1 21
73. 2Vtan"'y + C 75. +C 77. 16 33. 2 35. 2 37. 4w In4 39. 72 -2 41. =
ay 4(sin 26 + cos 20)? m g mn oA 3
79.2 811 838 8. 27V3/160 87. w/2 3. W7 s cm—2 4. Y a9 87 517
8. V3 9L 6V3—2r 93 -1 952 97.1 5 3 6
99. ;T/;() + 1n2 101. ¢ — 1 103. 1/6 105. 9/14 53. (a) 87 (b) 32?7r © 8?77 @ 2214;77
107. =2 109. 7 111 #/\/3  113. 7/6
4 55. (a) 16m (b) 6m (c) bdm 57. V = 2a*bw?
115. 7 /12 117. (@) b (b) b ) 15 15 15 '
d 1 _ 59 Vv mh*(3a — h) by L
121. (a) a(xlnx—x-i-C)—x-}-i-lnx—l+0—lnx . (a) V= 3 (b) 12077111/530
1 _
® S 63. V= 3308cm’ 65t 2
—6
123. 25°F 125. V2 + cos® 127.
3 25 > oS 3+ SECTION 6.2, pp. 384-387
dy — d . . . . R
129, % _ 72ecos(21nx) 131 % _ : 1 — 1 377 3. 27 5. 147/3 g 7. 87 9. 57/6
V1= £V = 26in ) L5 1) 4 15 F(3V2+55)
133. Yes 135. = V1 + &2 8 4 16
137. Cost = $10,899 using a lower sum estimate 17. 777 19. ?ﬂ- 21. Tﬂ-
ADDITIONAL AND ADVANCED EXERCISES, pp. 364-367 23. (a) 167 (b) 327 (c) 287w
1. (a Yes (b) No 5. (a) 1/4 (b) V12 (d) 247 (e) 60m  (f) 487
21T 21T 2 1087
x ELi L rem 1Usm
7. fx) = \/ﬁ 9. y=x3+2x— 4 25. (a) 5 (b) ) (c) 5 (d) 5
) om 4m
11. 36/5 13. 5w 27. (a) 5 (b) 5 (© 27 (d) 27
y y axis: Vv = 27 axiss V= T
s 1 29. (a) About the x-axis: V = 5 about the y-axis: V 6
\_ y=t . 277' . w
| | | X (b) About the x-axis: V = =_; about the y-axis: V = —
-8 -4 0 3 15 6
y=—4 & 4 t
4 * 0 N\ =sinmi 31. (a) o (b) dm (¢) 2 (d) 2
3 3 3
-r 33. (a) % (b) 73% 35. (a) 24?77 (b) 48?77
15. 13/3 21.In2  23.1/6
! 3@ T ) T
25. / f(x) dx 27. (b) mr? ) 16 16
0 39. Disk: 2 integrals; washer: 2 integrals; shell: 1 integral
29. @ 0 (b) -1 256 2447
— o © -7 (@ x=1 4l. (@) =3 () —3—
y=1 e y=2x+2-m 1
® x=—-1,x=2 47. W(l*g) 49. 2
2 * (g [—2m,0]
7. 1)2 19. 7/ SECTION 6.3, pp. 391-393
. . T
. . 1. 12 3.ﬁ 5.@ 7.% 9. 1n2-|—§
31 2/ sindy siny 35. 2xln || | |x] 6 32 8 8
. 2/x - —F . 2xIn x| —xIn—F—
Vy 2Vy V2 53
. 11 1L°= 1322 = (5/42 15,2
37. (sinx)/x 39, x =1 41. 2 22 2:1 ,
43.2/17 17. (a)/ V1 + 4x?dx (¢) =6.13
-1
19. (a)/ V1 + cos’ydy (¢) =3.82
Chapter 6 o

SECTION 6.1, pp. 375-379 ’ VIiTeTe B
L16 3.16/3 5 @2V3 B8 7T @60 (b3 @ [ VITOFD © =929

9. 8w 11. 10 13. (a) s’ (b) s°h 15. 8/3

/6
1.7 19 4-7 237 23367 25w 23. (a) /0 secxde () =0.55

3
™ 1 ™ T 11
27. 2(1 —ez) 29. Tn4 3L 71'(2 +2V2 - 3)

[\



25. (a) y = Vx from (1, 1) to (4, 2)
(b) Only one. We know the derivative of the function and the
value of the function at one value of x.
27. 1 29. Yes, f(x) = Tx + C where C is any real number.

37. / V1 o+ 9tdt,%(103/2 -1
0

SECTION 6.4, pp. 396-398
/4
1. (a) 277/ (tanx) V1 + sec*xdx (¢) S = 3.84
0
(b)

1=
0.8
0.6
0.4
y = tanx

0.2

1 1 1 1
0 0.2 0.4 0.6 0.8

X

2
3. (a) 27 %\/1 +ytdy (©) S~ 502
1

(b

X

(b) >

7/3 y
7. (a) 277/ (/ tantdl) secydy (¢) s = 2.08
0 0

(b) v
1

08}
0.6}

y
0.4 x:/ tan ¢ dt
0

0.2

1 1 1 1 1 1 1
0 01 02 03 04 05 06 0.7

9. 47\/5 11 37V5

X

13. 987/81 15. 27

Chapter 6: Answers to Odd-Numbered Exercises ~ A-31

16
27. Order 226.2 liters of each color.

17. (V8 —1)/9  19. 357V/5/3 2L 'n'(g + In 2)

23. 2537 /20

SECTION 6.5, pp. 404-408

1. 1167 3. 400N/m 5. 4cm,0.08]

7. (a) 7238 1b/in. (b) 905 in.-Ib, 2714 in.-Ib

9.7807  11. 72,900 ft-Ib  13. 4907J

15. (a) 1,497,600 ft-1b (b) 1 hr, 40 min

(d) At 62.26 Ib/ft>: a) 1,494,240 ft-Ib b) 1 hr, 40 min
At 62.59 1b/ft3: a) 1,502,160 ft-Ib b) 1 hr, 40.1 min
17. 37,306 ft-lb 19, 7,238,299.47 ft-Ib  21. 2446.25 ft-Ib

23. 15,073,099.75 1 27. 85.1 ft-Ib 29. 1513
31. 91.32in.-oz 33. 5.144 X 10'°J 35. 1684.8 1b
37. (a) 6364.81b (b) 5990.4 Ib 39. 1164.81b 41. 1309 1b

43. (a) 12,4801b (b) 85801b (c) 9722.31b

45. (a) 93.331b (b) 3 ft 47. W?b

49. No. The tank will overflow because the movable end will have
moved only 3% ft by the time the tank is full.

SECTION 6.6, pp. 418-420

1. M = 14/3, x = 93/35 3. M=In4,x= (3 —In4)/(In4)
5.M=13,%=41/26 7. %=0,5=12/5
9.x=1,y=-3/5 1L%=16/10575 = 8/15
13.x=0y=m/8 15 %~ 144,y ~ 036
__In4 _ _ _ _Inl6
17.x=?,y=0 19. x=17,y = B
21. x = 5/7,y = 10/33. (x)* <y, so the center of mass is outside
the region.
23.%5=3/2y=1/2
25. (a) % b x=2,5=0
(©
Ak
\x
(2,0
of 1 4 *
4
YT E
\x
s
29.x=y=1/3 3L x=a/3,5=0b/3 33. 138/6
35.7c=0,y=% 3. x=1/2,y=4
39. x=6/5y=28/7 4L V=23278=32\V2r  45. 47>
_ __ 2a _ __4b
47.x=0,y=; 49.x=0,y=§

51. V2wad4 + 3m)/6 53, X = % y =

PRACTICE EXERCISES, pp. 421-423
9 2 2m
1. 230 3.m 5. 35

7. (@) 27 (b) m (¢) 12@/5 (d) 26m7/5



A-32

Chapter 7: Answers to Odd-Numbered Exercises

9. (a) 87 (b) 10887/15 (c) 512m/15
1. #(3V3—-x)/3 137 15 BT s

3
2 2 10 1
17. (@/3)@ +ab + b)h  19. 5 2L 3+ gln2
23. V2 25.28wV2/3  27. 4w 29.4640]

31. g(Zar - a?) 33. 418,208.81 ft-1b

35. 22,5007 ft-Ib, 257sec 37 (a) 128 f-Ib  (b) 219.6 ft-lb
39. x=0,y=8/5 4l.x=3/2,y=12/5
43. x=9/5y=11/10  45.33281b  47.2196.48 Ib

ADDITIONAL AND ADVANCED EXERCISES, pp. 423-424

L fo) = |24 3 f) = VC = 1x + a, where C = 1
™ 4h'\/ 3mh
. 7.2 L
5 303 8/3 9.7
. —_ . n
11.x—0,y—2n+1,(0,l/2)

15. (a) x =y = 4a* + ab + bz)/(377(a + b))
(b) 2a/m,2a/m)

17. =2329.6 Ib
Chapter 7
SECTION 7.1, pp. 433-435
1. ln(%) 3. In|]y? = 25| + C 5. In|6 + 3tant| + C
7.1+ Vx)+C 9.1 11 2(n2)* 13.2
15. 2"+ C  17. —e"+C 19. =+ C
l sec Tt I 1
20 zes™+C 2301 2. Im(l+e)+C 2T 5o
1 6 V2+1
29. 5 3L - 33.32760 353
1 ((nx)? 5 31In2
37. 1n10( S )T C 39 2(n27 4L = 43. 1n 10

45. (In 10)In|Inx| + C

49. y =2 +x) — 1

53. wInl16 55. 6 +In2

71. (a) 1.89279 (b) —0.35621
(e) 529595 (f) 0.97041

47. y =1 — cos(e' — 2)
51. y=x+1In|x| +2
57. (b) 0.00469
(c) 0.94575 (d) —2.80735
(g) —1.03972 (h) —1.61181

SECTION 7.2, pp. 442-444

9. %y3/2 —x2=C 1l.e-e=C

13. —x + 2tan\Vy=C  15. ¢? + 2V = C

19. %ln|y3*2| =x*+C

17. y = sin(x*> + C)
2. 4In(Vy+2)=e" + C

23. (a) —0.00001 (b) 10,536 years (c) 82%
25.54.88 ¢ 27. 59.8 ft 29. 2.8147498 X 10™
31. (a) 8years (b) 32.02 years 33. Yes, y(20) < 1
35. 15.28 years 37. 56,562 years
41. (a) 17.5min (b) 13.26 min

45. About 6693 years 47. 54.62%

43. —3°C
49. =15,683 years

SECTION 7.3, pp. 450-453

1.

3.

15.
19.
25.

29.

35.

43.

47.

53.

61.
67.

69.

71.

73.

71.

79.

coshx = 5/4, tanh x = —3/5, cothx = —5/3,

sechx = 4/5,cschx = —4/3

sinhx = 8/15, tanh x = 8/17, cothx = 17/8, sechx = 15/17,
cschx = 15/8

.x + % 7. & 9. ¥ 13. ZCOSh%C
sech® V't + M 17. cothz
Vi
(Insech 0)(sech O tanh 6) 21. tanh’v 23. 2

1

1 _
—_— 27. —— — tanh™' @
2Vax(l + x) L +6 o
L o' Vi 3L —sech'x 33 ——m2
2Vt N\
- (5)
|sec x| 41, ©Oh2x | o

2

12sinh(12‘ ~In 3) +C 45 Th|e + e| + C

51. lné

2

tanh (x - %) +C  49. —2sechVi+ C

i+ln2

B 3
— 1 =

3 55. ¢—¢ 57.3/4 89. g+ In V2
In(2/3)  63. % 65. In3

(a) sinh™'(V3) (b) In(V3 +2)

(a) coth™(2) — coth™'(5/4) (b) (%) In (%)

12 4
_ -1 12 12
(a) —sech <13> + sech (5>

1+ V1 - (12/13)7? 1+ V1 — 4)57

®) ~in (12/13) * /5)
3
= —In <§) + In (2) = In (4/3)
(@) 0 (b) 0
[mg
@ /7 M 80V/5 =~ 178.89 ft/sec
27 8l g

SECTION 7.4, pp. 457-458

1.

3.

5.

9.

13.

15.
21.

(a) Slower (b) Slower (c¢) Slower (d) Faster
(e) Slower (f) Slower (g) Same (h) Slower
(a) Same (b) Faster (¢) Same (d) Same
(e) Slower (f) Faster (g) Slower (h) Same
(a) Same (b) Same (c) Same (d) Faster
(e) Faster (f) Same (g) Slower (h) Faster 7. d,a,c,b
(a) False (b) False (c¢) True (d) True (e) True
(f) True (g) False (h) True
When the degree of f is less than or equal to the degree of g.
1,1
(b) In (617000000) = 17,000,000 < (el7><10")1/106
= e'7 = 24,154,952.75



Chapter 8: Answers to Odd-Numbered Exercises ~ A-33

(¢) x = 3.4306311 x 10 23.2(V2 - 1) =~ 082843 25. sec! (&) + C
(d) They cross at x =~ 3.4306311 X 10%. 27.sin' 2Inx) + C  29. In|sinx| + In|cos x| + C
23. (a) The algorithm that takes O(n1 ¢
(a) The algorithm that takes O(nlog; n) steps 3.7 +m8 33 (sinly - VI =T -1
®) )
v = nllogy " 3 sec! Pt w0 3 94—9—+9+§1n|20—5| +C
2500 : 7 32 2

2000
1500

39. x —In(l +¢) +C 4L (1/2)e¥ — e+ In(l +e) + C
43. 2arctan (Vx) + C 45. 2V2 — In(3 + 2V2)
_ _ 1
— 47.1(2+ V3)  49.%x=0, y (3 + 2V3)
0 40 60 50 100
25. It could take one million for a sequential search; at most 20 steps
for a binary search.

1000
500

51 xe" + C 53, %(X4 L1323 —2) + C

SECTION 8.2, pp. 471-474
PRACTICE EXERCISES, pp. 459-460 1. —2xcos (x/2) + 4sin (x/2) + C

3. t*sint + 2tcost — 2sint + C

1. —cose* + C 3. In8 5.2In2 3
5.In4 — = 7. xe* — e+ C

7. e -2 +c  9.3m7 1L 2(v2-1) 4
2 In2 1 9. _(x2 + 2x + 2)67)( + C
13.);:111(3/2) 15. y=Inx —In3 17'y:1—e" 1. ytan' (y) — nV1 + 2 + C
19. (a) Samerate (b) Samerate (c) Faster (d) Faster 13. xtanx + In[cos x| + C
(e) Samerate (f) Same rate 15. (X3 — 3x2 4+ 6x — 6)e* + C 17. x> = 7Tx + )e* + C
21. (a) True (b) False (c) False (d) True 19. (% = 5x* + 2007 — 60x? + 120x — 120)e* + C
(e) True (f) True 21 L (—e’cos 6 + e’sinf) + C
23. 1/3 25. 1/em/sec 27. In5x — In3x = In(5/3) 22V
2. 1)2 3y - (tan"(x + C))2 23. %(3 sin3x + 2cos 3x) + C

g \/ V3s+9 _ ,V3s+9
33. y2 — sin"(2tanx + C) 25. 3( 3s + 9e e ) + C

35. y=-"2+In(2 — ¢ 37.y=4x—4\/;c+1 77\/5 2
39. 19,035 years  41. In(16/9) 27. 3~ —In@ - ¢

1 .
ADDITIONAL AND ADVANCED EXERCISES, p. 460 29. 5 [—xcos(Inx) + xsin(nx) ] + C

L@1 () 7/2 ()=
/ 31 i [sec x* + tan x?| + C

2
3. tan 'x + tan™! (%) is a constant and the constant is g for 1 1 1
33. >x2(nx)?> — x’Inx+ x>+ C
.. 2 2 4
x>0;1tlsf§forx<0. 1 1 1.
; 3/.—xIx— 3 +C 37 e+ C
1 1,00 30 _ 2 (o 5/2
il y=I 39. x (2 +1) 15 (X2+1)02+cC
. . T y:llanilﬁ* “Til(%) 41. —%sin 3x sin 2x — %cos 3xcos2x + C
-4 2 2 4 )
' 43. @Iy —2) + C
y:fﬂ -2
’ 45. 2\V/xsinVx + 2cos Vax + C
_ _Ind4 _ 2 _ —
7.3="77.7=0 4. T4 g9 ST =3V
8 9
51.1(x2+ Dtan'x — X + C 53. xe*’ + C
Chapter 8 2 :
apter 55. (2/3)x%2 arcsin (V) + 2/9)xV1 — x + 4/9V1 — x + C
SECTION 8.1, pp. 465-466 57.(@) m (b) 3w (¢) Sm (d) 2n + D)mr
1.In5 3. 2tanx — 2secx — x + C 59. 27(1 —In2) 6L (a) w(7m —2) (b) 27
o
5.sin'x+ V1 —x2+ C 7. e+ C 63.(a 1 (b) (e —2)m (¢ 5(62 +9)

9. tan"'(¢?) + C 11. = 13. t + cotr + csct + C

1 1
@ 5= @+ 1D.5=50-2)
15. V2 17 %m(l +4In2y) + C 4 2

. 65. i(l — 27 67. u = x",dv = cos x dx
19. ln|1 + sin 9‘ + C 21. 22 — t + 2 tan™! <5> + C 69. u = x", dv = e™ dx 73 u=x",dv = (x + 1)—(1/2) dx
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Chapter 8: Answers to Odd-Numbered Exercises

77. xsin"'x + cos (sin"'x) + C
79. xsec'x —Injx + Va2 — 1| + C  8l. Yes
83. (a) xsinh !x — cosh(sinh'x) + C

(b) xsinh'x — (1 + )2+ C

SECTION 8.3, pp. 479-480

l.lsin2x+C 3. —lcos4x+C

2 4

1 3. _ 2.5
5.3cosx cosx + C 7. cosx+3cosx 5

PR B L., _1.5s
9. sinx 3smx-i—C 11.4smx 6sm x+ C
13. l)c-i-lsin2x+C 15. 16/35 17. 37

2 4
19. —4sinxcos’x + 2cosxsinx + 2x + C
21. —cos*20 + C 23. 4 25. 2

3 2 4(3\7? 18 2(3\"?
27. (/53 29.5(5) ~35 515 3. V2
37.1tan3x+C

33. ltanzx +C 35. lsec3x +C

2 3 3
39.2V3 +In(2 + V3) 41. %tant‘)-ﬁ-%se&@tan@-ﬁ-c
43. 4/3 45. 2tan’x — 21In (1 + tan’x) + C
47.%tan4x—%tan2x+ln\secx| +C 49 %—ln\/g
51.—%cos5x—%cosx+c 53.
55.%§1nx+ﬁsm7x+c
57. %sin30 - isin(—) - EsmS@ +C
59. —§COSSO+C 61. ‘1*10050—21*000550+C

63. secx — In |csc x + cotx| + C 65. cosx + secx + C

1, 1 1
67. 1~ 4xsm 2x — g cos 2x + C 69. ln(2 + \/5)
_ 4w _ 8w+ 3
2 _am - _omt T 5 o
71. 7/2 73. x 30 B 75. (w/4)(4 — )

SECTION 8.4, pp. 484-485

L In|V9+x>+x+C 3. 7/4 5. 7/6
\/ — 42
7. Bgn(L) + YB -, ¢
2 5 2
2 _
9, Ljp|Z 4 VA =49,
27 7
Vy? — 49 (Y -1
1.7 5 —sec!(Zz] |+C 1B. Y —+¢C
7 7 X
15. -V9 —x*+C 17 %(x2 + 4P -4V + 4+ C
— _ 2
19. 2VEZW L0 alsint k- VI— 2+ C
B3I a5 X ¢
3 x> —1
A1 — 2\9
27.—1(%) +C 29 2tan 2w+ —X
5 (4x* + 1)
1,1 2 _ (v ’
31.2x+21n\x 1 +cC 33.3(m>+c

35. 9 —In(1+V10) 37. 7/6

1
~cos’x + C

39. sec!|x| + C

41.

45.

47.

49.

53.

55.

59.

61.

63.

1.

XX—-1+cC
4sin’l%+ ViVd —x+C
}lsirrlx/i f%\/}w - x(1

(9/2) arcsin (X 3 1> +(1/2)x

- X2 —4 i x
y72|: 5 sec {5

=§tan" x\ _ 37w
) 2 8

() 11—2(77 +6V3—12)

43. %m [V1+x+ 22 +C

- 2x) + C

+ DV —2x—x*+ C

VX2 +4x + 3 —arcsec (x + 2) + C

57. 3w /4

®) %= 3V3—m y:772+12\/§7T—72
(77 +6V3—12)"  12(7m+6V3 - 12)
(a) Wx — X2 — %(1 X2+ C

(b) —3 (1 = )"

F3U -+ C

(c) 1(1 _ x2)5/2 _ 1(1 — x2)3/2 +C

ﬁ_ﬁJr,l <M)

2 V2 +1
SECTION 8.5, pp. 491-493
xE3+x32 'x-}-1+(x-31)2

11.

15.

19.

23.

25.
27.

29.

31.

33.

35.

37.

41.

%ln|(x +6(x — 1’| + C

1 1 1
21n|l|+61n\t+2|+31n\
1. (x+1 X

<In - + C
4 x—l‘ 22 — 1)
tan 'y — +C

ey v+ 1

(s —=1D72+ (s~ 1)+ tan’!
2 1

3

[T | N

41 p 1‘-ﬁ-ztan x+ C
-t

0%+ 260 + 2

2+ 4

9x + 21n |x| +)1?+7ln|x—1
y? 1
z—ln\y| +5ind +3y) +C

1

s

smy -2

v 13 +C

.%[ln|1+x\ —Inj]l —x|] +C

13. (In 15)/2

t—1+C 17.3In2 -2

21. (7 + 2In2)/8

s+ C

zln\xfl|+gln\x +x+ 1] — V3tan <2x+1)+c

V3

+In(A2+20+2) —tan'@+ 1)+ C

| + C

e+ 1
39. ln(e, - 2) +C




43.

45. 1

47.

49.

51.

53.

55.

57.

61.
63.
65.
67.
69. x

73.

77.

(tan™!2x)?
4
\/7

VA

Vx+1-—1
2\/1+x+ln‘7
Vx+1+1

+c

—3In|x— 2| + =2
—

e

+c

1 4

,1 X

x*+1
‘\600504— 1’ 1 ’l — cos f

V2cosh — 1 271 + cos b
Vit Va1
VIt Vet 1

%x3—2x2+5x—101n|x+2|+c

+c

4V1+ Vx+2n

+C

1 X —X l
Sh@+29+C 89 4n

x—1)
x+ 1 2

In
§1n|(lnx+ Dinx + 3)| + C
Injx+ Va2 —1] + C
2 303 3/2_i 3
9x (x¥*+1) 45(x +

—In|t—1] +In2

1)2 + ¢

x=1In|t — 2|

- o

P 71. 3wIn 25

In(3) — % 75. 1.10

1000e*

@ ¥ 499 1 o

(b) 1.55 days

SECTION 8.6, pp. 497-499

1.

w

11.

13.

15.

17.

19.

21. —

23. 8

2 ( i x—3>
——| tan + C
V3 3

2(x — 2
\/x—2(¥+4>+c 5 5
—\/9—4x72ln \/9—4x—3+c

. 3 VO —4x +3
+2)(2x — 6)Vax — x* -
&+ 29— OVx — x +asint (222) + ¢
6 2
_71
4—x2—21n‘

2
%(20053t + 3sin3t) + C

2

%Cos’lx + %sin’lx — %x\/l -xX+C
3 2

XXt 1 2

3tanx 6-l-6ln(1-i-x)+C

cos 5x  cosXx
10 , €

sin(7¢/2)  sin(9¢/2)
79

1
—arctanx + C

(2x = 3)(x + 1) N

Chapter 8: Answers to Odd-Numbered Exercises
25. 6sin (0/12) + = 6 s1n (70/12) + C

%+ltan_1x+c
20 +x») 2

27. Eln @+ 1)+
29. (x - %) sin 1V + %Vx -x2+C
3L sin 'V — Vx—x2+C
33. V1 —sin?’t—In|—————————

sin ¢

35. In|lny + V3 + (Iny)?| + C
. nlx+1+Va2+2+5+C

39.x;2\/5—4x—x2+%sin_l(x+2)+C

SlIl

3
sin*2x cos 2x  2sin?2xcos 2x 4 cos 2x
4l. 10 15 5 TC€
sin®26 cos?26  sin®26
43. 10 + 5 + C

45. tan?2x — 2 In|sec2x| + C
(sec 7rx)(tan 7rx)

47. = fln|sec7'rx + tan 7x| + C
—escd
49, —Ss¢ xcotx_3cscxcotx_71n|cscx+cotx| .
4 8 8
51. %[sec(e’ —1)tan(ef — 1) +

In|sec(e’ — 1) + tan (¢! — D|]+C
53.V2+In(V2+1) 55 73
57. 20V3 + #\V21n (\6 + \/g)
61.7.62 63 w/8  67. w/4

SECTION 8.7, pp. 506-508
LI (@ 15,0 (b) 15,0 (c) 0%
I: (a 150 (b) 1.5,0 (c) 0%
3.I: (a) 2.75,0.08 (b) 2.67,0.08 (¢) 0.0312 ~ 3%
II: (a) 2.67,0 (b) 2.67,0 () 0%
5.1: 625,05 (b) 6,025 (c) 0.0417 ~ 4%
II: (a) 6,0 (b) 6,0 (¢) 0%

A-35

59. x = 4/3,5 = n\V2

7. I: (a) 0.509,0.03125 (b) 0.5,0.009 (c) 0.018 = 2%

II: (a) 0.5,0.002604 (b) 0.5,0.4794 (c¢) 0%

9. I: (a) 1.8961,0.161 (b) 2,0.1039 (c¢) 0.052 = 5%

II: (a) 2.0045,0.0066 (b) 2,0.00454 (¢) 0.2%
1. 1 ()2 13.(a) 116 (b) 2
15.(a) 283 () 2 17. (a) 71 (b) 10
19.(a) 76 (b) 12 21. (a) 82 (b) 8
23. 15990 f¢  25. ~10.63 ft
27. (a) ~0.00021 (b) ~1.37079 (¢) ~0.015%
31. (a) =5.870 (b) |E;| = 0.0032
33.21.07in.  35. 144  39. ~28.7mg

SECTION 8.8, pp. 517-519

L7/2 32 56 77/2 9.In3 1L In4
13.0 15 V3 17. 7« 19 ln(l + %)
21. -1 23.1 25.-1/4 27.w/2 29. 73

31. 6 33. In2
39. Diverges
45. Converges

35. Diverges 37. Diverges
41. Diverges 43. Converges
47. Diverges 49. Converges
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51. Converges 53. Diverges 55. Converges 7 2¢* sin 2x n e* cos 2x rC
57. Converges 59. Diverges 61. Converges : 5 5
63. Diverges  65. Converges  67. Converges 9. 2In|x — 2| —Injx — 1| + C

69. (a) Converges when p < 1 (b) Converges when p > 1 1

7.1 73.2m 75 In2 1L dn fo] = Infx + 1] + =+ C
77. (a) 1 (b) w/3 (c) Diverges 1 leoso — 1
;g. ga; 7/2 (b) m 8L (b) =~0.88621 B =3\ oo TC€
. (a
A 15. 4 1In|x| —%ln(xz-i- 1) + 4tan'x + C
18+ X
i -2y + 2
1.6 17. Lln (‘U)(U)‘ +C
14 L 16 v°
12 Si = [ Ly,
! A r 19 ltan“t—ﬁtan‘li-i-c
0.8 *2 6 V3
0.6 2
04 x4 2l —
o 21. 5 31n|x+2\+31n\x 1| +C
1 1 1 1 1 v 2
0 510 15 20 25 23.%—%ln|x+3\+%ln\x+l|+c
(b) 7/2
85. (a) y a5 i AL e - e+
3 Ve +1+1
29. V16— +C 3. -imla-x+cC
2
1 1 x+3
33. lnm+c 3. 5+ C
EE N R 37. —C"gsx + C°;7x +C 3. ‘2“;5" +C
(b) =~0.683, ~0.954, ~0.997 cos®  cos 110
91. ~0.16462 4. == -5+ C 4.4V —cos(1/2) + C
SECTION 8.9, pp. 530-532 45. At leist 16 47. T~: m.S=m  49.25F
1. No 3. Yes 5. Yes 7. Yes 11. =0.537 51. (a) ~242gal (b) ~24.83 mi/gal
N N o 1 53.7/2 55.6 57.In3  59.2 6l 7/6
13. ~0.688 15. =~0.0502 17. V2l 1. 51n2 63. Diverges 65. Diverges 67. Converges
1,0 1,
21. %,%(tan_l 2 — %) =~ (.10242 09. Exez - 162' + C 71. 2tanx 1_ x+ C
3 . 73. xtanx — In|secx| + C  75. —3(cos x}+C
25. mean = 3= 2.67, median = V8 ~ 2.83
1 2 1, 4x+1
27. mean = 2, median = V2 =~ 141 77. 1+ 5“‘(1 + ez) 79. 2In |1 — E’ + 252 +C
29. P(X < 3) ~ 0.3935 2 — 1
31. (a) =0.57, so about 57 in every 100 bulbs will fail. 81. o +C 83. 9/4 85. 256/15
(b) ~832 hr 1,
33. ~60 hydra  35. (a) ~0.393 (b) =~0.135 (c) 0 87. —Jescx + C
(d) The probability that any customer waits longer than 3 minutes 2x3/2
is 1 — (0.997521)2%° ~ 0.391 < 1/2. So the most likely 89. =5——x+2Va—2m(Va+1)+C
outcome is that all 200 would be served within 3 minutes. 1.4, 1. —
37.$10,256 39, ~323, ~262  41. ~0.89435 A gsin (= D+ 5 = DV2x =27+ €
43. (a) =16% (b) =0.23832 45. =618 females 93, —2cotx — ln|cscx + cotx‘ +cscx + C
47. =061 adults 49. =289 shafts
1. 13+ 1
51. (a) =0.977 (b) =0.159 (c) ~0.838 95. 15n |3 —|+ ¢ tan '§+ C
55. (a) {LLL,LLD,LDL,DLL,LLU, LUL, ULL, LDD, LDU, ,
LUD, LUU, DLD, DLU, ULD, ULU, DDL, DUL, UDL, gy, Osin@6+ 1) cos@b+ 1) .
UUL, DDD, DDU, DUD, UDD, DUU, UDU, UUD, UUU} 2 4
(¢) 7/27 = 026 (d) 20/27 = 0.74 ol s s e oL 2 (V2 =2) s .
— + 2l -2V2 —x |+
PRACTICE EXERCISES, pp. 533-535 45 3 *

LG+ DInGx+1)—@+1)+C
103. tan"'(y — 1) + C

1 1

3. xtan'(3x) — éln(l +9x%) + C
105. Llftln lz| — =~ %ln (2+4)+ %tan’l (5)} +C

5. (x + D% — 2(x + De* + 25+ C 4z 4 2



'3
107. —i\/9 “aE+C 109 ln(e + 1) e

e+ 2
11 1/4  113. §x3/2 +C 115 %tan*‘ (cos 51) + C
117. 2\Vr = 2In (1 + V7r) + C

119. S x

2 1 1 2% — 1
121. Slnfx+ 1| + “In |22 —x+ 1 +—tan*1(7)+c
sinlerdlsgind VRNV

123, 2 (14 Va2 = B (14 Vi (1 VaPR+ C

125. 2In |[Vx + V1 + x| + C
127. Inx —In |l + Inx| + C

l In x l l — 1 — X4

129. Ja"+ C 131 5ln ‘ = +C
o

133. (b) =  135. x — L an ' (V2 tan x
4 V2 ' )+

ADDITIONAL AND ADVANCED EXERCISES, pp. 536-538
1 x(sin™'x)2 + 2(sin"'x)V1 —x2 — 2x + C

3 x%sin”'x n xV1 — 2% — sin"'x
: 2 4

5. %(m(r -Vi-7)- sin"t) +C 1.0

9.In(4) — 1 11. 1 13. 327/35 15. 27
17. (a) = (b) m(2e — 5)

8(n2)* 16(n2) 16
19. (b) 77(  E— + ﬁ)

E+1e—2
 (E20.02)

23. V1 + & — 1n(7”+62+%) - V2+ (1 +V2)

e

+ C

127 ~ 1 _In2 1
2557 2Na=5.— 29. 5<p=1
2 \fqr
3. - tan(x/z)+c 3.1 37,
39, L tan (1/2) + 1 — V2
V2 tan (t/2) + 1 + V2
1 + tan (6/2
41. ‘7( /2
1 — tan (6/2)
Chapter 9
SECTION 9.1, pp. 546-548
1. 3 (@
5. y

—

x—yyl)=-1
—(1 + y)sinx; y(0) = 2

e
et
Il

Chapter 9: Answers to Odd-Numbered Exercises

11. y = 1 + xe&'; y(=2) = 2

13. y ,
_Y
A I YYD PY
-3 2 ——— e
-] 15 SNON TN NN
AN ANe ANY ANY AN AN x
-1 0 . g - N> 3
—— e
0 -1
X 075 YAVAVE SV AV Y
' YAV VA
2 0
3 1

15. y(exact) = —x%,y; = —2,y, = —3.3333,y; = —5

17. y(exact) = 3ex(”2) =42,y, = 6.216,y; = 9.697
19. y(exact) = ¢° + l,yl =2.0,y, = 2.0202, y; = 2.0618
21. y =~ 2.48832, exact value is e.

23. y = —0.2272, exact value is 1/(1 — 2V/5) = —0.2880.

27.

N
| N\~
e

N—

T T

/

\

\
4
3 \
a
39. Euler’s method gives y = 3.45835; the exact solution is

y=1+e = 3.71828.
41. y = 1.5000; exact value is 1.5275.

7

s [ ~————e
e |
W | ~

e,

SECTION 9.2, pp. 552-554

1y_e*-i—C,x>O 3.y:C—;:osx, =0
X
1 1, C 1
- _ = ~ — = pX/2 x/2
5.y 5 x+x2, x>0 7.y Sxe + Ce
9. y = x(Inx)> + Cx
3
Mms=—»"t -+t , C
33— ¢—-D* @— 1
13. r = (cscO)(In|sec O] + C), 0 <6 < m/2
_3_1 5 __1 il
15. y = 7 T 5¢ 17. y = 00030 + 20
— x> exz — kt
19. y = 6e — 21. y = yge
23. (b) is correct, but (a) is not. 25. t = %ln 2 sec

A-37
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27.(a) i =

Vs_
Re

~I<

(1-¢3) = 0.95%amp (b) 86%

— i<

29. 3. y =1+ Cx3

A

SECTION 9.3, pp. 559-560
1. (a) 168.5m (b) 41.13 sec
3. 5(t) = 4'91(] _ e—(22.36/39.92)t)

5.x2+y?=C 7.ln|y|—ly2=lx2+C
2 2
y
y
V X
kx2+y2=1
9. y= V2 +C

y

%x

. y .
13. (a) 101b/min (b) (100 + 1) gal (c) 4<m) 1b/min
dy 4y
) i 10 - 100 + ¥(0) = 50,
y=2(100+t)—¢4
t
(1 * 100)
. y(25) _ 188.6 _
(e) Concentration = ami brine in ank — 125 1.51b/gal

15. y(27.8) = 14.81b,t = 27.8 min

SECTION 9.4, pp. 566-567
Ly =@0+20-3)
(a) y = —2 is a stable equilibrium value and y = 3 is an
unstable equilibrium.

(b) ¥ =20y + 2>(y - %)(y )

' '
y' >0 , y' <0 Ly >0
' '
b Lt
= * 0 7 ! )
<o L0
' '

T
.

y'>0 y<0
:
|
|

(c) y

// Y >0,)"<0
3y =y —y=0G+hyy-D
(@) y =—1and y = 1 are unstable equilibriaand y = O is a

stable equilibrium.
(b) y" = (3y* — )y’
=30y + Dy + 1/V3)y(y = 1/V3)y - D)

' '
y >0 , y' <0 , y >0
' '

5.9 =Vy,y>0

(a) There are no equilibrium values.

//_l
®) y' =3
¥y >0
1 1 1 1 1 y
0 1 2 3 4
y' >0

-2 2 4 6 8

7.y == DO =20 —3)

(a) y = 1 and y = 3 are unstable equilibriaand y = 2 is a
stable equilibrium.
(b) y' =Gy’ — 12y + 1Dy — DO = 2y — 3) =

e e e
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' ' ' Before Catastrophe After Catastrophe
V<0 1y >0 . Yy <0 o V>0
| N o 6 |
o R R R
y'<0 :y">(): Y'<0 1 y'>0 :y"<0: y'>0
8 “%~14z ﬂzz,ss
3
(c) y
tcumslmphc tcalaslmphc
15. C(ITU =g - %vz, g k,m > 0and v(t) = 0
oo o dv k 5 _ _mg
Equilibrium: a8 T mv T O=v = T
. dv k \dv _ k k 5
Concavity: o —Z(E'U)E = —2(ﬁv)(g —mV )
AP 1 (a) (b)
9. o 1 — 2P has a stable equilibrium at P = 5 | Z_zv>° A Z_;,«) v
d2P dP 0 d%v T S d v %
ﬁz_ Ez_z(l —2P). TS0 mgﬁ>o
P Veq =V k
15 .
1 160
o= (©) Vierminal = ~ /m = 178.9 ft/sec = 122 mph
05
P'>0,P"<0 dv 1
o, 17. F = F, — Fyma = 50 — 5|u;5:ﬁ(50— 5|v]). The
/ 05 075 1 125 15 175 p
~05 maximum velocity occurs when dfl; = 0orv = 10 ft/sec.
11. % = 2P(P — 3) has a stable equilibrium at P = 0 and an 19. Phase line:
2 . . )
unstable equilibrium at P = 3; ”Z—I; =202P — 3)‘2—’; = LG F=o
4PQP — 3)(P - 3). ! oAy dily
dr? | dr?
=Y
1 1 e« R
. P’I 0 i L ‘ID' <OI . i Prl>° . If the switch is closed at 7 = 0, then i(0) = 0, and the graph of
T N o5 S s % s the solution looks like this:
P'<0 ! P'>0 LooP<0 1 P>0 .
P
t
. . \%
As t— o0, i(t) — Isteady state — E
SECTION 9.5, pp. 570-573
1. Seasonal variations, nonconformity of the environments, effects
) . o of other interactions, unexpected disasters, etc.
13. Before the catastrophe, the population exhibits logistic growth 3. This model assumes that the number of interactions is propor-
and P(?) increases toward M,, the stable equilibrium. After tional to the product of x and y:
the catastrophe, the population declines logistically and P(¢) dx
decreases toward M, , the new stable equilibrium. a (a = by)x, a <0,

I (PR U W (N
n=m P Ty =ylm gy o).

Rest points are (0, 0), unstable, and (0, M), stable.
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5. (a) Logistic growth occurs in the absence of the competitor, and

(b)

(c)

Chapter 10: Answers to Odd-Numbered Exercises

involves a simple interaction between the species: Growth
dominates the competition when either population is small,
so it is difficult to drive either species to extinction.

a: per capita growth rate for trout

m: per capita growth rate for bass

b: intensity of competition to the trout

n: intensity of competition to the bass

ky: environmental carrying capacity for the trout

k,: environmental carrying capacity for the bass

a .
X growth versus competition or net growth of trout

m . .
— relative survival of bass

n
dx _ — —a_4a
a 0 when x=0 or y= b bklx’
dy kon
EZO when y =0 or y=k — Jx

By picking a/b > k, and m/n > k,, we ensure that an
equilibrium point exists inside the first quadrant.

PRACTICE EXERCISES, pp. 573-575

1Ly= —ln(C - %(x —2)%2 — ;i(x - 2)3/2>

3. tany = —xsinx — cosx + C

5.(y + De?=—In|x| + C

7.y=c’“;1 9, y=xz2ex/2+CeX/2

11.y=xz_2% 13.y=% 15 0+ =C

17. tany = —cos x + (1/3) cos’x + C

19. ¢y = (x — e + C

21. In|lny| = (1/2)x2Inx — (1/4) x> + C

3.y = 72’“36(: ile)j O 28 y=1(1-4e7)

27. y = e *(3x — 3x?)

2. T 5y x| 5y
0 0 1.1 | 1.6241
0.1 |0.1000 12 |1.8319
02 |0.2095 13 |20513
03 03285 14 |22832
04 |0.4568 15 |25285
0.5 |0.5946 1.6 | 27884
0.6 |0.7418 1.7 |3.0643
0.7 |0.8986 1.8 [3.3579
0.8 |1.0649 1.9 [3.6709
0.9 |1.2411 20 | 4.0057
1.0 |1.4273

31. y(3) = 09131

33. (a)

[—0.2,4.5] by [-2.5,0.5]

(b) Note that we choose a small interval of x-values because

the y-values decrease very rapidly and our calculator cannot
handle the calculations for x = —1. (This occurs because
the analytic solutionis y = =2 + In (2 — ¢™), which has
an asymptote at x = —In 2 = —0.69. Obviously, the Euler

approximations are misleading for x = —0.7.)

o2y 10,21
1, 3 1
35. y(exact) = sx° — 5;y(2) = 0.4; exact value is .
2 2 2
37. y(exact) = —e™ /2 y(2) ~ —3.4192; exact value is

&3 =~ —4.4817.
41. (a) y = —1 isstable and y = 1 is unstable.

d’y dy 5
(b) v By =067 - D

y=-1 ysl
h h
dy vody v dy v dy
Z>O 1 dx<0 :dx<0:dx>0 ¥
[ S
2, 1 2. g2y g2
L o B A o e S
dx? Vodx? 1 dx? | dx?
y=0
© v
2F /
1
0\ 1 1 1 X
05 1 L5 2 25
—1/
oL

43. (a) 1 min: 102 gal; 10 min: 120 gal; 60 min: 220 gal

(b) S(1) = 12.551b, S(10) = 32.221b, S(60) = 101.74 1b

ADDITIONAL AND ADVANCED EXERCISES, p. 575
1.(a) y=c+ (y — c)e*@Vx
(b) Steady-state solution: y,, = ¢
5. 22 +2Y) =cC
7. Inlx| + e =C
9. In|x| — In|sec (y/x — 1) + tan (y/x — )| = C

Chapter 10

SECTION 10.1, pp. 586-590
1. a; = O,az = _1/4,613 = _2/9,614 = _3/16
3. a,=1,ay=-1/3,a3=1/5,a4 = —1/7
5. a; = 1/2,&2 = 1/2,613 = 1/2,&4 = 1/2
T L e 16 2 f4* 1oR° Heg
2°4> 8716°32° 64 °128°256° 512
oy L 111 1 1 1 1
T2 478160 327 6471287256
11. 1,1,2,3,5,8, 13,21, 34,55
13. a, =~y n =1
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2)171
15. a, = )" ()% n =1 17. a, = 3nt 2" =1 43. 5, = g — cos™! (ﬁ), converges, —% 45. 1 47. 5
19. g,=r — 1,n=1 21. @, =4n —3,n=1 1 V3
»3 _3m+2 5 L+ (= _ 49. 1 51. "2 53. Converges, 2 + V2
s = =1 Se = 2 n=1 55. Converges, 1 , 57. Diverges

\/ 59. Converges, ———

27. a, = S 29. a, = sin(%) 2 — 1
(n+ D +2) I+®m+1 61. Converges, 2/9 63. Converges, 3/2 65. Diverges

31. Converges, 2 33. Converges, —1 35. Converges, —5
37. Diverges 39. Diverges 41. Converges, 1/2

43. Converges, 0 45. Converges, V2 47. Converges, 1
49. Converges, 0 51. Converges, 0 53. Converges, 0

67. Converges, 4 69. Diverges 71. Converges, %
73. Converges, —5/6 75. Diverges

77. a = 1,r = —x; converges to 1/(1 + x) for |x| <1

79. a = 3,r = (x — 1)/2; converges to 6/(3 — x) for xin (—1, 3)

55. Converges, 1 57. Converges, e’ 59. Converges, 1

61. Converges, 1 63. Diverges 65. Converges, 4 81. |x| < l, ! 83. 2<x<0, 1
67. Converges, 0 69. Diverges 71. Converges, ¢! 1= 2+x
73. Diverges 75. Converges, 0 77. Diverges 85. x # (2k + I)E, k an integer; ;

79. Converges, ¢>  81. Converges, x (x > 0) 2 1 — sinx

83. Converges, 0 85. Converges, 1 87. Converges, 1/2 87. (a) i 1 (b) i 1

89. Converges, 1 91. Converges, m/2  93. Converges, 0 ) 7+ 4)(n +5) S+ 2+ 3)

95. Converges, 0 97. Converges, 1/2 99. Converges, 0

101. 8 103. 4 1055 107. 1 + V2 109, x, = 272
111. (a) f(x) = x> — 2, 1.414213562 = /2

< 1
© 26— Hu -2
1+ 2r

97. (@) r=3/5 (b) r=-3/10 99. |r| <1,

(b) f(x) = tan(x) — 1,0.7853981635 = = /4 1 —r?
(€) f(x) = €, diverges 101. (a) 16.84 mg, 17.79 mg (b) 17.84 mg
113. 1 1 2127 81278
121. Nondecreasing, bounded 103. (a) O’ﬁ’ﬁ’@@ﬁ’ﬁ’}g’@@l
123. Not nondecreasing, bounded % 1 /2\"!
125. Converges, nondecreasing sequence theorem (b) E 2 (g) =1 105. (4/3)m
127. Converges, nondecreasing sequence theorem !
129. Diverges, definition of divergence SECTION 10.3, pp. 604-606
131. Converges 1. Converges 3. Converges 5. Converges 7. Diverges
133. Converges 9. Converges 11. Diverges
145. (b) V3 )
13. Converges; geometric series, r = 10 <1
SECTION 10.2, pp. 597-599 "
B 2(1 _ (1/3)n) 3 1 — (_1/2)/1 3 15. Diverges; nll)n;on +1 =1#0
TS (1/3) ° ST —1/2)° / 17. Diverges; p-series, p < 1
. . 1
1 1 1 1 1 1 4 19. Converges; geometric series, r = ¢ < 1
5.8, =5 — .o 7.1 — -+ — =+, ’ ’ 8
2 n+22 4 16 o4 5 21. Diverges; Integral Test
9. 3 + 9 + 57 + 249 + - - -, diverges. 23. Cf)nverges; geometric series, r = 2/3 < 1
4 16 64 256 25. Diverges; Integral Test
S,y (5, 0, (5, 1), 2 e 2"
11. (5+1)+(2+3>+<4+9>+<8+27)+ 5 27. Diverges; lim -~ # 0
1 1 1,1 1 1 Y 29. Diverges; lim,,_)oo(\/i;/lnn) # 0
poasns (3o (be L) (f- k) e | (Vi 1
31. Diverges; geometric series, r = 2 > 1
15. Converges, 5 /z 17. Converges, 1/7 33. Converges; Integral Test
19. Converges, - > 21. Diverges 23. 23/99 35. Diverges; nth-Term Test
¢ 37. Converges; Integral Test
25. 7/9 27. 1/15 29. 41333/33300 31. Diverges 39. Diverges; nth-Term Test
33. Inconclusive 35. Diverges 37. Diverges 41. Converges; by taking limit of partial sums
39,5, =1-—  converges, 1 43. Converges; Integral Test
n+1 45. Converges; Integral Test 47. a =1
41. s, = In Vn + 1; diverges
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49. (@)
1F
1 _v—i)C
1/2 ‘ 1/n
1 1 1 T T X
0 1 2 3 n n+
/'l+lidx<|+ L+l
J1 x
y
1
1
1 R
1/2 1/n
1 1 1 I T T ¥
0 1 2 3 n—1 n
1+4 ---+l<1+[n%dx
(b) =41.55
51. True 53. n = 251,415
8
1
55. 55 = EE ~ 1.195  57. 10%°

n=1

65. (a) 1.20166 = S = 1.20253
(b) S = 1.2021, error < 0.0005

2
67. (% - 1) ~ (.64493

SECTION 10.4, pp. 610-611

1. Converges; compare with > (1/n?)
3. Diverges; compare with E( 1/ \/r;)
5. Converges; compare with > (1/rn%?)
7 n + 4n
9
1

= V53 4

. Converges; compare with E P
. Converges

. Diverges; limit comparison with >(1/n)

13. Diverges; limit comparison with E( 1/ \/;z)

15. Diverges

17. Diverges; limit comparison with E( 1/ \/E)

19. Converges; compare with > (1,/2")

21. Diverges; nth-Term Test

23. Converges; compare with > (1/n?)

n n n )" _ l n
25. Converges; (m) < (ﬂ) = (3)

27. Diverges; direct comparison with >(1/n)
29. Diverges; limit comparison with > (1/n)
31. Diverges; limit comparison with > (1/n)
33. Converges; compare with > (1/n*?)

1 1
— <
3n71 +1 3117I

2” % 37. Converges;
39. Converges; comparison with >, (1/5n%)
41. Diverges; comparison with > (1/n)

35. Converges;

43. Converges; comparison with >,
with > (1/n?)
45. Diverges; limit comparison with X (1/n)
- m/2
47. Converges; tan /

nl.l nl.l

49. Converges; compare with > (1/n?)
51. Diverges; limit comparison with X (1/n)
53. Converges; limit comparison with > (1/1%)
55. Diverges nth-Term Test

67. Converges 69. Converges

or limit comparison

I
nn — 1)

71. Converges

SECTION 10.5, pp. 616-617

1.
7.
13.
17.
21.
23.

25.

27.
29.
33.
37.
41.
43.
47.
51.

55.

59.
63.
65.

69.

Converges 3. Diverges 5. Converges
Converges 9. Converges 11. Diverges
Converges 15. Converges

Converges; Ratio Test 19. Diverges; Ratio Test

Converges; Ratio Test
Converges; compare with > (3/(1.25)")

3 n

Diverges; lim (1 — =] =3 #0
n—oo

Converges; compare with > (1/n?)
Diverges; compare with > (1/(2n)) 31. Diverges; a, + 0
Converges; Ratio Test 35. Converges; Ratio Test
Converges; Ratio Test 39. Converges; Root Test
Converges; compare with > (1/n?)

Converges; Ratio Test 45. Diverges; Ratio Test
Converges; Ratio Test 49. Diverges; Ratio Test
Converges; Ratio Test 53. Converges; Ratio Test

(1/nl)
Diverges; a, = (g) —1 57. Converges; Ratio Test

Diverges; Root Test
Converges; Ratio Test
(a) Diverges; nth-Term Test
(b) Diverges; Root Test

(c) Converges; Root Test
(d) Converges; Ratio Test
Yes

61. Converges; Root Test

SECTION 10.6, pp. 622-624

1.
. Converges; Alternating Series Test

. Converges; Alternating Series Test

. Diverges; a, -~ 0

. Diverges; a, - 0

. Converges; Alternating Series Test

. Converges by Alternating Series Test

. Converges absolutely. Series of absolute s is a convergent

19.
21.

23.

25.

217.
29.
31.
33.

35.

37.
39.
41.

. Converges conditionally; 1/ \/l;—> 0 but Eio:]

Converges by Alternating Series Test

geometric series. |
—— diverges.
Vn
Converges absolutely; compare with >,2(1/r?).
Converges conditionally; 1 / (n+3)—0but 3,2,
diverges (compare with > (1/n)).

1
n+3

. 3+n
Diverges; 5+ n—>l

Converges conditionally; (% + l) — 0 but
non

(I +n)/n*>1/n

Converges absolutely; Ratio Test
Converges absolutely by Integral Test
Diverges; a, - 0

Converges absolutely by Ratio Test
cos nw

Converges absolutely, since

‘(_l)n-ﬂ

32

(convergent p-series)

Converges absolutely by Root Test

Diverges; a, — 0o

Converges conditionally; Vn + 1 — Vn =

1/( Vi + Vn + 1) — 0, but series of absolute values
diverges (compare with E( 1/ \/ﬁ) )



43.
45.

47.

49.
53.
59.
61.
65.
69.
71.
73.
77.
79.
81.
83.

Diverges, a,— 1/2 # 0

2 7
Converges absolutely; sech n = —; 2 — = C <
2" et e e+ 1
¢

2 . .
= =, aterm from a convergent geometric series.
2n e)'l

e

Converges conditionally; > converges by

n+ 1
=D l2(n + 1)

Alternating Series Test; > diverges by limit comparison

2n + 1)
with X (1/n).

|Error| < 0.2 51. |Error| <2 x 107!

n =31 55. n=4 57. Converges; Root Test
Converges; Limit of Partial Sums

Converges; Ratio Test 63. Diverges; p-series Test
Converges; Root Test 67. Converges; Limit Comparison Test
Diverges; Limit of Partial Sums

Diverges; Limit Comparison Test

Diverges; nth-Term Test 75. Diverges; Limit of Partial Sums
Converges; Limit Comparison Test

Converges; Limit Comparison Test

Converges; Ratio Test

0.54030 85. (@) a, = a,;; (b) —1/2

SECTION 10.7, pp. 633-636

51.

53.

55.

(@ 1,-1=x<1
(@) 5,-8<x<?2
. (@ 3,-3<x<3 (b
(@ 1,-2<x<0 (b
(@ 1,1 <x<1
.(@ 0,x=0 () x=0
.(@ 2,-4<x=0 (b
(@ 1,-1l=x=1
(@ 1/41=x=3)2
. (@) oo, forallx (b) forallx (c) none
(@ 1,-1=x<1
.3 39. 8
-l <x<3,4/(3+ 2x — x?)

L0 <x<16,2/(4 — Vi)
.—\6<x<\/%,3/(2—x2)

@ LL—-1<x<1 b -1<x<I
@@ 1/4,-1/2<x<0
(@ 10,—8 < x < 12

(c) none
(b) —1/2 <x <0 (c) none
(b) —8 < x < 12 (c) none
@ 1,-1<x<1 () -1<x<1 (c¢) none
@ 3,-3=x=3 (b) 3=x=3 (c¢) none
(a) oo, forallx (b) forallx (c¢) none
@ 1/2,-1/2<x<1/2 (b) —1/2<x<1/2 (c) none
b -1 <x<1 (¢) x=-1
(b) -8 < x <2 (¢) none
—3 < x <3 (c) none
-2 <x <0 (c) none
(b) =1 <x <1 (c) none
(c) none
-4 <x<0
b)) -I1=x=1

) x=0
(¢) none
(b) 1 =x=3/2 (c) none

b -1<x<1 () —1
41. —1/3 <x < 1/3,1/1 - 3x)

00

. %: >2-Dx = L0 <x<2

n=0

(“H'a-5m2<x<8

Mg

0

n

1 <x<52/(x—1D, 2 =1 e = 3y,

1 <x<35,-2/(x— 1)

4 6 48
(a) cosx—l—j a1 6!+§

10

X X X
00 "

5 converges

for all x
(b) Same answer as part (c)
23x3 25x5 27x7 29x9 2lell
T T T TR T

() 2x —
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174 | 31x'0 7 T

5. (a)*+*+5+2520 14175 2 ~Y <2
2t 17x° 6248 T T
2 4 X7 .7 s
(b)l+x+3+45+315+ s 2<)c<2

63.aT BT @F T (&N (f)F (&g N (h T

SECTION 10.8, pp. 640-641
1L P(x) = 1,P(x) = 1 + 2x, P(x) = 1 + 2x + 2x2,

3. P(x) =

11.

13.

15.

21.

25.
27.

29.
33.
35.
37.

39.

45.
49.

- Ry =

- B =

. Py(x) =2, P(x) =2 + 1

Pyx) = 1 4+ 2x + 2x* + %xS

0, P(x) = x — (x—l)—%(x—l)z,

(x—l)—l(x—l)z-i—

1’ P2(X) =

P = T

1AM =g - iu—m
1

N

Pyx) = x—=2)+3 (x - 27,

\—‘-lk\

N\& ~\§ ~\§ “‘”“‘”
+
NE:

N

=

|
Nalb

|
S
"
&
.

P = u—m+8u—2V——

1

Pyx) =

Py(x) =

)]
o= 4,

Pz(x)=2+i(x—4)—

PS(x):2+i()C_4)—é(x—4)2+ x_4)3

512(

[
=
=

2 3 4
X X X
B TR TR TR

L
:-_ ~
I

3
Il
=}

1yx"=1—x+x>—x>+---

Mg

3
Il
=)

(_ 1)1132n+ Ix2n+l (_ 1)n 2n

X
(2n)! 19. ,;0 (2n)!

Mg

17. 72

S @n+ D) =
23, D (1!
n=1

8 + 10(x — 2) + 6(x — 2> + (x — 2)°
21 — 36(x + 2) + 25(x + 2)> — 8(x + 2)3 + (x + 2)*

i(—l)ﬂ(n + Dx — 1) 31. 2

o0 . 77211
2 )H(Zn)'( Z)

2n
4 _ 3 _ + xi
b 2x 5x + 4 2n — 1)

(x -2y

—1—2x—%x2—---,—1<x<1

-l <x <1
8

4 6 4% 4 ...

x+x+2+ ,

L(x) = 0, Q(x) = —x2/2
L(x) = x, 0(x) = x

(=00, 00)

47. L(x) = 1,0(x) = 1 + x?/2
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SECTION 10.9, pp. 647-648

1. E(_j,x)n— 1 *5x+527):7%+

. 00 5( l)n(_x)2n+l _ iS(—l)"“xZ”“
& en+ D T & @+ 1)
=-—5x + STX: - 557)6'5 57% +

s E(—1)"(5x2)2” _ oot st
= ) 2! 41

7.3 ¢ i =2 — ’§+’§—§+~

< nap 2" 8 5
I3+ > D)™ 55 =3 4 20 — 207 + 307 -

X, gt , 348
13. ,;) ! =x + x 5 y E + -
X (= 1) A S S
. P + - - = + PO
15 ,;2 2n)! T 41 6! 8! 10!
’7sz3 7T4X5 7T6X7 00 (_l)n,n.ZnXZnJrl
. — + - e = _—
7.2 =%, 41 6! 2[, (2n)!

00 (*1)”(2}6)2"
19. 1 + 272‘(%!)! =

n=1
C @9 @t @ @
2.2 2.4 2-6!  2-8!

o0
21. xzz(Zx)" =x2 4+ 2 + 4t + -

_.
I

23.2 =1+ 2x 4 3% + 4 + -
o] - 7 11 15
n+l A S_L L_L .
25.2(1) 2n—1 =x 3t s =+
N _ 3, 53,25 4 .
27.2( +(1)) =2+ 50 —ex) + Jox
oo( l)n 1 2n+] B X3 XS 57
29.;I =3 " %6¢T9
3 5
2 X X
31.x-‘:—x—0—3 30-1—
2 23 44
2 _ ~.4 = 6 _ T 8
33. x 3x+45x 105x+
1o 1, o2 x
35. 1+ x4 507 — gt £ M-S -5
39. |Error| = <42 X 107

104 -4!
41. |x| < (0.06)'° < 0.56968
43. |Error| < (1073)3/6 < 1.67 X 10719, —1073 <x <0
45. |Error| < (3%1)(0.1)’/6 < 1.87 X 107*

Kk — 1) -,
5. 0x) =1+ ke + ———= 3 ———x% (b) 0 =x < 1007173
SECTION 10. 10 pp. 655-657

3

X _ X X 2 3

1. 1-i-2 8+16 3.1+ 3x+ 6x* + 10x

3xr X 3x0  5x°

Sl—x-i-4—2 7'1_2+8_16
o sl L

2x  8x* 1623
11. (1 + x0)* =1 + 4x + 6x% + 4x° + x*

13. (1 — 2% =1 — 6x + 124 — 83
15. 0.0713362 17. 0.4969536 19. 0.0999445 21. 0.10000

1 x3 x7 xl]
23. 3- 6' ~ (0.00011 25. 3 7.3 + 1151
x4
27.(3)**5
2 4 6 8
(b)Xi,LjLL,xij +( 1)15

31 32

29.1/2  31.-1/24  33.1/3 35 -1 372
3

39.3/2  4l.e  43.cos> 4. V3o x
\ e 2 1 —x

55. 500 terms 57. 4 terms

X
51.
1+ x? (1 +x?
3x5 | 5x7 . _
59. (a) x + E + 20 + 112 radius of convergence = 1
T X 3 5x7
b5 ==~ % 112
61. 1 — 2x + 3x2 — 4x3 + - -+
67. (@ —1 ) (1/V2)d+i) (o) —i
1

49.

1
2 3 54 ...
71. x + x +3 3Ox + , for all x
PRACTICE EXERCISES, pp. 658-660
1. Converges to 1 3. Converges to —1 5. Diverges
7. Converges to 0 9. Converges to 1 11. Converges 0 ¢

13. Converges to 3 15. Converges to In 2 17. Diverges
19.1/6 21. 3/2 23. ¢/(e — 1) 25. Diverges

27. Converges conditionally 29. Converges conditionally
31. Converges absolutely 33. Converges absolutely
35. Converges absolutely 37. Converges absolutely
39. Converges absolutely 41. Converges absolutely

43. Diverges

45. (a) 3,-7=x<-1 (b) -7<x<-1 (¢) x=-7

47. (a) 1/3,0=x=2/3 (b) 0 =x=2/3 (c) None

49. (a) oo, forallx (b) Forallx (¢) None

51. (@) V3,-V3<x<V3 (b) —V3<x<V3 (c) None

53. (@) e,—e<x<e (b) —e<x<e (c) Emptyset

1 14 . 0
5. 7 yqs  STsinxm 0 590 In2.2 6L sz

x (= ]yg2ntiy2nt] (— 1)nxton/3 x ((mx)/2)"

63. ’;07(% m— 65. 20 ! 67. >

n=0 n!
x+1 3x+1?* 9x+1)°

69- 2= 5 23-2v 25.3)
l_i _ _ 2 1 _ 3
71. n ;=3 + 73 (x 3)° — e x —3)

73. 0.4849171431 75. 0.4872223583 71.7/2 79. 1/12
81. -2 83. r=-3,5=9/2 85.2/3

n+1 . 1
87. In ( n ), the series converges to In (2)

89. (a) b)) a=1,b=0 91. It converges.
99. (a) Converges; Limit Comparison Test

(b) Converges; Direct Comparison Test

(¢) Diverges; nth-Term Test
101. 2

ADDITIONAL AND ADVANCED EXERCISES, pp. 660-662
1. Converges; Comparison Test
3. Diverges; nth-Term Test
5. Converges; Comparison Test
7. Diverges; nth-Term Test
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13. 15.

9. Witha=7T/3,COSX=%_?()C_7T/3) —%(x—ﬂ'/3)2 y y
3_ T
+ﬁ(x—77/3)3+--- 0=r=%
12 ,L
P X =0 _ y=\1-2
11.W1tha—0,e—1+x+i+§+--- ~~\\ 1+ =y
1 1=0 1 1 1 1
13. Witha = 227, cosx = 1 — %(x — 22m)% + 4%()6 — 22m)* \\‘ 2 -1 2 3 47
~ - 2me ' = — T
6! m - ’ 1 -2+
15. Converges, limit = b 17. @/2 21. b = ié =<0
23.a=2,L=-7/6 27. (b) Yes s -3r
& _ 1
31. (a) E::Inx ' D)6 (o) //
33. (a) R, = Cpe M0(1 — e0) /(1 — e*n), I/l
R = Cyle™0) /(1 — e*0) = Cy/ (ko — 1) !
(b) R, = 1/e = 0.368, 5 ¢ x
Ry = R(1 — ¢719) = R(0.9999546) ~ 0.58195; \
R =~ 0.58198;0 < (R — Ry)/R < 0.0001 AN
© 7 N
\\
19. D 21. E 23. C
Chapter 11 25, 27,
SECTION 11.1, pp. 669-672 ¥ Y
1. 3.
Y o i /1 3 4 i
05t -1
=0 =0 o5 T i3 * -2
Ly stk -3}
4
1+ 4t
) *
29. (a) x =acost, y=—asint, 0=t=27w
(b) x =acost, y=asint, 0=1t=27w
5. 7. (¢) x=acost, y=—asint, 0=t=4mw
y y (d) x=acost, y=asint, 0=1t=4nw
M ., 31. Possible answer: x = —1 + 5¢, y=-3+4t, 0=¢r=1
L MR %+%:1 33. Possibleanswer: x =2+ 1, y=¢t t=0
! 2 35. Possible answer: x =2 — 3f, y=3 —4t, t=0
1_77[/-:\\:0 /__\\ 37. Possible answer: x = 2cost, y =2 |sint|, 0=1t=<4nm
2 t=0,2m
L1 1 1 L1y > x . —at a
-2 -l 0 1 2 0 a 39. Possible answer: x = 761, =—— —0<t<x
Cor o i
= . 4 4 tan 0
T C = =
N 41. Possible answer: x T +2@ne "1+ 2w@né
-2F 0=60<m/2andx=0,y =2if0 = 7/2
43. Possible answer: x = 2 — cost, y =sint, 0 =1t =27
9. 11. 45. x = 2cott, y=2sin’t, 0<t<m
y 47. x = asin’ttant, y = asin’t, 0=¢t<mw/2 49. (1, 1)
L SECTION 11.2, pp. 680-681
y=1-2x d2y
Ly=-x+2V2, —5=-V2
changes dx
direction
1 1 X atr =0 1 y \6
-1 [ ) 3.y=—>x+2V2, —=--%
Yoot ) 4
sy—asl D s P
=l iy yExdgp 5T y=2- V3 o5=-
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dy
9 y=x—- 4, E = E
d2
oy = Var -T2 g 2oy
X
d’y 3
Boy=9x—1, —5=108 15 —jc 17. -6
X
19.1 21 3d®7 23, |ab|lw  25.4  27.12
29. 72 31 87  33. 52777 35. 3wV5
_ 12 24 24
37. (x,y) = (F_ P 2)

39. (x.y) = Gw - %) 41. (a) 7 (b) 7

Bo@r=1 y=0 D=l =0 y=3 D=y
) ’ Todx 2 ’ * dx
V3-1 3-\3 dy 2V/3-1
(c)x— , Y= , =

2 2 dx 3 -2
45. (? > y=2xatt=0,y=-2xatt =1

641

47.(a) 8a (b) 737 49. 327/15

SECTION 11.3, pp. 684-685
1. a,e;b,g;c,h;d, f 3.

(a) (2,% + 2n7r> and (—2, T4 2n + 1)77), n an integer
(b) (2,2nm) and (=2, (2n + 1)), n an integer
(c) (2, 3777 + Znﬂ') and (72, 377T + (2n + 1)7T>, n an integer
(d) 2,(2n + 1)m) and (—2, 2n7), n an integer

5. (3,00 (b (-3,00 © (-1,V3) @ (1,V3)
© 3,0 O (1,V3) @ 3,00 0 (~1,V3)

7. (a)< 2, %) M) 3,7 (c) (2, “%)
(d) (5, T — tan”! %)

9. (a) <—3\6, 5{) ®) =1,0) (¢ (—2, 57”)

d) (—5, T — tan’! %)
13. y

17. ¥
3+ 9:731
—l=r=3
1 % 1
—1 0 2
_1 -
19. » 21. y
9:% r=1
r=0 0=0=mw
D S 0 1
0
23. Y 3w 25. . T <™
ZSHS by E_B_E
1 0=r=1 2 R<2
1 \
OJI P
. —1
0
-2
27. x = 2, vertical line through (2, 0) 29. y = 0, the x-axis
31. y = 4, horizontal line through (0, 4)
3B.x+y=1,line,m=—-1,b=1
35. x> + y? = 1, circle, C(0, 0), radius 1

37.
39.
41.
43.

45.

y—2x=35,line,m=2,b=15

y? = x, parabola, vertex (0, 0), opens right

y = ¢, graph of natural exponential function

x + y = 11, two straight lines of slope —1, y-intercepts
b= *1

(x + 2)> + y* = 4, circle, C(—2, 0), radius 2

47. x* + (y — 4)* = 16, circle, C(0, 4), radius 4
49. (x — 12 + (y — 1> = 2, circle, C(1, 1), radius V2
5. V3y+x=4 53.rcos0=7 55 0=m/4
57.r=2o0rr=-2 59. 4r%cos?6 + 9r%sin’0 = 36
61. rsin’0 = 4 cos 0 63. r = 4sin6
65. 1> = 6rcos — 2rsinf — 6
67. (0, 0), where 0 is any angle
SECTION 11.4, pp. 688-689
1. x-axis 3. y-axis
y y
r=1+cosf r=1—sing

X
1 0 1

-2
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5. y-axis 7. x-axis, y-axis, origin 25. (a) v (b) ¥
y Yoo
\2
r = sin (6/2) / o
X
71 x
9. x-axis, y-axis, origin 11. y-axis, x-axis, origin 27. (a) ’ (b)
y y 3
1 r2 = —sin6 2
r2 = cos 0 (
“ifo '
x 2
_3
2
29. 31.

13. x-axis, y-axis, origin 15. Origin
17. The slope at (—1, 7 /2) is —1, at (—1, —7/2) is 1.

2 X
33. Equation (a)
(-13) SECTION 11.5, pp. 693-694

1 T T
L, 7 318 57 7.2 9.7
19. The slope at (1, w/4) is —1, at (—1,—/4) is 1, at (=1, 37 /4) 6" 7 8 2
is 1, at (1, =3m /4) is 1. IL.57 -8 133V3i-7 15 T+ ?
s
(1.-2) 17. 87” +V3 19 (a3 f% 21. 19/3  23.8

3
25.3(V2+m(1+V2)) 27 T3
31. @) a (b) a (¢) 2a/m

SECTION 11.6, pp. 700-702
1. y? = 8x, F(2,0), directrix: x = —2
(.- (13 3. x> = =6y, F(0,—3/2), directrix: y = 3/2

2
X2y

5. -5 =1, F(£V13,0), V(£2,0),
21. At 7/6: slope V3, concavity 16 (concave up); at 7 /3: slope 4 ? 3
3, concavity —16 (concave down). asymptotes: y = + 5X
23. At 0: slope 0, concavity 2 (concave up); at 7 /2: slope =2/, 2

X
concavity —2(8 + 7?)/m> (concave down). 7. 5T y =1, F(£1,0, V(£V2,0)
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9. 11. 31. Asymptotes: y = +2x 33. Asymptotes: y = tx/2

y y y

15.

y x2 2

22— x>y

. | 35. 32 — 2 =1 A T
6

12 39. (a) Vertex: (1, —2); focus: (3, —2); directrix: x = —1
(b) v

2 (y+22=8x—-1)

- X
1/4

o1 0
directrix y = T3 L
17. 19.
y v —4
2y
4 AT
41. (a) Foci: (4 £ V/7,3); vertices: (8, 3) and (0, 3); center: (4, 3)
£y F (b) y
1 1 X X
-5 -3 0 3 5
—4)2 ,—12)2
@=4H7 =3,
~1FF, oL 16 9
- _
Fi(4 —\1,3)
21. 23. / cwy
y y 0,3) o ° /o (8,3)
_ Fo(4 +17,3)
\3 x? + ﬁ =1 = 2, ) ’ '
} 1 R .

2
s 0 4 8 "
1
43. (a) Center: (2, 0); foci: (7, 0) and (—3, 0); vertices: (6, 0) and

x (=2, 0); asymptotes: y = i%(x - 2)

1} F,

(b) y

29. Asymptotes: y = tx

45. vy + 3?2 = 4(x + 2), V(=2,-3), F(—1,-3),

directrix: x = —3
47. x — D> =8y + 7), V{,-7), F(,-5), directrix: y = —9
+ 2)? + 1)?
4. % ¢ L0 5 Yo F(2, £VE - 1),

V(=2, £3 = 1), C(=2,—-1)



_ 2 _ 2
5. & 32) Lo . 3 1 FG3.3)and F(L3),
V(£V3 +2,3),C2,3)

— 72 —2)?
- x=-2" O0-2 =1, C2,2), F(5,2) and F(—1,2),

4 5
V(4, 2) and V(0, 2); asymptotes: (y — 2) = i?(x - 2)
5.0+ 12—+ 12=1, C-1,—1), F(-1,V2-1)
and F(—l, -2 - l), V(—1, 0) and V(—1, —2); asymptotes
(y+1)=Ftx+1
57. C(=2,0), a=4
. (x + 2)?
61. Ellipse: 5
F(=4,0), V(\/§ —2,0) and V(—V/5 - 2,0)

(o — 17

59. V(—1,1), F(—1,0)

+y2 =1, C(=2,0), F©,0)and

63. Ellipse: +@-1D*=1, CU,1), F2,1)and

F(0, 1), (\f +1,1)and V(-V2 + 1,1)

65. Hyperbola: (x — 1)> — (y — 2> =1, (C(1,2),
F(1+V2,2)and F(1 — V2,2), V(2,2)and
V(0,2); asymptotes: (y —2) = *(x — 1)

_ 2y 5

67. Hyperbola: % — % =1, C,3), F(@O,6)
and F(0,0), V(0,V6 + 3)and V(0,—V6 + 3);
asymptotes: y = Vox + 3 ory = -V2x + 3

69. (b) 1:1 73. Length = 2\6, width = \/5, area = 4

75. 24w

77. x =0,y =0:y = 2x;x =0,y = 2:y = 2x + 2;
x=4,y=0y=2x—8

16

79. x =0, y= 37

SECTION 11.7, pp. 707-708

3 I .
e =2 + : 3.e=—=; F(O, £1);
1. e 5 F(x3,0); NG
directrices are x = +§ directrices are y = 2.
3 y
i A al a2,
. . KN 2
: : !
: : 1 1 = 1 1 1
| | Frp L
- S 2 S
! V3
S5.e=—=; FO, 1 _ V2 +
VG T.oe =35 F(+V3,0);
directrices are y = +3. directrices are
A x = +3V3.
______________ L y
— 2 2 : - 2 2 :
Sr TrEo! g TTE
F ¢l : - :
1 T 1 1 Ly E: B |F2| ) IE
s F,e—1 N E 3&- y 3 E
2 . L .

Chapter 11: Answers to Odd-Numbered Exercises ~ A-49

2 2 X2 2
571361 M gesi T ag0 = !

X2 yz_ x? yz_
BT =1 15 S

19. ¢ = \V2; F(0, +4);
directrices are y = +2.

-

2
DA L
5wl
AN 4¢-F, //(
............ 2_\@._’.4_.._.._
1 1 \\\ - 1 1 X
-4 2 [~ 2 4
_________ B N
/'/ —4¢-F, \\\
_6_
21. e = V5, F(£V10 0)- 23. ¢ = V5 F(0, £V10);
2
directrices are x = +7. directrices arey = +——.
V10 V10
ifﬁzl A 2 2 A
<28 . S5 =1 F%o

¥y 2
2 X _ 2 Y _
25. y 3 1 27. x 3 1 29. r T cos
30 o 10
31 T 1 = 5sing 33.r= 2 + cos 6 35 r 5 — sinf
37 39
y y

2t - =__2
p= L i 3 " T 10=5cos0
1+ cos 6
1 5

5. 0)
A(3 6.0
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41.

~

y=50

L 400

)\ 67 85
P

X

™o,
/
=
"
- -
]
(i)

Chapter 11: Answers to Odd-Numbered Exercises

43.

8
2—2sin6

7

T\ T\ _
49. rcos(@ - Z) =3 51. rcos(@ + 2) 5

53.

=

Radius = 2

57. r = 12 cos 0

-

=62+ =36
r=12cos 6

(6,0)

61. r = —2cos 0

G+ 12+ =1
r=—2cosf

-

r=—2cosf
X
v Radius = 1

59. r = 10sin 0

r=10sin6
Py -57=25

%0,5)

(=1,0)

a
\

65. 67.

4 r=4sin6

-

T 1—sin6
- -1 *
4+ cosb + cos 6
73.
y
1 | /
2 \I/-\I
/—1 1\
TTiF 2 sin 6
75. (b)
Planet Perihelion Aphelion
Mercury 0.3075 AU 0.4667 AU
Venus 0.7184 AU 0.7282 AU
Earth 0.9833 AU 1.0167 AU
Mars 1.3817 AU 1.6663 AU
Jupiter 4.9512 AU 5.4548 AU
Saturn 9.0210 AU 10.0570 AU
Uranus 18.2977 AU 20.0623 AU
Neptune 29.8135 AU 30.3065 AU

PRACTICE EXERCISES, pp. 709-711




5.
y

\ 2/
\ y=xy
\ /4
\ /
\ /

t=0 1} t=m

7. x =3cost, y=4sint,

0=r=2mw

V311

PIT T g
* |x]3? +V1 — X2
11-(3))’:T_1 b)) y=—1"

10 285 97r 76T
13. 3 15. 3 17. 10 19. > 21. 3
23.y=?x—4 25. x =2

y Y
x=2
X*\f§)=:4\5

pd

X

27')}:72 29. >+ (y+2?>=4
2 y
y
r=—4sin0 S+ i=4
_3
2
3 0, -2)
y=3
3. (x - V2) +y2 =2 33. r=—5sin6
y y
r=—=5sin6

r= 2\§§cos 0

(2,9
\_/

=\2
(x—\;z)+y2:2

X

xz +(v +%)2 =

25

P

x
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35. r=3cos 0 37.

-

0=r=6cosf

r=3cosf

9.2+ 2

39.d 41. 1 43. k 45. i 1

51. 8

9
47. T
53. # — 3

55. Focus is (0, —1),

57. Focus is (é, O),
. .. 4
directrix is y = 1.

. .. 3
y directrix is x = 1

59. ¢ = 3 61. e = 2; the asymptotes are
4 _i\3
y y=TV3x
> 2 Y
S
4 *7+ﬁ71 ‘
3¢
0 = *
\7
36
)

63. (x — 2)2 = —12(y — 3), V(2,3), F(2, 0), directrix is y = 6.

2 2
65. & ;3) LU ;55) = 1, C(=3,—5), F(—3, 1) and
F(=3,-9), V(~3, —10) and V(=3, 0).
(y—2v2) (- op

67. -5 =1c(2.2V2),

8
F(2, 2V2 £V 10), V(2, 4\6) and V(2, 0), the asymptotes
arey=2x—4+2\6andy=—2x+4+2\/§.
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69. Hyperbola: C(2, 0), V(0, 0) and V(4, 0), the foci are

F(2 + V5, 0), and the asymptotes are y = =+

x—2
>

71. Parabola: V(=3, 1), F(—7, 1), and the directrix is x = 1.
73. Ellipse: C(—3,2), F(—3 £ V/7,2), V(1,2) and V(~7, 2)
V2

75. Circle: C(1, 1) and radius =

77. V(1,0)

A

81. r =

™
o/
-

(1,0)

4

1 +2cosf
85. (a) 247 (b) 167

83.

79. V(2, ) and V(6, )
y

3/
- TTess re e
+ cos @, ™) I —2cosf
x N\

7 O
3\

2

T2 F¥sing

ADDITIONAL AND ADVANCED EXERCISES, pp. 711-713

7

Lx-2==

2

3.3+ 32— 8y +4=0

7. (a)

11.

P+al—4=0

y2

2

o-1 2

y

2
_T_Y
A )

3]

&

5. FO, 1)

N
=
+

AW

N———
o

=

L8]

15.

17.

19.

23.

27.

o+ 4y —36=0]

Vs
2
4 2

@ r=¢’ (b ('™ — 1)

r 21. r

"1+ 2cos0 T2 +sing

x = (a+b)cosefbcos(azb9),

y= (a+b)sin0—bsin(“;;b9>

s
2

Chapter 12
SECTION 12.1, pp. 717-719

1.
3.
. The circle x> + y?> = 4 in the xy-plane

. The circle x*> + z> = 4 in the xz-plane

. The circle y> + z> = 1 in the yz-plane

. The circle x> + y> = 16 in the xy-plane

. The ellipse formed by the intersection of the cylinder

= \o 3 W

15.
17.

19.

21.

23.

25.
33.
35.
37.

The line through the point (2, 3, 0) parallel to the z-axis
The x-axis

x>+ y>=4andtheplane z = y

The parabola y = x? in the xy-plane

(a) The first quadrant of the xy-plane

(b) The fourth quadrant of the xy-plane

(a) The ball of radius 1 centered at the origin

(b) All points more than 1 unit from the origin

(a) The ball of radius 2 centered at the origin with the interior of
the ball of radius 1 centered at the origin removed

(b) The solid upper hemisphere of radius 1 centered at the origin

(a) The region on or inside the parabola y = x? in the xy-plane
and all points above this region

(b) The region on or to the left of the parabola x = y? in the
xy-plane and all points above it that are 2 units or less away
from the xy-plane

30277 29.2V3 3L@2 ()3 (04

@3 (b4 (o5

@ x=3 (b)y=-1 (¢) z=-2

@z=1 (b)x=3 (¢ y=-1



39.

41.
43.
49.

@ x>+ —-2>*=4,2z=0

b)) (y—22+22=4x=0 () > +>2=4y=2

@ y=3z=-1 Bx=1,z=-1 (x=1,y=3
X>+y +72=25z7z=3 45. 0=z=1 47. z=0

@ -1+ -1D2+E-1><1
b)) x—1?>+O-1P>+@E—-1)2>1

51. C(=2,0,2),a =2V2  53. C(V2,V2,-V2),a= V2
_ 11 1) _5V3
55. C(-2,0,2),a = V8 57 c(—4, e 4>,a ==
59. C(2,-3,5),a =17
61. x — 12+ (y =22+ (z—3)?%=14
1) 2\ _ 16
2 -1 <) - 16
63.(x+1)+<y 2)+(z+3> 31
65. (a) Vy>?+ 22 (b) Vxa?+ 72 (¢) Vx> +y?
67. V17 + V33 +6 69. y=1
71. (a) (0,3,-3) (b) (0,5,-5)
73. z=x*/4 + 1 75. (a) 2 =x* (b) y2=x2
SECTION 12.2, pp. 726-728
1. (@) (9,-6) (b) 3V13 3. (@ (1,3) () V10
5.(a) (12,—19) (b) V505
1 14 V197
7. (a) <5 5> (b) — 9. (1,-4)
1 V3 V3o
11. (-2,-3) 13. <—§,7> 15. <_T’_§>
17. =3i + 2j — k 19. —3i + 16
21. 3i + 55 — 8k
23. The vector v is horizontal and 1 in. long. The vectors u and w

25.

29.

31.

33.

are % in. long. w is vertical and u makes a 45° angle with the

horizontal. All vectors must be drawn to scale.
(a) v (b)

utv+w

(© - (d)

(Zie -2 msw

-5
2\\v3 V3T V3

@ 2 (b —V3k (© f—oj +2

5k (d) 6i — 2j + 3k

7 .
IR (12i — 5k)
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4 1
35. (a) —“_j— —=k (b) (1/2,3,5/2)
sxf 5\6J V2 / /
1 1 579
37. (@) ———i - —k (b) ( . r)
NV AR 22’2
_3,_1
39. A4-3,5 4la=3b=
43.a=—-1,b=2c=1  45. ~(—338.095,725.046)
47. |F,| = 100c0s 457 _ 23505 N,
sin 75
_ 100 cos30° __
B = =55 = 89.658N,

49. w =

51.

53.
59.

F, = (—|F,| cos30°,
F, = (|F| cos 45°,
100 sin75°

| sin30°) =~ (—63.397,36.603),
| sin45°) =~ (63.397, 63.397)

ol = 126093 N,
|F,| =% ~ 106.933 N

(@) (5 cos 60°, 5 sin 60°) = (% 5\T@>
(b) (5 cos 60° + 10 cos 315°, 5 sin 60° + 10 sin 315°) =
<5 +10V2 5V3 — 10\/5)

2 ’ 2
(a) 21 + ; 3k b)i+j—2k (c) (2,2,1)
(a) (0,0,0) (b) (0,0,0)

SECTION 12.3, pp. 734-736

1.
3.

5.

13.

. (@) 10 + V17, V26, V21 (b) 10

. 0.75 rad

(©) =5 (d) —2i + 4j — V5k
©3 @

(a) —25,5,5 (b) —1
(a) 25,15,5 (b) %

2.V34,\V3 (b) —-2 2
(a) ()\/§\/ﬁ (o)

é(lOi + 11§ — 2Kk)

@ 15 5§ = 3K)

@ 0T (54

11. 1.77 rad

ngleat A = cos ' | — | = 63. egrees, angle at
Angle at A ! \1@ 63.435d 1

B = cos™! (%) =~ 53.130 degrees, angle at

1
C = cos™! (7 ~ 63.435 degrees.
\@)

. cos’! (L) =~ (.322 radian or 18.43 degrees

V1o,
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25.

27.

29.
35.

Chapter 12: Answers to Odd-Numbered Exercises

Horizontal component: =~ 1188 ft/sec, vertical component:

~167 ft/sec

(a) Since |cos O] = 1, we have |u-v| = |u]|v||cos 0] =
ul [v] (1) = [u] |v].

(b) We have equality precisely when |cos @] = 1 or when one
or both of u and v are 0. In the case of nonzero vectors, we
have equality when 6 = 0 or 7, that is, when the vectors are
parallel.

a

x+2y=4 37. 2x+y=-3

y

3
2

—2x+y=-3

—2i+j

i+ 2§ |

X

x+2y=4

39.

P(=2,1)

x+y=-1 41. 2x —y =0

P(1,2)

2x—y=0

43.

x+y=-1 —i = 2j

*‘\ i—j

5] 45. 3464 ] 47. 49. % 51. 0.14

s
4

SECTION 12.4, pp. 741-742

1.

3.
S.

7.

[u X v| =3, directionis%i + %j + %k;
. .. 2. 1. 2
direction is — 31—-31 -3 k
[u X v| = 0, no direction;
[u X v| = 6, direction is —k;

vXu| =3,

v X u| = 0, no direction
v X u\ = 6, direction is k

. .1 2
u X v| = 6V/5, directionis —i — ——k; |v X u| = 65,
| | , V55
i+ ——=Kk

V5

direction is —

11.

2

jtk

ixj=k

|
—
+
=

— >

13.

15.

17.

19.
25.
27.

29.

31.
33.

35.

45.
49.

@@ 2V6 (b) ii(Zi i+ k)
2 1 . .
@ Y2 o + 50D
8 21. 7 23. (a) None (b) wandw
10V/3 ft-Ib
(a) True (b) Notalways true (c¢) True (d) True
(e) Notalways true (f) True (g) True (h) True

(a) projvu:%v Mb) TuXv (¢) T(@Xv)Xw
@ |[@xXv-w @ @WxXv)X@uxw 6 |u||VT|
(@) Yes (b) No (¢) Yes (d) No

No, v need not equal w. For example, i + j # —i + j,
buti X i+j)=iXi+ixXj=0+k=Kkand
iXEi+j)=—-iXi+tixXj=0+k=k

2 w3 Vi o4l
3 V21
2 47. >
If A =ai+ ajand B = bji + b,j, then
i j k
AXB=l|a a 0=Z' sz
by b, 0 b
and the triangle’s area is
1 llar a
SIAXB| = £ .
2 ‘ 20by by

The applicable sign is (+) if the acute angle from A to B runs
counterclockwise in the xy-plane, and (—) if it runs clockwise.

51. 4 53. 44/3 55. Coplanar 57. Not coplanar
SECTION 12.5, pp. 749-751

1.x=3+1t y=—4+1t z=-1+1t
3.x=-2+5t y=5 z=3-75¢

5.x=0, y=2t z=t
7.x=1, y=1, z=1+1

9. x=t y==-T7+2, z=2

1. x=1¢t y=0, z=0



63.
65.

67.

69.

73.

75.

13.x=t,y=t,z—%t, 15.x=1, y=1+1
0=r=1 z=0, -1=t=0
3
03
l
l
(0,0,0) |
| y
[
_____ 7
17. x =0, y=1-— 21 19. x =2 — 21, y =21,
z=1 0=r=1 z2=2-2, 0=t=1
0, -1, 1) .1, 1) e
| | /7
I I
I I 2,02
I I |
! ! , ! 0.2.0)
I
21.3x -2y —z=-3 23. 7x — 5y —4z =06
25. x + 3y + 4z =34 27. (1,2,3),—20x + 12y + z =7
29.y+z=3 3. x—y+z=0 33. 2V30 35.0
37. 9—”742 39.3  41.19/5  43.5/3  45.9/\/41
47. 7 /4 49. arccos (—1/6) =~ 1.738 radians
51. arcsin (2/V/154) = 0.161 radians ~ 53. 1.38 rad
3 31
55.0.82rad  57. <2,—2,2) 59. (1,1,0)
6l.x=1—-1t y=1+1¢ z=-1

x=4, y=3+6t, z=1+ 3t

L1 intersects L2; L2 is parallel to L3, \/5/ 3; L1 and L3 are skew,
10V2/3

x=2+2t, y=—4—-1t z=T7+3; x=-2-—1,
y=-2+{/2%, z=1-3/2)t

1 3
(0,—2,—2), (-1,0,-3), (1,1,0)

Many possible answers. One possibility: x + y = 3 and

2y +z=1.

(x/a) + (y/b) + (z/c) = 1 describes all planes except those
through the origin or parallel to a coordinate axis.

SECTION 12.6, pp. 755-757

1.
7.

5. (1), hyperbolic paraboloid
11. (h), cone

(d), ellipsoid
(b), cylinder

3. (a), cylinder
9. (k), hyperbolic paraboloid

Chapter 12: Answers to Odd-Numbered Exercises

19. 42 +92+42=36
Zz

9x2+y2+22:9

A-55



A-56

35.

y=—(F+)

©-¢a)

d7rabc
3

2
45. (a) (b) 87 (¢)

9

PRACTICE EXERCISES, pp. 757-759
1. () (—17,32) (b) V1313
3.(a) (6,-8) (b) 10

5. <— 73, —% [assuming counterclockwise]

(i
V17T V17
L1 1

9. Length = 2, directionis —i + —j.

¢ Vva'lva!

11. v (7/2) = 2(—i)

13. Length = 7 directionisgi _3, + gk
- Leng ’ 7' Tk
8 . 2 . 8

i— it k
V33 V33 V33
17. |v| = V2,

u X v=2-—2j+Kk,

15.

|u| cos 6 = %,projvu =%(i +j

19.‘31(2i+j—k)

vXu| =30=cos

Chapter 12: Answers to Odd-Numbered Exercises

ul =3, viu=u-v=3vXu=-2i+2j-Kk,

)

l(\@

=7
4

21.

23.
31.
35.

39.

43.
45.
47.
49.

53.

57.
59.
61.
63.
65.

uXxXv=Kk
iXi+j=k
s
2V7  25.(a) V14 (b) 1 29. V78/3
x=1-3t, y=2, z=3+7 33.\V2
2x+y+z=5 37. 9% +y+T77=4

1 3
(0,—5,—5),(—1,0,—3),(1,—1,0) 41. 7/3

x=-5+5 y=3—-1
(b) x=-12t, y=19/12 + 15¢,
Yes; v is parallel to the plane.

3 51. —3j + 3k

% (5i — j — 3k) 55. (%%*%)
(L,=2,—-1;x=1-5 y==-2+3t, z=-1+4
2x + 7y + 22+ 10=0

(a) No (b) No (¢) No (d) No (e) Yes
11/V107

x2+y2+zz=4
z

z=-3t
z=1/6 + 6t

67. 4P +4P+P=4




ADDITIONAL AND ADVANCED EXERCISES, pp. 759-762

1. (26,23,—1/3) 3. |F| =201b

5.(a) |[F,| =801b, |F,| =601b, F, = (—48,64),
F, = (48,36), « = tan! 431, B = tan! 3
) |F| = % ~ 184.6151b, |F,| = @ ~ 76.923 Ib,
F, = (12000 28800\ o) 006, 170.414
e 169 169 ) = (771.006,170414),
_ /12,000 5000\ _
F, = < TR 169> ~ (71.006,29.586),
12 5
= -1 = — -1 2
a = tan 5 B = tan 2

9.(a) 0 = tan”' V2 ~ 54.74° (b) 6 = tan”' 22 =~ 70.53°

13.(a)% () 2x—y+2:=8

(© x—2y+z=3+5V6andx -2y +z=3—5V6

2. .23, 13
TR RIPTE AT

17. (a) 0,0 (b) —10i — 2j + 6k, —91 — 2j + 7k

() —4i — 6j + 2k,i — 2j — 4k
(d) —10i — 10k, —12i — 4j — 8k
19. The formula is always true.

Chapter 13
SECTION 13.1, pp. 770-772

. 1, o
1.1*5_]4“]( 3.21+2J+4k

5.y=x>—2x, v=1i+2j, a=2j

7.y =2x2 v=3i+4, a=3i+s

9
o _T V2. V2. V2L V2L
L=V = i——j a=—F—"i——F

4 2 2
t=m/2:v=—j a=-i

. . 37
11. t = 7 v =2i, a=—j; t=7:
y
t=1
Sk N V() L
a(m) 2
T ®
v
L . 3 2
r=(t-sin7)i+ (1 —cos?)j a(=-
: §3]
0 T 2

2 ' 2

>

a=

—i

13.

15.

17.

19.
25.

31.
37.

39.

Chapter 13: Answers to Odd-Numbered Exercises ~ A-57

v =1+ 21 + 2Kk; a = 2j; speed: 3; direction: li + gj + gk;

3 3 3
V(1) = 3(%1 + %j + %k)
v = (—2sin#i + (3 cosr)j + 4k;
a = (—2cos )i — (3 sin 1)j; speed: 2\/5;
direction: (—1/V/5)i + (2/V5)k;
v(m/2) = 2V5[(=1/V5)i + (2/V5)k]

-~ 2 . . o -2 \. . .
vV = <t+ 1)1+2t‘]+tk,af (7( n 1)2)l+2J+k,
N O 2
speed: \f6; direction: —=1i + ——
P Ve \/6J \/8
2 1
v(1)—\/<1+ k)
V6 \f6 Ve
/2 21. 7/2 23. x=1t y=-1, z=1+1t

X =1 y:%t, 7=t 27. 4,-2 29, 2,2

E 33. D 35. C
(a) (i): It has constant speed 1. (ii): Yes
(iii): Counterclockwise (iv): Yes
(b) (i): It has constant speed 2. (ii): Yes
(iii): Counterclockwise (iv): Yes
(¢) (i): It has constant speed 1. (ii): Yes
(iii): Counterclockwise
(iv): It starts at (0, —1) instead of (1, 0).
(d) (i): It has constant speed 1. (ii): Yes
(iii): Clockwise (iv): Yes
(i): It has variable speed. (ii): No
(iii): Counterclockwise (iv): Yes

v =2V5i + V5j

SECTION 13.2, pp. 777-781

1.
S.
7.

11.

13.
15.

17.
19.

21.

23.
25.
27.
29.

j + 2k

(1/4i + 7 + 3/2k 3. <w+22\f2>

(In4)i + (In4)j + (In2)k

e— 1. e—l. . ., T
2 i+ jtk 9. i J+4k

_l2 . _12
r(t) = (7-‘1- ]) + <7+2)J + (74‘3)1{
v = ((t + Y2 — Di+ (e + Dj + (n(t + 1) + Dk

r(H) = (3 + In|sec t])i + (=2 + 2sin(#/2))j
+ (1 — (1/2) In|sec 2t + tan 2¢))k

r() = 8t + 8tj + (—16£2 + 100)k

r() =( —2t+2i+ (—e'+3t+2)j+ (—2t+ Dk
6 1 2

r(t)—<t2+t+ll— — 24+ —=—=r—-21
V11 2 V11 .

1,, 2 (1, 2t VL. .
+(2t +\mt+3)k (2t +\/ﬁ>(3l j+k
+(@1 + 2j + 3k)

50 sec

(a) 72.2sec;25,510m (b) 4020 m (¢) 6378 m
(@) vy = 99m/sec (b) @ = 18.4°0r71.6°
39.3° or 50.7° 35. (b) v, would bisect ZAOR.
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Chapter 13: Answers to Odd-Numbered Exercises

37. (a) (Assuming that “x” is zero at the point of impact)
r(r) = (x(0)i + (¥(¢))j, where x(f) = (35 cos 27°)t and
y(t) = 4 + (35sin 27°)t — 16¢%
(b) Atr = 0.497 sec, it reaches its maximum height of about
7.945 ft.
(c) Range = 37.45 ft; flight time =~ 1.201 sec
(d) Att = 0.254 and ¢t = 0.740 sec, when it is
=~ 14.376 ft from where it will land
(e) Yes. It changes things because the ball won’t clear the net.
39. 4.00 ft, 7.80 ft/ sec
47. (a) r(r) = (x(0)i + (y(1))j; where

x(0) = (ﬁ)(l -

~29.532 and

e %08)(152 cos 20° — 17.6) and

1) =3+ (é%é)(l € 008 (sin 20°)

+ 1 — 0.08 — ¢ 008
(0082)( o)

(b) Atr = 1.527 sec it reaches a maximum height of about
41.893 feet.

(c) Range =~ 351.734 ft; flight time =~ 3.181 sec

(d) Atr = 0.877 and 2.190 sec, when it is about 106.028 and
251.530 ft from home plate

(e) No

SECTION 13.3, pp. 784-785

2.\, (2 . V5
—3smt)1+(3cost>1+ 3 k, 37
L .. Vi 52

Lo

3.T = i ,
Vi+: Vi+:r 3
5. T = —costj + sin tk,g

_ (cost — tsint), sint + tcost).,
7’T_( t+1 )'+( t+1 )J

1/2 2
+(\6t )k, LU T

t+1 2
9. (0,5, 24m)
11. s(t) = 51, L = 5777

13. s(t) = V3e' — V3, L= ¥

15. V2 + In(1 + V2)
17. (a) Cylinderis x> + y> = 1; planeis x + z = 1.
(b) and (c¢)

21
V1 + sintdt (e) L = 7.64

SECTION 13.4, pp. 790791

1.
3.

11.

13.T =

15.

T = (cos )i — (sin#)j, N = (—sin )i — (cos #)j, « = cost
1 3 —t
(a) T= i— N = i—
VI+e2  V1I+ 2 V1 + 2
1 . 1
J, K=
V1t 2(V1 + 2)?
. (b) cosx
_262' 1
.(b) N= i+ J
V1 +4de" V1t de
(©) N = —%(\/4 - i+ 1j)
_3cost. 3sint, 4
. T = 5 i 5 it 51(,
= (—sin )i — (cos 1)j 3
), K 25

T = (cost — sin t>i " <cost + sin t>j
V2 V2 '

N = <—cost — sin t>i " <—sint + cos t)j . = 1
V2 V2 | N2
t . 1 .
i+ s
Veri Vexi!
_ i . — 1
VE+1 Ve (1)

T = (sech é)i + (tanh é)j,
N = h . h .
= | —tanh ; Ji + | sec a )

1 ) 1
K = gsech® 7

19. 1/ (2b)
21. (x—% +y2=1

23.
25.
27.

k(x) = 2/(1 + 4x2)%?
k(x) = |sinx|/(1 + cos?x)3/?
maximum curvature 2/(3V3) at x = 1/V2

SECTION 13.5, p. 797

1.

7.

a= |aN (1)—*T+2\—/N 5. a(0) = 2N

r(%) %1+% —kT(4>=—¥i+%j,

m\ __ V2. V2o _ ; :
N(4> = 5 i ) J,B<4) = Kk; osculating plane:

z = —1; normal plane: —x + y = 0; rectifying plane:
x+y= \6

_(4 L (4 3 __4
.B—(Scost)l (Ssmt) SkT 25

11.
17.

B=k7=0 13. B=-k,7=0 15. B=k =0
Yes. If the car is moving on a curved path (k # 0), then
ay = k|v|> # 0 and a # 0.

_lo,
K=7.p=



27.

29.

Components of v: —1.8701, 0.7089, 1.0000

Components of a: —1.6960, —2.0307, 0

Speed: 2.2361; Components of T: —0.8364, 0.3170, 0.4472
Components of N: —0.4143, —0.8998, —0.1369

Components of B: 0.3590, —0.2998, 0.8839; Curvature: 0.5060
Torsion: 0.2813; Tangential component of acceleration: 0.7746
Normal component of acceleration: 2.5298

Components of v: 2.0000, 0, —0.1629

Components of a: 0, —1.0000, —0.0086; Speed: 2.0066
Components of T: 0.9967, 0, —0.0812

Components of N: —0.0007, —1.0000, —0.0086

Components of B: —0.0812, 0.0086, 0.9967;

Curvature: 0.2484

Torsion: 0.0411; Tangential component of acceleration: 0.0007
Normal component of acceleration: 1.0000

SECTION 13.6, p. 801

1.

3.

5.

7.

13.
17.

v = 2u, + 26y,

—46u, + 8u,

(3a sin O)u, + 3a(l — cos O)uy

= 9a(2 cos 0 — 1)u, + (18a sin O)uy
= 2ae‘%n, + 2¢%%u,

= 4¢“%a® — Du, + 8ae”u,

= (—8sin4nu, + (4 cos 41y,

= (—40 cos 4t)u, — (32 sin 41)uy

<4 D < <D

~2993 X 101m 15. =2.25 X 10° kmz/sec
~1.876 X 10*" kg
PRACTICE EXERCISES, pp. 802-803
x2 y2
w62~

15.

17.

19.

21.

23.

* |V‘max = l

. Shot put is on the ground, about 66 ft 3 in. from the stopboard.

Att = 0:ar = 0,ay = 4K=2;
drT 3 dn Ty St 27

T
5. k=1/5 7. dy/dt = —x; clockwise

Length =

2
41/1+16+ln<4 1+16>

2. 2. 1.
31 3J+3k, N(@) =
1. 1 4 V2
B(0) = — i+ ki k=—F—
3\/ 3\/ 3\/ 3

N(n2) =

T©) =

T(n2 ;
(In2) = \F \ﬁj

B(n2) = k;k = T =
17V17
a(0) = 10T + 6N

T = <\16 cos t>i — (sinp)j + <\1/2 cos t>k;

Chapter 14: Answers to Odd-Numbered Exercises

S BRI IRV I
V2 V2 V2’
25.% 2. x=1+41t y=t z=—t 3l k=~

ADDITIONAL AND ADVANCED EXERCISES, pp. 804-805

do _ mgh
L@yl oy

gbt? gb*t?

b o= o 2T 5
2(a” + b7) 2(a” + b)

© vy =21
¢) vit)) = —F/—

Va*> + b?

d? bg bgt \?
= ———=T+al5 N
dt Va? + 2 a + b

There is no component in the direction of B.

dx . . :
5. (a)E—rCOSH rﬂsmﬂ,d = rsinf + rf cos 6
(b) —xcos0+ysm0 r‘fit:—)'csinO-i-j}cosG
7. (a) a(l) = —9u, — 6uy, v(1) = —u, + 3y,

(b) 6.5in. .
9.(c) v=ru, + rou, + zk,a = (¥ — rf%u, +
(ro + 2ih)u, + 7k

Chapter 14

SECTION 14.1, pp. 812-814
1.(a) 0 (b) 0 (c) 58 (d) 33
3.(a 4/5 () 8/5 (¢)3 @O
5. Domain: all points (x, y) on 7. Domain: all points (x, y)
orabove line y = x + 2 not lying on the graph of
y=xory=2x’

7
-
-
P
ad
/-
//

9. Domain: all points (x, y) satisfying x> — 1 =y = x> + 1

y y=x2+l

y=x?-1

A-59



A-60  Chapter 14: Answers to Odd-Numbered Exercises

11.

Domain: all points (x, y) for which
x=2)x+2)(y—3)(y+3)=0

x=-2 y x=2

3

y=-3

13.
y
P
N c
2
\I \n L X
) 2 g
c:3
2 2
1
0
-1
-2
-3
17. (a) All points in the xy-plane (b) All reals

19.

21.

23.

25.

27.

29.

31.

(¢) Thelinesy — x = ¢ (d) No boundary points

(e) Both open and closed (f) Unbounded

(a) All points in the xy-plane (b) z = 0

(¢) For f(x,y) = 0, the origin; for f(x,y) ¥ 0, ellipses with
the center (0, 0), and major and minor axes along the x- and
y-axes, respectively

(d) No boundary points (e) Both open and closed

(f) Unbounded

(a) All points in the xy-plane (b) All reals

(¢) For f(x,y) = 0, the x- and y-axes; for f(x,y) # 0, hyperbo-
las with the x- and y-axes as asymptotes

(d) No boundary points (e) Both open and closed

(f) Unbounded

(a) All (x,y) satisfying x> + y> < 16 (b) z = 1/4

(¢) Circles centered at the origin with radii r < 4

(d) Boundary is the circle x> + y> = 16

(e) Open (f) Bounded

(@) (x,y) # (0,0) (b) All reals

(¢) The circles with center (0, 0) and radii r > 0

(d) Boundary is the single point (0, 0)

(e) Open (f) Unbounded

(a) All (x,y)satisfying—1 =y —x =1

b) 7w2=z=m/2

(c) Straight lines of the foormy — x = c where =1 = ¢ = 1

(d) Boundary is two straight lines y = 1 + xand y = —1 + x

(e) Closed (f) Unbounded

(a) Domain: all points (x, y) outside the circle x> + y?> = 1

(b) Range: all reals

(¢) Circles centered at the origin with radii » > 1

(d) Boundary: x> + y? = 1

(e) Open (f) Unbounded

(), (h) 33. (a), () 35..d.

37. (a)

4

(b)

-

-

aon

[ TRV

A o—

SIS

z=-3

SIS T B S R
n n Il n Il n
O S -
= Lo

n




47. (a) (b)

1=\ 4yt 4

51. x +y? =

-
-

/10, \\E

/10

53. z

fy,p=x+y+ =1

57. z 59.

Ao
f,y,2)=x"+y =1

2

/

fy,g)=z-x* =y =1

—
1\
i
1
) K Kzf "
7 y

6l. Vx—y—Inz=2

63. > +y2+2=4

Chapter 14: Answers to Odd-Numbered Exercises ~ A-61

65. Domain: all points (x, y)
satisfying x| < ||

67. Domain: all points (x, y)
satisfying —1 = x = 1 and

-1l=y=1

N 7’ 1

level curve: y = 2x

-1

level curve: -
P P
sin”y = sin”x = 5
SECTION 14.2, pp. 820-823
1.5/2 3.2V6 51 7.1/2 9.1
11. 1/4 13. 0 15. —1 17. 2 19.1/4
21. 1 23. 3 25. 19/12 27. 2 29. 3
31. (a) All (x,y) (b) All (x, y) except (0, 0)
33. (a) All (x,y)exceptwhere x = OQory =0 (b) All (x,y)
35. (a) All (x,y,2)
(b) All (x, v, z) except the interior of the cylinder x> + y> = 1
37. (@) All (x, y,z) with z # 0 (b) All (x, y, z) with x> + 72 # 1
39. (a) All points (x, y, z) satisfying z > x> + y*> + 1
(b) All points (x, y, 7) satisfying z # Vx* + y?
41. Consider paths along y = x, x > 0, and along y = x, x < 0.
43. Consider the paths y = kx?, k a constant.
45. Consider the paths y = mx, m a constant, m # —1.
47. Consider the paths y kx2, k a constant, k # 0.
49. Consider the paths x = 1 and y = x.
51. Along y = 1 the limit is 0; along y = e~ the limit is 1/2.
53. Along y = 0 the limit is 1; along y = —sin x the limit is O.
55.(a) 1 (b) 0O (c) Does not exist
59. The limitis 1. 61. The limit is O.
63. (a) f(x, y)\y:W = sin26 where tanf = m 65. 0

67. Does not exist 69. 7/2 71. f(0,0) = In3
73. 6 = 0.1 75. 6 = 0.005 77. 6 = 0.04
79. 6 = V0.015 81. 6 = 0.005
SECTION 14.3, pp. 833-835
af af af af
1°6x_4x’8y__3 3.ax—2x(y+2),ay—x—1

5%—2 lal—Z 1
Cae = Dy )’ay_ xX(xy — 1)
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7 3f X 8f y
tax Va2 + y? Ydy 2+ 2
of -1 of -1
9. =
ax (x + y)?* ay (x + y)?
1 ﬂ:_}’ — 1 ﬁ:—xz—l
T (xy = DPY (xy = 1)
f _ iyt o of _ 1 of _ 1
13'6x_eX) ’ay_exy 15. ax x+y’6y_x+y
d
17. % = 2sin(x — 3y)cos(x — 3y),
g = —6si 3 3
o —6sin(x — 3y)cos(x — 3y)
of L of of of
19. o yx¥ "y xInx 21. o = —g(x), o = gy
23, fo =y f, = 2xy, f, = —4z
25. fo=1,f,=—y0? + DV f =207 + )7
27. f. = 2 f, = X f.= v
YN = xzyzzz’ YN = xzyzzz’ N1 = 22
2. 1 _ 2 _ 3

31.
33.

35.

37.

39.

41.

43.

45.

f‘:x-l—2y+3z’fy_x+2y+3z’fz_x+2y+3z
fo = —2xe D) f = Dy (D) =
fo = sech’(x + 2y + 32), f, = 2sech’(x + 2y + 32),
f. = 3sech’(x + 2y + 32)

— Dz

af 2 sin(2 af . 5
o msin (27t — «), Evi sin(2wt — a)
oh _ _ oh _ . .
ap = sin¢cosh, 345 = pcos¢cosh, Eri psin¢gsinf
Wo(P, V, 8,v,8) = V, WP, V,8,v,8) = P + ‘Zig
Ws(P, V,8,v,8) = LW(PVSvg)—%,
Vév?
VVK(P’ V, 8’ U9g) == 2g2
) ) 9? a? d? a2
*f*l-i-y,f 1+x,ff*0—f:0, f: f:
ox ay ox? ay? dyox  Oxdy
g i g L, .
i 2xy + ycosx,@ =X siny + sinx,
&g 5 .o
— = — ysinx, —; = —cosy,
a2 2 T ysinx o y
9’ 9’
Gyox  axay 2x + cosx
or_ 1 o _ 1 #r_ =1 &Pr__—1
woox+yay xHyad e oty
Pr 0P —1
Jyax  ax 8y (x + y)?

47

i x%y sec? (xy) + 2x tan (xy),

w30
ay x° sec” (xy),

ox
azw_@—h3 2( )tn()+32 2()
Jyax  axgy X ysec wtanixy X2 sec?(xy
2
% = 4xy sec? (xy) + 2x%y% sec” (xy) tan (xy) + 2 tan (xy)
X
9w
o = 2x* sec? (xy) tan (xy)
49. 51 = sin (x%y) + 2x%y cos (x%), W ¥ cos (%),
ox ay
Pw _ Pw 2 ) . R
dyox — axdy 3x% cos (x%y) — 2x*y sin (x%y)
9w . ) s R
—— = 6xy cos (x%y) — 4x’y?sin (x?%y)
ox
2
t?}y% = —x°sin (x%)
o _ 3 30 400 4
51.5—2@/ 4x,$_3xy + 5y4,
32 82
7{=2 — 1242, f—6xy+2()y’
ox
o2 92
! = ! = 6xy?
dyox  Oxdy
a .
53. é = 2xcos (2x — y?) + sin 2x — y?),
ok _
ay 2xy cos (2x — y?),
0%z 5 . ,
5 = 4cos (2x — y°) — 4dxsin (2x — y?),
ox
82

55.

57.

59.

61.

63.

65.
67.

i —4xy? sin (2x — y?) — 2x cos (2x — y?),

Pz %z . ) )
axay  ayaxr 4xy sin (2x — y*) — 2y cos (2x — y*)
w _ 2 w _ 3 Pw _ Pw —6
ox  2x+3y’dy  2x + 3y’dydx  dxdy  (2x + 3y)?
%ﬁw—y + 2xy° +3xy,?—2xy+3x + 4x3y?
Pw  Pw N ) 3

Gyax  axdy 2y + 6xy” + 12x°y

do _ 2w _ —37

ox 37 ay y*

Po _ —6x o _ —6x

dyox y* > Ox dy y*

(a) x first (b) yfirst (c) x first

(d) x first (e) yfirst (f) y first
£(1,2) = 13, £,(1,2) = —

fi(=2,3) =1/2,f,(=2,3) = 3/4

(a3 (b)2 69. 12



71.

73.

77.

79. v
81.

af
= = 3x2y2 —
i 3x%y 2x =

flr,y) = Xy — 2 + g(y) =

af 3 ’ 3

@:2Xy+g(y):2xy+64=>

g'(y) = 6y = g(y) = 3y> works =

fx,y) = x%y? — x2 + 3y? works

Pf  2x—2y  Pf 2y 2

dyox  (x + y)3 xay (x + y)3

0A _ _a 9A _ccosA—b

da  bcsinA’ ob besinA
Inv

* = (Inu)(nv) — 1

fe (x,y) = 0 for all points (x, y),
_ [ y=0
f.v (X, y) - {_2)7, y < 03

fr (6, ¥) = £y (x,y) = 0 for all points (x, y)

99. Yes
SECTION 14.4, pp. 842-844
dw _ dw _
L@ 5 =0 (b -(m=0
dw dw _
3. (a) 7 I, (b) i 3)=1
dw _ 1 dw .. _
5.(@ —-=4rtan"'t + 1, (b) E(l) =+ 1

11.

13.

dt

0. .
. (a) £ = 4 cos v In(usinv) + 4 cos v,

0z . . 4u cos? v
—=—4dusinvin(usinv) + ————
Jv sin v

(b) g—fl =V2(n2 + 2),2—2 =-2V2(n2 - 2)

. (a) W _ 2u +4uv,al=—2v + 2u?

u v
w w3

® 5 =3 =2
(@) du ou z ou Yy

x Tl (c-pr e (r— )2
du_ o _ o _
(b)ax_o’ay_l’az_ 2
dz _ ozdx | 924y

dt ~ axdt | aydr

so impossible

75. =2
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15, 0w _ dwax | owdy | owoz
“ou  Ooxou  Jdydu Iz ouw’

w _owaox | owdy | owdz
dv oxdv  dydv dz dv

w w

wdy ow _ dwadx  dw
dyou’ dv  dxdv  dyov’

u

o _dzax  zd bz _dzax | ozl

19.

g oxar | Adydt’ds  axds | dyds

t

5 W _ dwiu dw _ dwiu
© Os du ds’ ot du ot

w w

dw
du

dw
du

=
=

du
at

s t

w _ dwax | owdy _ dwax . (iy_o
ar  oxor | ayor  axor M ’

23. El

aw _awax | awdy _ owdy . gx _ 0

as _ axds | ayas  ayos "Cos T

w
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25.

33.

39.
43.

Chapter 14: Answers to Odd-Numbered Exercises

29. 20 31. % _

Ll 3
ox 47 dy 4

4/3 27. —4/5
0z

P —l,@ -1 35. 12 37. =7

672 — = - s+ aiw — 2 s+1
Ew 2, 611 =1 41. =2te’ ", o 357 e

23 45. —16,2 47. —0.00005 amp/sec

53. (cos 1, sin1, 1) and (cos(—2), sin(—2), —2)

55.

57. 5

V2 \ﬁ)and<\fz V2

(a) Maximum at <— R 5T 2); minimum

(VAVE\ (V3 V3
20 2 )™ )
(b) Max = 6, min = 2

2

X 32
5°C/sec  59. 2xVx® + x3 +/
/ 0 2\/t4+x

SECTION 14.5, pp. 852-853

1. 3.
5.
a4 Ay _ 2., 23, 23
7. VFf =3i + 2j — 4k 9. Vf 271+54.] 54k
1. -4 13.21/13 153 17.2
1 1
19.u=ff|+—.] (Duf)p, = \/i;fu=flffj,
V2o e V2 V2
(D_uf)p, = V2
1 5 1
21.u = i— j — K, (Dyf)p, = 3V3;
N3 13 33 P
1 5 1
—u=- i+ j + Kk, (D_,f)p, = —3V3
N3 3 33 "
1
23.u=——=(@+j+Kk),Dufp, = 2V3;
N P
1
—u=——=G+j+K),D,fp=-2V3
\/g J fP
25. y 27. v

V= 2\2i + 2\2j

x Vf = -2i +2j
)

y=—x+2\2

29. (a) u = %1 - gJ,Duf(l,fl) =5
(b)u=—%i+%j,Duf(1,—1)=—5
©u=gi+iju=-3i-3j
(d)u:—j,u:%i—%j
(e) u iu gl %j

31.u=%i—%j,— ——%H%j

33. No, the maximum rate of change is V' 185 < 14.
35.-7/V5 41 r() = (=3 — 60i + (4 + 81)j,—00 < 1 < 00
43. r() = B3+ 60i + (=2 — 4nj + (1 + 20k, —00 < t < 00

SECTION 14.6, pp. 860-863
l.@ x+ty+z=3
Mb)x=1+2t,y=1+2t,z=1+2¢
3.(a 2x—z—2=0
(b)) x=2—-4t,y=0,z=2+ 2t
5.@ 2x+2y+z—4=0
b)) x=2t,y=1+2t,z=2+1¢
7.@ x+y+z—1=0
b)x=t,y=1+tz=t
9. (@ —x+3y+z/e=2
b)yx=2-ty=1+3tz=¢+ (1/e)
11. 2x —z—2=0
13.x—y+2z—-1=0

15.x=1,y=1+2,z=1-2

17. x =1 -2ty = 1,z=%+2t

19. x=1+90,y=1-90z =3

21. df = 119830 ~ 0.0008 23.dg=0

25. (a) ism\/ ScosV3 = 0.935°C/ft
(b) \/gsm 3 - cos\/’;‘ =~ 1.87°C/sec

27. (a) L(x,y) =1 (b) L(x,y) =2x + 2y — 1
29. (a) L(x,y) =3x—4y+5 (b) L(x,y) =3x —4y + 5

3.(a) Li,y) = 1 +x (b) L(x,y) = —y + &

2
33. (a) W(20,25) = 11°F, W(30,—10) = —39°F, W(15, 15) = O°F
(b) W(10,—40) =~ —65.5°F, W(50, —40) ~ —88°F,
W(60, 30) = 10.2°F
(©) Lw,T) = —0.36 (v — 25) + 1.337(T — 5) — 17.4088
d) i) L(24,6) = —15.7°F
i) L(27,2) ~ —22.1°F
iii) L(5,—10) =~ —30.2°F
35. L(x,y) =7 + x — 6y;0.06
39. Lix,y) =1 + x;0.0222
41. (a) L(x,y,2) =2x+2y+2z—3 (b) L(x,y,2) =y + z
(©) Lx,y,2) =0
43. (a) L(x,y,z) = x

(b) L(x,y,z) =

37. L(x,y) =x +y + 1;0.08

1 1
NeS ﬁy
2,2

3

_1 2
(¢) Lx,y,2) = 3x+ 3y+ z



45.

47.
49.
51.
53.

55.
61.

(@) Lx,y,2) =2+ x

(b) L(x,y,z):x—y—z-i-%—t-]

(c) L(x,y,z):x—y—z-i-g%-l

L(x,y,z) = 2x — 6y — 2z + 6,0.0024

Lx,y,z) =x +y—z— 1,0.00135

Maximum error (estimate) =0.31 in magnitude

Pay more attention to the smaller of the two dimensions. It will
generate the larger partial derivative.

f is most sensitive to a change in d.
(a) 1.75% (b) 1.75%

SECTION 14.7, pp. 870-872

1.

S.
7.

11.

13.
15.
17.

19.
21.
23.
25.
27.

29.

31.
33.
35.

37.

39. a
41.

43.

49.

57. —

61.
63.

f(=3,3) = =5, local minimum 3. f(—2, 1), saddle point
3\ _17

f(3, 2) =5 local maximum

f(2,—1) = —6, local minimum 9. f(1,2), saddle point

f<16 O) = —E , local maximum

£(0, 0), saddle point; f (7 g, g) = m, local maximum
3’3 27
£(0,0) = 0, local minimum; f(1, —1), saddle point
£, i\@), saddle points; f(—2,—1) = 30, local maximum;
f(2, 1) = =30, local minimum
£(0, 0), saddle point; f(1, 1) = 2, f(—1,—1) = 2, local maxima
£(0,0) = —1, local maximum
f(n, 0), saddle points, for every integer n
f(2,0) = ¢*, local minimum
£(0, 0) = 0, local minimum; f(0, 2), saddle point

1 _ 1) .
f<2, 1) = ln(4> 3, local maximum

Absolute maximum: 1 at (0, 0); absolute minimum: —5 at (1, 2)
Absolute maximum: 4 at (0, 2); absolute minimum: 0 at (0, 0)
Absolute maximum: 11 at (0, —3); absolute minimum: —10 at

4,-2)
3V2

Absolute maximum: 4 at (2, 0); absolute minimum: at

(-5} (03} (-3 m (5)

=-3,b=2

S 1 V3 1 V3 .
Hottest is 24 at <—2, > )and (—2,— ) ),coldestls

1° 1
2 at (2,0).

(a) f(0,0), saddle point (b) f(1,2), local minimum

(¢) f(1,—2), local minimum; f(—1, —2), saddle point
1 1 355 96 3
(6’3’ 36) 51. (7,7,7) 53. 3,3,3 55. 12
Ao At 59 2 x2ft X 1ft
V3 V33

Points (0, 2, 0) and (0, —2, 0) have distance 2 from the origin.

(a) On the semicircle, max f = 2V2att = /4, min f = =2
at t = . On the quarter circle, max f = 2V2att = /4,
min f = 2 atr = 0, 7/2.

A-65
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(b) On the semicircle, max g = 2 at = 7 /4, min g = —2 at
t = 37 /4. On the quarter circle, max g = 2 at t = 7 /4,
ming = 0atr = 0, 7/2.
(¢) On the semicircle, maxh = 8 attr = 0,7, minh = 4
at t = 7r/2. On the quarter circle, max h = 8 at 7 = 0,
minh =4 att = 7/2.
65. i) min f = —1/2att = —1/2; no max
ii) max f =0atr=—1,0;minf = —1/2atr=—1/2
iii) max f =4atr=1;minf =0attr =20
69. y = —gx + %, Vwms = Zé

SECTION 14.8, pp. 879-882

11 11
1. t— = 3.39 5 (3, +3V2
< \/2)< V2 2) ( )
7.(a) 8 (b) 64

9. r=2cm,h = 4cm

11. Length = 4V/2, width = 32

13. f(0,0) = 0 is minimum; f(2,4) = 20 is maximum.
15. Lowest = 0° highest = 125°

17. (% 2%) 9.1 21. (0,0,2),(0,0,-2)

23. fd,
25.3,3,3 27.

—-2,5) = 30 is maximum; f(—l 2,—5) = =30 is minimum.

7b 7umts
\[ \[ y\/
29. (£4/3,—-4/3,—4/3) 31. =24,322 units
33. U®B, 14) = $128 37. £(2/3,4/3,-4/3) = 5

39. (2,4,4) 41 Maximumis 1 + 6V3 at ( £V/6, V/3,1);
minimum is 1 — 6\/3 at ( +V6,-V3, 1).
+V2, £V2,0).

43. Maximum is 4 at (0, 0, £ 2); minimum is 2 at (
SECTION 14.9, p. 886
1. Quadratic: x + xy; cubic: x + xy + %xy2
3. Quadratic: xy; cubic: xy
5. Quadratic: y + %(ny - y2);
cubic: y + %(ny —y?) + é(3x2y — 3xy? + 2y?)
7. Quadratic: %(sz + 2y?) = x* + y?; cubic: x? + y?

9. Quadratic: 1 + (x + y) + (x + )%
cubic: 1 + (x + y) + (x + )2+ (x + y)?

11. Quadratic: 1 — %x -

SECTION 14.10, p. 890
1.a) 0 (b)) 1 +2z (¢ 1+ 2z

U U
s G Ge) o B () 7

ox ar X
5.5 ()5 7. | 52| = cosé (*) = —
@ (b) (ar)o ox y 2+ 32

y E(x,y) = 0.00134
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PRACTICE EXERCISES, pp. 891-894
1. Domain: all points in the xy-plane; range: z = 0. Level curves
are ellipses with major axis along the y-axis and minor axis along
the x-axis.

3. Domain: all (x, y) such that x # 0 and y # 0; range: z # 0.
Level curves are hyperbolas with the x- and y-axes as
asymptotes.

X

5. Domain: all points in xyz-space; range: all real numbers. Level
surfaces are paraboloids of revolution with the z-axis as axis.

f(xvz) t+v =-1

z=x7 +y 241

7 '
7. Domain: all (x, y, z) such that (x, y, z) # (0, 0, 0); range: positive

real numbers. Level surfaces are spheres with center (0, 0, 0) and

radius r > 0.
. h(rm)_%ﬂ

v’ P
or +y +2z
1
é 1
x \/ y

X +y +72=1
9. -2 11. 1/2 13. 1
15. Lety = kx*, k # 1
17. No; lim, ), (0,0, f(x, ¥) does not exist.

g .08 .
19. — = cosf + sin6 *:—rsme + rcos 6

or ’ 96
o 1 of 1 o 1
"OR, R OR, R OR; R
53, 0P _ RT 9P _ nT 9P _ nR 9P _ _nRT
“an V'OR VT VoV V2
»s azg_oa2g_2x A
Taxr a2 yVaydx axdy 2
92 B o2 o2
Py A N O Rl S LR L
o2 (x> + 1) 92 dyox  axay

29.

31.

33.

35.

37.

39.

41.
45.

47.

49.
51.

53.
55.

57.
59.
61.

63.
67.

69.

a| _
dt|,—o
aw
o = 2, o =2-
| (. =(r.0) 8S (1, 9)=(7, 0)
daf . .
ar = —(sinl + cos2)(sinl) + (cos1 + cos2)(cos1)
=1
—2(sin1 + cos 1)(sin2)
of
dx (x, »)=(0,1)
Increases most rapidly in the direction u = B R R &
decreases most rapidly in the direction —u = %i + ? i
V2 V2 v
Duf = 55 Duf = =757 Do f = 10 where u; = ™
2. ,3. .6
Increases most rapidly in the direction u = ?1 + 7 =it 7k
decreases most rapidly in the direction —u = —%i - % i- gk;
Dyf = 7;D_yf = =7, Dy f = 7 where u; = ﬁ
v
77/\/2 43. (a) f(1,2) = f(1,2) =2 (b) 14/5
Pry+=0 A
Vflo.-1,n=i+2k
\&MOEO)#
y
Vflo,-1,-=i-2k

Tangent: 4x — y — 5z = 4; normal line:
x=2+4,y=—-1-t,z=1—5¢

2y —z—2=0

Tangent: x + y = 7 + 1;normal line: y = x — 7 + 1

y

y=—x+m+1

2 y=x—-m+1

y=1+sinx

of 1 2 =« *

x=1-2t,y=1,z=1/2 + 2t
Answers will depend on the upper bound used for

| el ) = 0.0142. With

M = = 0.02.

Lx,y,2) =y =3z, Lx,y,0) =x+ty—z—1

Be more careful with the diameter.

dI = 0.038, % change in I = 15.83%, more sensitive to voltage
change

(a) 5% 65. Local minimum of —8 at (=2, —2)

Saddle point at (0, 0), £(0, 0) = 0; local maximum of 1/4 at

(=1/2,-1/2)

Saddle point at (0, 0), f(0, 0) = 0; local minimum of —4 at
(0, 2); local maximum of 4 at (—2, 0); saddle point at (=2, 2),
f=2,2)=0



71. Absolute maximum: 28 at (0, 4); absolute minimum: —9/4 at
(3/2.0)

73. Absolute maximum: 18 at (2, —2); absolute minimum: —17/4 at
-2.1/2)

75. Absolute maximum: 8 at (—2, 0); absolute minimum: —1 at (1, 0)

77. Absolute maximum: 4 at (1, 0); absolute minimum: —4 at (0, —1)

79. Absolute maximum: 1 at (0, * 1) and (1, 0); absolute minimum:
—lat(—1,0)

81. Maximum: 5 at (0, 1); minimum: —1/3 at (0,—1/3)

83. Maximum: \/3 at - minimum: —V/3 at

11
\f V33
<_11 1)
\[ \f
& pv\7" o v\’
ac) ,helght= <b£‘

85. Width = (g’)  depth =
11 1 1
87. Maximum: 7at —, 0, \@) and <— S - 2>’
<\/ V2 V2 V2
11

.. 1 1 1
minimum: = at | — ,f\@ and | —,———, \/5)
2 ( V2'V2 ) <\/§ V2
ow _ ow _sinfow dw _ . ,dw  cosf dw
89. o cosear roa0dy s1n06r + = 0

95. (,—1 +
101. (a) (2y + x%2)e*  (b) x2eﬂ( - ziy) © (1 + x2y)e=

4, 1), t areal number

ADDITIONAL AND ADVANCED EXERCISES, pp. 894-896

1. £,(0,0) = =1, £,,(0,0) = 1 v
Lz 1 2 2 2 _ V3abc
7.0 5= 2( + 32 + 22) 13.V=—"5
y 9
17. flxy) =5 + gy =5 + 5

19. y = 21n|s1nx| +In2

21. (a) %(m +7) (b) ﬁ(%i — 127j + 58Kk)

22, .
23. w = e “"'sinmx

Chapter 15
SECTION 15.1, pp. 901-902

1. 24 3.1 5. 16 7. 2In2 — 1 9. 3/2)(5 —¢)
11.3/2  13.In2 15.3/2,-2 17. 14 19.0
21. 1/2 23. 2In2 25. (In2)?

27.
A z:9*x2*y2

(paraboloid)

Chapter 15: Answers to Odd-Numbered Exercises ~ A-67

29.8/3 3.1 33 V2 35 2/27

M3m3- 1 39 @ 1/3 () 23
SECTION 15.2, pp. 909-911
1. 3.
y y
y=2x

X = sinfly

N
=

P oo
e 3,0 %,

11. (a)
Mb)0=y=09,
13. (a) 0 =

S
W2 O W
IA
=
IA
5

15. (a) O
(b)%SySl,—lnnySln.?J
17. () 0=x=1l,x=y=3 — 2
3-y

b)0=y=10=x=y U l<y<30<x<T

9. 49 21. 8In8 — 16 + e

y

In8 (Inln 8, In 8)
(7, ) ;
1 x=Iny

-

0

< |

Inln8

e — 2

y

25. §ln 2

5 27. —1/10
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(=2,-2)

7T (m, )

0 T

51.2

y

2L, (523

57.4/3 59. 625/12 61. 16 63. 20 65. 2(1 + In2)
67.

y

2

3 20V3
2 _2 v
69. 1 1. o 73. 0 75. 9

1 p2—x 4
717. // (x2+y¥) dydx = 3
0Jx

79. R is the set of points (x, y) such that x> + 2y> < 4.

81. No, by Fubini’s Theorem, the two orders of integration must give
the same result.

85. 0.603 87. 0.233
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SECTION 15.3, p. 914

2 p2—x 1 -2
1// dydx =2 or 3,/ dxdyzg
0Jo - 2

2 p2—y

y—2

dxdy =2 ,
') &

(12,6)

. NOT TO SCALE

17.

NSRS

y

1L2,[

y=1-x
y=—2x \}l

(IO, 0)

x

In2 pe* ;
5./ / dydx =1 \ @.-n
0 0 y:,«l
2
’
(n2,2) 19.a) 0 (b) 4/7* 21.8/3 23. 7 —2
25. 40,0001 — ¢2)In (7/2) ~ 43,329
SECTION 15.4, pp. 919-921
. 1.%505277,05rs9 3.%565%7,05r50500
5.050$%,1 =r=2V3sech;
2 3y
9.// ldxdy =4 or %SOS%,ISrSZCSCO
0Jy
. - 7.-5=0=7.0=r=2cos0 9.7
// 1dydx+// ldydx =4 .27  13.36 15.2-V3 17. (1 -h2)=w
0Jx/3 2Jx/3
2(1+V2)
y 1 19.2In2 = D(m/2) 2 ——5——
y=x y=3x
, ’ 23.
! =2 f b 2
| : 1 y=\1—x7or x=\1-—y"
] ] .
2 6

1 p2x 2 p3—x 3
11.// 1dydx+// ldydx=50r
0Jx/2 1Jx/2

1 p2y 2 p3-y 3 1
1dxdy+// ldxdy = = 7
/0‘/y/2 1 Jyp 2 1 V122 1 pV1-y?
/ / xy dydx or / / xy dx dy
¥ 0J0 0Jo
25. v

x=2

X

3 y:2xorx=%y

) y=x

y:%x or x =2y

X

I
I
I
I I ¥
2

2

1 3 2 px 2 p2

y=3-xorx=3-y // y2 (x® + y*) dydx or // y2 (x2 + y?) dx dy
0J0 0Jy
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27.2r—2) 29. 12 3L Gw/8)+1 33 23—“ SECTION 15.6, pp. 938-941

) s 1. x=5/145=238/35 3.x=64/355=5/7
35. %8 37 2m(2 - Ve) 395+ T 5.%x=7y = 4a/(3m)

3 3008 7.1, =1,=4 20 = 2

= . che=1 = 7 gm/cm?, [, = 87 gm/cm
41. (a) TW ) 1 43 windno 45 3 (a +2) 9. x=-Ly=1/4 1L I = 64/105
13.x=3/8,y=17/16  15. ¥ = 11/3,5 = 14/27, 1, = 432

0. 867 — 9 17. x = 0,y = 13/31,1, = 7/5

9 19. X = 0,y = 7/10; I, = 9/10 kg/m?, I, = 3/10 kg/m?,

Iy = 6/5kg/m?

SECTION 15.5, pp. 929-931
1.1/6 21 I, = A—’I(bz + )

1 p2=2x p3-3x—3y/2 2 pl=y/2 p3-3x—3y/2
3. / / / dz dy dbx, / / / dz dx dy, 23.
0Jo 0 0J0 0 /6 ~ 7670 I.=256/45 = 569

X
1, 2

25.(a) x=y=0,z2=8/3 (b) c=2V2
I

1 3-3x 2-20-27/3 3 pl=z/3 p2-2x-22/3
// / dy dz dx,// / dy dx dz, 27. I = 1386
0Jo 0 0Jo 0 29. (a) 4/3 gm (b) x=4/5cm,y =7z =2/5cm
3. 5/2 b)x=y=2=8/15 () =1, =1=11/6

2 p3-3y2 pl-y2-2/3 3 2-2/3 pl-y/2—2/3
/ / / dx dz dy, / / / dx dy dz. 33. 3kg
0Jo 0 0Jo 0 abc(a®> + b?) 2+ B

37‘ (a) IcAm4 = 12 ’RCAmA = 12

= %%2 + c2>,17:1‘§<a2 1)

The value of all six integrals is 1.

bc(a* + Tb? a2 2
A*v va (b) IL:%vRL: #
// / ldzdxdy,// / 1 dz dx dy,
39w, =, =7/12
41. p, =3/4, 1, =2/3

8—y 8—'— z—y )
// / 1dxdzdy+/// 1 dx dz dy, 4. fx,y) =1/6,PX <Y) =2/3
—2J 4 8—7 y? —2J y2) —\/z—y?

SECTION 15.7, pp. 949-953

V8—z—y? y? 4 V7 Vz—y? i
// / ldxdydz +// / 1 dx dy dz, L L e
V8—z. 0J—VzJ /7—y? [ / cylinder of

radius 2
8—x2 p\V/8—7—x2 2 4 p\z—x2 centered on
// / 1dydzdx+/// 1 dy dz dx,
-2J4 V8—z—x? —2J 2 =
V8—z—x2 4 V2 Va2
// / 1dydxdz+// / 1 dydx dz. x
V8—z. 0JVzJ Vz—x2

the z-axis
The value of all six 1ntegrals is 167r. = —1:

5(2 _ \/g) ° plane parallel X

to the xy-plane
7.1 9.6 IL———— 1318 X

) 2

15.7/6 17. 0 19.

21. (a) / / / dy dz dx (b) / / / dy dx dz
4 i
1 pl=z pVy | rimy Vs s /
(c) / / / dx dy dz @) / / / dx dz dy /5—{ Jy,lﬁld n
0.0 “Vy 0J0 -y
1 \f\ 1—y
(e) / / / dz dx dy . /ﬁ
o &J

Y
23.2/3 25. 20/3 27. 1 29. 16/3 31. 87 — % 8

33.2 35. 4o 37. 31/3 39. 1 41. 2sin4
43. 4 45. a =3 ora = 13/3
47. The domain is the set of all points (x, y, z) such that

4 + 42 + 2 = 4.

l\)\'—‘
oo\a




P2+2=4
2 sphere of

radius 2
) centered
) ) at(0,0,0)

9. r = z = V9 — r?: cone with vertex angle % below a sphere of
radius 3 centered at (0, 0, 0), and its interior

11. 0 = r=4cosh,0 =60 = %,0 = z = 5: half-cylinder of

height 5, radius 2, and tangent to the z -axis, and its interior

5

x

13. p = 3: sphere of radius 3 centered at (0, 0, 0)

15. 6 = 27'r: closed half-plane along the z-axis

3

17. p cos ¢ = 4: plane with z-intercept 4 and parallel to the xy-plane

pcosdp =4

Chapter 15: Answers to Odd-Numbered Exercises
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19. 0 = p = 3cscp=0 = psin¢ = 3: cylinder of radius 3

centered on the z-axis, and its interior

21. 0 = pcosfsing = 2,0 = psinfsing = 3,

0 = pcos ¢ = 4:rectangular box 2 X 3 X 4, and its interior

4m(V2 -1
zs.y 2517?77 27. 7(6V2 - 8)

31. 7/3

/
2 ol pVA—P
33. (a) / / / rdz drdf
o JoJo
2 V3 pl 2w p2 pVA-ZF
(b) / / / rdrdzdo +/ / / rdrdz df
o Jo Jo 0o JV3Jo

1 4—7 p2m
o[ [
0J0 0

7/2  pcos
35. / / f(r 0, z) dz r dr df

/2

7 p2sinf p4—rsin O
37. / / / f(r,0,z) dz rdrdd
0J0 0

7/2 pl+cos6
39. / / f(r 0,2) dz rdrdo

/2
/4 psecl 2—rsin

41. / / / f(r,0,2)dz rdrdo 43, 72
0 0 0

45. 7 47. 5w 49.2m 5L (8 _25\[>

27 pw/6
53. (a)/ / /p sin & dp dp db +
27 pw/2 pesced
/ / / p?sin ¢ dp do db
7/6

2 sin"!(1/p)
(b) / // p? sin ¢ d¢p dp d6 +
0 1J7/6
27 2 pwf6
/ // o2 sin & dep dp db +
0 0J0
27 pl pm/2
/ // p? sin ¢ dep dp d
o JoJmss

3
29. 10



A-72  Chapter 15: Answers to Odd-Numbered Exercises

55.

57.

59.

61.

63.

65.

73.

81.
89.

93.

99.

101.

103.

2w 2 i SECTION 15.8, pp. 961-963
/ / / pzsinqﬁdpdd)dO:T utv v -—2ul
cosdb 1. (a) x = 3 YT 3 i3

(b) Triangular region with boundaries u = 0, v = 0, and

27 pm opl—cosd 8
/ // P2 sin ¢ dp dp db = u+v=3
0 0J0 3

I I S &
2r pwj2 p2cosd 3. (@) x= 5 Qu = v),y 10 Gu =~ w); 10
/ / / p?sinddp dp do = = (b) Triangular region with boundaries 3v = u, v = 2u, and
/4 3utv= 120

52

/2 /2 2 7.64/5 9. //(u+u)—dudu—8+—1 2
(a) 8 % sin  dp dep db 1 3
0 0 0

b(a*> + b
TGO T l(1 + %) ~ 0.4687

w2 p2 p\VA—r? 4 3 e
(b) 8/ // rdz drdb 2120
o JoJo 15. % 17. 12 19. “lgc
2 pVa=a? o Vamxoy? cosv  —usinv 5 .5
() 8 dz dy dx 21. (a) | . =ucos"v + usin“v =u
0o o sinv  ucosv
2 pwf3 p2 sinv ucosv| . 5 ’
b P _ —
(a) / / / p? sin ¢ dp d¢p df ®) cosv —usinv sy T neosty "
0 0 secd 3
. = 27. Ean
(b) / / / rdzdrdf
PRACTICE EXERCISES, pp. 963-965
Va—xi—y? 1. 9¢ — 9 3.9/2
(© / / / dzdydx  (d) 57/3 A \
10} (1/10, 10) 3
87/3  61.9/4  69. 3”1; 4o 27;“’ / \
I
4(2\6 — 1)77' x = 3
57/3 75. w/2 71. -3 79. 167 k_/
2 2_
477(8 — 3\/§) . (1,1 e
5m/2 83. I — 85.2/3 87. 3/4 .
o] 1
¥=y=0,z=3/8 91 (x,y,2 = (0,0,3/8) NOTTOSCALE
_ _ a*hir Vo2
=y=0,z=5/6 95 I, =m/4 9. 3NV
X =Yy Z / X ’77'/ 10 // dydx—* 7.// ydydx:%
o . i _ T 2x+4 -3.J0
(a) (xvyaz) - (Oa 07 5)’12 - 12 y
_ 5 :
b E5.9) = (0, 0, g),lz =1 3| craeo
7R3 3 0 30"
The surface’s equation r = f(z) tells us that the point k_/

(r, 0, 2) = (f(2), 0, z) will lie on the surface for all 6. In particu-
lar, (f(z), & + 7, z) lies on the surface whenever (f(z), 6, z) lies

on the surface, so the surface is symmetric with respect to the 9. sin4 11. ln417 13. 4/3 15. 4/3 17. 1/4
z-axis.
T —2
(f0.6.9 19. = 21. 1 23. 0 25. 8/35 27. w/2

(f2), 6 + m,2) 2(31 — 35/2)
29, —————

Va—xi—y? —V
31. (a) / / / 3dz dx dy
2 —y* 2+y

2@ pa/4
(b)/ / /3p2sin¢dpdqbd0 (c) 2m(8 — 4V2)
0 0 0



2w pw/4 psecd
33./ / / pzsin¢dpd¢de:§
Va—x2—y? —y?
35. // / Z2xy dz dy dx
V3 a3 4*)(-1\)
+/ / / 22xy dz dy dx
1 Jo 1

8m(4V2 - 5) 8m(4V2 - 5)
37. (a) 3 (b) 3
8w’ — ad)
ML=
41.f=y=2_11n4 43. [, =104  45. [, =28
47. M = 4, M, = 0,M, = 0
49. ¥ = 3\T/§,y=
15w+ 32
SL@) ¥= 725y =0
(b) A
r=1+cos6

ADDITIONAL AND ADVANCED EXERCISES, pp. 966-967

2 p6—22 2 p6—x% px?
1. (a) // xdydx  (b) // /dzdydx
—3Jx —3Jx 0

(c) 125/4
. 27 5. 37/2
7. (a) Hole radius = 1, sphere radius = 2

9. /4 1L 1n(§> 15. 1/V/3
17. Mass = azcos"(é) - bVa®> — b,

w

(b) 4\V37

a

4
I, = %cos’l (g) -

19. — (a’* D 21.(b) 1 (¢) O

%x /2 — P — %3(a2 — p)32

ab
25. h = \V20in,h = V60in.  27. 277[% - @)%}
Chapter 16
SECTION 16.1, pp. 974-976
1. Graph (c) 3. Graph (g) 5. Graph (d) 7. Graph (f)
9. V2 1L Q 13. 3V14 15 é(S\@-ﬁ- 9)

Chapter 16: Answers to Odd-Numbered Exercises ~ A-73

17. V31n <§> 19. (@) 4V5 (b) ﬁ(nm - 1)

21 Bet6 — oty 23, %(403/27 132

32
25. 6(53/2 +7V2-1) 27 m\/;g 29. 8
31. %(173/2 -1)  33.2V2-1

35. (@ 4V2—-2 () V2 +In(1 +V2) 37 L=2n8
39. (@) I =27\V25 (b) L =47\V25 4l I, =27 —2

SECTION 16.2, pp. 986-989
1. Vf=—@i+ yj + zk)(x2 + y2 + 2)3/

2x . 2y .
3. Vg = _(xz - y2>1 — (x2 i yz)_] + &k

kx . .
o2 + y2)3/2l - o2+ yz)s/z-]’ any k > 0
7. (@) 9/2 (b) 13/3 (c) 9/2
L@ 1/3 (b) —1/5 (©) 0
1. (@ 2 () 3/2 (o) 1/2
13. -15/2  15.36 17. () —5/6 (b) 0 (c) —7/12
19.1/2 21 —w  23.69/4  25.-39/2  27.25/6
29. (a) Circ,; = 0, circ, = 27, flux, = 2, flux, = 0
(b) Circ, = 0, circ, = 8, flux; = 8, flux, = 0
31. Circ = 0, flux = a’m 33. Circ = a’m, flux = 0

3@ -7 O ©1 37 (000D)mke/s
39.(a) 327 (b) 32 (c) 32 4L 11527
43.5/3 — (3/2)In2m?/s  45. 5/3g/s

47. ¥

5. F=—

o

49. (a) G =—yi+xj (b) G=Vx>+y*F

OIS L R 5.0 6L L
. = - . o T . o ~
\/)C2 + y2 2

SECTION 16.3, pp. 998-1000
1. Conservative 3. Not conservative
3y?
7. f(x,y,2) = x* + 74— 272+ C

11. f(x,y,z) = xlnx — x + tan(x + y) + %ln (Y¥+z2)+C

13.49 15.—-16 17.1 19.9In2 21.0  23. -3
2 _

27.F = V(x 1) 29.a) 1 ()1 (o)1

y
31.(a) 2 (b) 2 33.a@ c=b=2a (b) c=b=2

35. It does not matter what path you use. The work will be the same
on any path because the field is conservative.

5. Not conservative

9. f(x,y,2) = x"* + C
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37. The force F is conservative because all partial derivatives of
M, N, and P are zero. f(x,y,z) = ax + by + cz + C;A =
(xa, ya, za) and B = (xb, yb, zb). Therefore, [F-dr =
f(B)_)— fA) = a(xb — xa) + b(yb — ya) + c(zb — za) =
F- AB.

SECTION 16.4, pp. 1010-1012

1. 2y — 1 3. ye* — xe¥ 5. siny — sinx

7. Flux = 0, circ = 2mwd? 9. Flux = —md?, circ = 0

11. Flux = 2, circ = 0 13. Flux = —9, circ = 9

15. Flux = —11/60, circ = —7/60

17. Flux = 64/9, circ = 0 19. Flux = 1/2,circ = 1/2
21. Flux = 1/5,circ = —1/12 23. 0 25.2/33 27. 0
29. —167 31. wa® 33. 37 /8
35. (a) 0if Cis traversed counterclockwise

(b) (h — k)(area of the region) 45. (a) 0

SECTION 16.5, pp. 1020-1022
1. r(r,0) = (rcos Oi + (rsin0)j + r’k,0 < r < 2,
0=0 =27
3. r(r,0) = (rcos )i + (rsin6)j + (r/2)k,0 = r = 6,
0=0=m/2
5. 1(r,0) = (rcos 0)i + (rsin)j + V9 — r2Kk,
0=r=3V2/2,0=06=<2m Also:
r(¢p, 6) = (3sin ¢ cos A)i + (3 sin ¢ sin 6)j +
Bceospk,0=¢p =7/4,0=0 =27
7. 1(¢,0) = (V3sinpcos 0)i + (V3sindpsing)j +
(V3cosg)k, m/3=¢ =2m/3,0=0 <2
9. 1r(x,y) =xi+yj+ @4 -k 0=x=2-2=y=2
11. r(u, v) = ui + 3cosv)j + Bsinv)k,0 = u = 3,
O0=v =27
13. (a) r(r,0) =
0=r=30=0=27
(b) r(u,v) = (1 —ucosv — usinv)i + (ucosv)j +
(usinvk, 0 =u=30=v =27
15. r(u, v) = (4 cos® v)i + uj + (4cosvsinv)k,0 = u = 3,
—(m/2) = v = (m/2); Another way: r(u, v) = (2 + 2 cos v)i
+ uj + (ZSinv)k,O =u=30=v=27

2
17. / —rd do = %@

2m 2
19./ /r\/drde—sqr\/ 21. / /1dudv—67r

(5V5-1)

6 - L T

23./ uVau: + 1dudv =
o Jo

2@ p

25./ / 2sing dpdd = (4 +2V2)mw
0 /4

27. 29.

z 4

@HZHZ
<\s‘2.v‘22>/m THyTNz=0

P+ (y-372=9

VBr+y=9

(rcos0)i + (rsin@)j + (I — rcos 6 — rsin Ok,

27 pa
33.(b) A =/ / [ a®h? sin® ¢ cos? ¢ + b*c? cos* ¢ cos? 6 +

a’c? cos* ¢ sin? 0112 dp do

35. xpx + ypy = 25 37. 137/3 39. 4
41. 6V6 —2V2 43 7V + 1
45. Z(17V17 = 5V5)  47.3 +2In2

49. Z(13VI3 - 1) sLsmV2 s %(5\67 1)

SECTION 16.6, pp. 1030-1032
3 2 —
1. //xda'=// uVauw* + ldudv=1714$
0Jo
K

2w p
/x2da=//sin3¢c0520d¢d0=@
o Jo 3
S
1 pl
.//zda'=//(4—u—v)\6dvdu=3\ﬁ
0Jo
S

(forx = u,y = v)

7.// /5 — 4zdo = //%u cos?v- Va2 + 1+

w

9]

27
uVau* + dvdu—// w(4u? + 1) cos? vdvdu—lll

9. 943 11. @(ab + ac + bc) 13. 2
3
15. %(\/ﬁ+ 6V6)  17.V6/30  19.-32 21 T
23. 134*/6  25.2m/3  21. —T3w/6  29. 18
’/'Ta3 7'ra2 7T6l3
375 3 TS 3. TE 3T -3 39,4
4 aaa
41. 3¢* 43 (2,2,2)
45. (5.9 = (0.0.14), = 157TV2;
9 2

47. (a) 8” a*s (b 207’ a*s  49. 70/3mg
SECTION 16.7, pp. 1043-1045

L-i—4+k 3. (1—-yi+d-2j+d-xk

5. x(22 — yz)i + y(x2 — zz)j + z(y2 — xk 7. 4ar
9.-5/6 1.0 13. —6x  15. 2ma®  17. -
19. 127 21. —7/4 23. —157 25. —87

33. 161, + 161,
SECTION 16.8, pp. 1056-1057

1. 0 3. 0%z + x2% + x%y) e 5.0 7. 0

9.-16 11. 87  13. 37  15. —40/3  17. 127

19. 12m(4V2 — 1)  23. No
25. The integral’s value never exceeds the surface area of S.
27. 184/35

PRACTICE EXERCISES, pp. 1058-1060
1. Path 1: 2\/3; path 2: 1 +3V2 3. 44> 5.0
7. 8msin(l) 9.0 11 7\V3

13.2w(1—i) 15, @c JL 1,
a b?

17. 50
V2



19. r(¢p, 0) = (6 sin ¢ cos H)i + (6 sin ¢ sin 6)j + (6 cos P)K,
%sdasz{,oseszw

21. r(r, 0) = (rcosO)i + (rsinf)j + (1 + Nk, 0 =r = 2,
0=6=27

23. r(u,v) = (ucosv)i + 2u% + (usinv)k,0 = u < 1,
0=v=mw

25. V6 27. 77[\6 + ln(l + \fZ)] 29. Conservative

31. Not conservative 33 f,y,2) =y +yz+2x+z

35. Path 1: 2; path 2: 8/3 37.a) 1 —e > (b) 1 —e 27

39.0 4l 4V2-2 () V2+In(1+V2)

Ty = (1.162), 22, 64,56
B &ya= (1’15’3)’ L=%s b =157
45-Z:%Jf¥ 47. (x,y,2) = (0,0,49/12), I, = 6407

49. Flux: 3/2; circ: —1/2 53.3

55. 27”(7 -8V2) 5.0 59w
ADDITIONAL AND ADVANCED EXERCISES, pp. 1061-1062
L6 3.2/3
5. (@) F(x,y,2) = zi +xj + yk (b) F(x,y,2) = zi + yk
(¢) F(x,y,2) = zi
16mwR?
7.3

11. (b) mg (¢) Work = (/gxyds)§ = g/xyzds= §g
3 c c 3

9. a = 2,b = 1. The minimum flux is —4.

13. (¢) %ﬂ'w 19. False if F = yi + xj
Appendices

APPENDIX 1, p. AP-6 _
1. 0.1,02,0.3,08,09 or 1

3o x <=2 5. x=—5

-2 * -2 !
7.3,-3  9.7/6,25/6
1. 2=t=4 13. 0=z=10

t z
-2 4 0 10

15. (=00, —2] U [2,00) 17. (—o0,—3] U [1,00)

s r
-2 2 -3 1

19. (—3,-2)U (2,3) 21. (0, 1) 23. (—o0, 1]
27. The graph of |x| + |y| = 1 is the interior and boundary of the
“diamond-shaped” region.
y

%S
%

Appendices: Answers to Odd-Numbered Exercises A-75

APPENDIX 3, pp. AP-17-AP-18

1. 2,—4;2\/5 3. Unit circle
1
5. m, = —§
y
A-1,2)9 2
y=3x+5
Slope = 3 !

7.(@) x=-1 (b) y=4/3 9. y=—x

15.y:—%+12

ll.y:—%x+6

17. x-intercept = V3, y-intercept = -V2

13. y=4x + 4

25. X2 + (y — 3/2)* = 25/4  217.

©0,-3)

b 0. —5)

31. Exterior points of a circle of radius \/7, centered at the origin



A-76

33

35
3

2

3

N=J

41

43
45

51

Appendices: Answers to Odd-Numbered Exercises

. The washer between the circles x> + y> = 1 and x> + y> = 4
(points with distance from the origin between 1 and 2)
L+ 2P+ (- 1) <6

(e ()

(53h (G)

. (a) = —2.5 degrees/inch (b) = —16.1 degrees/inch
(¢) = —8.3 degrees/inch

. 5.97 atm
. Yes: C = F = —40°
c
C=F
L |/ F
—40 32
c= g(F —-32)
40, —a0) ‘O
Lk=-8 k=1/2

APPENDIX 7, pp. AP-33-AP-34

1.
3.

(@) 14+8 () =7 —4 (c) —5i

(a) By reflecting z across the real axis

(b) By reflecting z across the imaginary axis

(c) By reflecting z across the real axis and then multiplying the
length of the vector by 1/]z|?

. (a) Points on the circle x> + y*> = 4

(b) Points inside the circle x> + y*> = 4
(¢) Points outside the circle x> + y?> = 4

7. Points on a circle of radius 1, center (—1, 0)
9. Points on the line y = —x 11. 4¢3 13. 1273
15. cos*0 — 6cos>0sin*0 + sin*6
17. 1,—% + ?i 19. 2i,—-V3 — i, V3 —i
21. ? + ?k? + %i 23,1 + V3i,—1 + V3i



ANSWERS TO ODD-NUMBERED EXERCISES

Chapter 17
SECTION 17.1, pp. 17-6-17-7

1.
5.
9.
13.

17.

19.
21.
25.

29.
33.

35.

37.
41.

45.
49.
53.

57.

y =
y =
y =
y =
y =
y =
y =
y =
y =

y =
y =
y =
y =
y =
y =
y =

y =

3.y =ce™ + et
7.y = ce™ + ce?
11. y = ¢cos3x + ¢,sin3x

e + cre™
e + e
cre ™t + cpe?
c;cosS5x + ¢,sinSx
e‘x(cl cos V/3x + ¢, 8in \/gx)

e (c;cos V5x + ¢;5in V5x)

¢ + ox 23. y=cie > + cyxe”
e + cyxe ™ 27. y = cje?

2x
+ cyxe 2

cie™P + cyxe3 3. y = —% e + %e‘”‘

15. y = €*(c;cos2x + ¢,sin2x)

1.
sin2V/3x
2V3
1 .
—c0s2V2x + ——sin2V/2x
V2
(1 — 2x)e* 39. y = 2(1 + 2x)e 2
ce ™t + e 43. y = ;2 + cyxe
€| Ccos V5x + ¢, sin V5x 47. y = e’ + cyxe ™’
e (¢, cosx + ¢,sinx) 51. y = ;& + cyxed*
cre ¥ + cyxe /3 55. y = cje V2 + ™
—X — E —~7x/3 Q 2x
(1 + 2x)e 59. y = 13¢ + 13¢

SECTION 17.2, pp. 17-14-17-15

Ly=ce*+ e+ 3

3.

11.
13.
15.
17.
19.
21.

23.

25.
27.

29.

31.

= (c; + cx)e ™ + %x

10

1 1.
=] + " + Scosx — Ssinx

2 2

. 1
€;cosx + ¢sinx — gcos3x

c1e™ + c,e™* — 6cosx — 2sinx

et + et —xP— 2+ %xe"

1 49 7 .
3x —2x _  ,x
ciet + e 2¢ + 50cosx + 5Osmx

c + cze’s" + X3+ %xz - 265x

= + e + 2% + éx + lxe”

3 3

_ 1
cl+c2e"+§x2—x

. 1
cjcosx + cysinx — Fxcosx

2 e *

ciet + et + %xe*

= ¢ ¥(c,cosx + ¢,sinx) + 2

= Acosx + Bsinx + xsinx + cosxIn(cosx)

-+ Sx + — 2,5x . L 5%
Cy e IOX (4 25X€

. 1 .
€1 COSX + ¢ 8inx — Excosx + xsinx

33.

35.
37.
39.
41.
43.

1
y=cl+cze‘+§e)‘+xex

X X 1 v 4
y = e + ce —ge*—g

Yy = ¢;cosx + ¢;sinx — (sinx)[In(cscx + cotx) |
1 4

y=c + e + gxeg"

y=oc + et — x4 — 3 — 332 — 6x

y=c¢ + e — %e" + x3/6 — x*/4 + x/4

45. y = ¢jcosx + ¢psinx + (x — tanx)cosx — sinxIn(cosx)
= ¢;cosx + ¢,"sinx + xcosx — (sinx)In(cosx)
1
— 3x _
47. y = ce 26"
49. y = ce® + Sxe

51.
53.

55.
57.

59.

y = 2cosx + sinx — 1 + sinxIn(secx + tanx)

y=*e’x+l+%x2*x
y = 2(e* — e*)cosx — 3¢ *sinx
y=(1—x+ x?e*

1
Y = 4

SECTION 17.3, pp. 17-20-17-21

1.

o N W

11.
17.
19.

21.
23.

25

my” +y' +y=0, y0) =2 y(0)=2
LBV =0 0 = YO =1
. 2¢" + 4q" + 10g = 20cost, ¢q(0) =2, 4¢'(0) =3
. 0.0864 ft (above equilibrium)
Vo
% 85.8623
———~-sin(7.1554¢) (in inches).

0.1398
15. 24.4949 ft /sec

. y(®) = 0.2917cos (7.15541) + sin (7.1554¢) (in feet), or

y = 3.5co0s(7.15541) +

0.308 sec 13. 8.3341b
—1.56 ft/sec? (acceleration upward)
q(t) = =8¢ + 10e72, ,'i,Toq(’) =0
= a2 g
y(it) =1+ 2e 36 36

y(7r) = —2 m (above equilibrium)

49v199 . V199 +49

995 sin ) t 5 Cos D)

- g = % + ( : 199z>e’/2

SECTION 17.4, p. 17-24

€ 9!
Ly=—+ox 3.)1:*2-|-c2x3
X X
5.y = + ot T.y=cx P +o¢
9. y = x(c; + ¢;lnx)
11. y = x[c¢;cos(2Inx) + ¢,sin(21n x) ]
13. y = % [¢jcos (3Inx) + ¢,sin(31nx) ]
1 .
15. y = — [ ¢ cos(l + ¢, sin(l
Y= [cjcos(Inx) + ¢, sin(Inx) ]
17. y:%(cl + ¢, Inx) 19. y=¢ + c;lnx

A-1



A-2 Chapter 17: Answers to Odd-Numbered Exercises

21. y = %(cl + ¢;Inx) 23. y = x4, + ¢,Inx)

- x -
25.y72x3+2 27. y=x

29. y = x [—cos(Inx) + 2sin(Inx) |
SECTION 17.5, p. 17-29
2

2 .
1.y=co+cl<x—x2+§x3—~~)200—562"

3.y=c0(1*2x2+~~~)+cl(xf%x3+~~~>

= ¢ycos2x + ¢;sin2x

5.y =cx + cx?

11.

13.

17.

y =

CO<1+%x2—éx3+~~~>+cl(x+éx3+~~~>

c0<1*x2+15f2x4* ~~~)+clx

co(l = 3x% + ) + ¢;(x — x%)

Co<l+x2+%x4+~~~> +cl(x+x3+%x5+~~

c0<1*%x2+~->+cl<x*%x3+~-~)
c0<1 *%x2+%x4+-~>+c](x*%x3>

)
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