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Converting a Graph from the rU- to xy-Plane

One way to graph a polar equation r = ƒ(u) in the xy-plane is to make a table of 
(r, u)@values, plot the corresponding points there, and connect them in order of increasing 
u. This can work well if enough points have been plotted to reveal all the loops and dim-
ples in the graph. Another method of graphing is to

1. first graph the function r = ƒ(u) in the Cartesian ru@plane,

2. then use that Cartesian graph as a “table” and guide to sketch the polar coordinate 
graph in the xy-plane.

This method is sometimes better than simple point plotting because the first Cartesian 
graph, even when hastily drawn, shows at a glance where r is positive, negative, and non-
existent, as well as where r is increasing and decreasing. Here’s an example.

USING TECHNOLOGY Graphing Polar Curves Parametrically
For complicated polar curves we may need to use a graphing calculator or computer to 
graph the curve. If the device does not plot polar graphs directly, we can convert r = ƒ(u)
into parametric form using the equations

x = r cos u = ƒ(u) cos u, y = r sin u = ƒ(u) sin u.

Then we use the device to draw a parametrized curve in the Cartesian xy-plane. It may be 
necessary to use the parameter t rather than u for the graphing device.

EXAMPLE 3  Graph the lemniscate curve r2 = sin 2u in the Cartesian xy-plane.

Solution Here we begin by plotting r2 (not r) as a function of u in the Cartesian 
r2u@plane. See Figure 11.30a. We pass from there to the graph of r = {2sin 2u in the 
ru@plane (Figure 11.30b), and then draw the polar graph (Figure 11.30c). The graph in 
Figure 11.30b “covers” the final polar graph in Figure 11.30c twice. We could have man-
aged with either loop alone, with the two upper halves, or with the two lower halves. The 
double covering does no harm, however, and we actually learn a little more about the 
behavior of the function this way.

Symmetries and Polar Graphs
Identify the symmetries of the curves in Exercises 1–12. Then sketch 
the curves in the xy-plane.

1. r = 1 + cos u 2. r = 2 - 2 cos u

3. r = 1 - sin u 4. r = 1 + sin u

5. r = 2 + sin u 6. r = 1 + 2 sin u

7. r = sin (u>2) 8. r = cos (u>2)

9. r2 = cos u 10. r2 = sin u

11. r2 = -sin u 12. r2 = -cos u

Graph the lemniscates in Exercises 13–16. What symmetries do these 
curves have?

13. r2 = 4 cos 2u 14. r2 = 4 sin 2u

15. r2 = -sin 2u 16. r2 = -cos 2u

Slopes of Polar Curves in the xy-Plane
Find the slopes of the curves in Exercises 17–20 at the given points. 
Sketch the curves along with their tangents at these points.

17. Cardioid r = -1 + cos u; u = {p>2
18. Cardioid r = -1 + sin u; u = 0, p

19. Four-leaved rose r = sin 2u; u = {p>4, {3p>4
20. Four-leaved rose r = cos 2u; u = 0, {p>2, p

Exercises 11.4
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FIGURE 11.30 To plot r = ƒ(u) in 
the Cartesian ru@plane in (b), we first 
plot r2 = sin 2u in the r2u@plane in (a) 
and then ignore the values of u for which 
sin 2u is negative. The radii from the 
sketch in (b) cover the polar graph of the 
lemniscate in (c) twice (Example 3).
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Graphing Limaçons
Graph the limaçons in Exercises 21–24. Limaçon (“lee-ma-sahn”) is 
Old French for “snail.” You will understand the name when you graph 
the limaçons in Exercise 21. Equations for limaçons have the form 
r = a { b cos u or r = a { b sin u. There are four basic shapes.

21. Limaçons with an inner loop

  a. r = 1
2

+ cos u b. r = 1
2

+ sin u

22. Cardioids

  a. r = 1 - cos u b. r = -1 + sin u

23. Dimpled limaçons

  a. r = 3
2

+ cos u b. r = 3
2

- sin u

24. Oval limaçons

  a. r = 2 + cos u b. r = -2 + sin u

Graphing Polar Regions and Curves in the xy-Plane
25. Sketch the region defined by the inequalities -1 … r … 2 and 

-p>2 … u … p>2.

26. Sketch the region defined by the inequalities 0 … r … 2 sec u
and -p>4 … u … p>4.

In Exercises 27 and 28, sketch the region defined by the inequality.

27. 0 … r … 2 - 2 cos u 28. 0 … r2 … cos u

29. Which of the following has the same graph as r = 1 - cos u?

  a. r = -1 - cos u b. r = 1 + cos u

  Confirm your answer with algebra.

T

30. Which of the following has the same graph as r = cos 2u?

  a. r = -sin (2u + p>2) b. r = -cos (u>2)

  Confirm your answer with algebra.
31. A rose within a rose Graph the equation r = 1 - 2 sin 3u.

32. The nephroid of Freeth Graph the nephroid of Freeth:

r = 1 + 2 sin
u

2
.

33. Roses Graph the roses r = cos mu for m = 1>3, 2, 3, and 7.

34. Spirals Polar coordinates are just the thing for defining spirals. 
Graph the following spirals.

  a. r = u
b. r = -u

  c. A logarithmic spiral: r = eu>10

  d. A hyperbolic spiral: r = 8>u
e. An equilateral hyperbola: r = {10>2u

  (Use different colors for the two branches.)

35. Graph the equation r = sin18
7 u2 for 0 … u … 14p.

36. Graph the equation

r = sin2 (2.3u) + cos4 (2.3u)

  for 0 … u … 10p.
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11.5 Areas and Lengths in Polar Coordinates

This section shows how to calculate areas of plane regions and lengths of curves in polar 
coordinates. The defining ideas are the same as before, but the formulas are different in 
polar versus Cartesian coordinates.

Area in the Plane

The region OTS in Figure 11.31 is bounded by the rays u = a and u = b and the curve 
r = ƒ(u). We approximate the region with n nonoverlapping fan-shaped circular sec-
tors based on a partition P of angle TOS. The typical sector has radius rk = ƒ(uk) and 
central angle of radian measure ∆uk. Its area is ∆uk>2p times the area of a circle of 
radius rk , or

Ak = 1
2

rk
2 ∆uk = 1

2
1ƒ(uk)22 ∆uk.

The area of region OTS is approximately

a

n

k=1
Ak = a

n

k=1

1
2
1ƒ(uk)22 ∆uk.

If ƒ is continuous, we expect the approximations to improve as the norm of the parti-
tion P goes to zero, where the norm of P is the largest value of ∆uk. We are then led to the 
following formula defining the region’s area:
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FIGURE 11.31 To derive a formula for 
the area of region OTS, we approximate 
the region with fan-shaped circular sectors.
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