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Area
In Exercises 1–4, use finite approximations to estimate the area under 
the graph of the function using

  a. a lower sum with two rectangles of equal width.

b. a lower sum with four rectangles of equal width.

  c. an upper sum with two rectangles of equal width.

  d. an upper sum with four rectangles of equal width.

1. ƒ(x) = x2 between x = 0 and x = 1.

2. ƒ(x) = x3 between x = 0 and x = 1.

3. ƒ(x) = 1>x between x = 1 and x = 5.

4. ƒ(x) = 4 - x2 between x = -2 and x = 2.

Using rectangles each of whose height is given by the value of 
the function at the midpoint of the rectangle’s base (the midpoint 
rule), estimate the area under the graphs of the following functions, 
using first two and then four rectangles.

5. ƒ(x) = x2 between x = 0 and x = 1.

6. ƒ(x) = x3 between x = 0 and x = 1.

7. ƒ(x) = 1>x between x = 1 and x = 5.

8. ƒ(x) = 4 - x2 between x = -2 and x = 2.

Distance
9. Distance traveled   The accompanying table shows the velocity 

of a model train engine moving along a track for 10 sec. Estimate 
the distance traveled by the engine using 10 subintervals of length 
1 with

  a. left-endpoint values.

  b. right-endpoint values.

11. Length of a road You and a companion are about to drive a 
twisty stretch of dirt road in a car whose speedometer works but 
whose odometer (mileage counter) is broken. To find out how 
long this particular stretch of road is, you record the car’s velocity 
at 10-sec intervals, with the results shown in the accompanying 
table. Estimate the length of the road using

  a. left-endpoint values.

  b. right-endpoint values.

Exercises 5.1
Time Velocity Time Velocity
(min)  (m , sec)  (min)  (m , sec)

  0 1 35 1.2
  5 1.2 40 1.0

10 1.7 45 1.8
15 2.0 50 1.5
20 1.8 55 1.2
25 1.6 60 0
30 1.4    

Time Velocity Time Velocity
(sec) (in. , sec)  (sec) (in. , sec)

0  0  6 11
1 12   7  6
2 22   8  2
3 10   9  6
4  5  10  0
5 13    

10. Distance traveled upstream You are sitting on the bank of a 
tidal river watching the incoming tide carry a bottle upstream. You 
record the velocity of the flow every 5 minutes for an hour, with the 
results shown in the accompanying table. About how far upstream 
did the bottle travel during that hour? Find an estimate using 
12 subintervals of length 5 with

  a. left-endpoint values.

  b. right-endpoint values.

The choices for the ck could maximize or minimize the value of ƒ in the kth subinterval, or 
give some value in between. The true value lies somewhere between the approximations 
given by upper sums and lower sums. The finite sum approximations we looked at 
improved as we took more subintervals of thinner width.

  Velocity Velocity
Time (converted to ft , sec) Time (converted to ft , sec)
(sec) (30 mi , h = 44 ft , sec)  (sec) (30 mi , h = 44 ft , sec)

  0 0 70 15
10 44 80 22
20 15 90 35
30 35 100 44
40 30 110 30
50 44 120 35
60 35    

12. Distance from velocity data The accompanying table gives 
data for the velocity of a vintage sports car accelerating from 0 to 
142 mi >h in 36 sec (10 thousandths of an hour).

Time Velocity Time Velocity
(h) (mi , h) (h) (mi , h)

0.0   0 0.006 116
0.001  40 0.007 125
0.002  62 0.008 132
0.003  82 0.009 137
0.004  96 0.010 142
0.005 108    
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  a. Use rectangles to estimate how far the car traveled during the 
36 sec it took to reach 142 mi >h.

  b. Roughly how many seconds did it take the car to reach the 
halfway point? About how fast was the car going then?

13. Free fall with air resistance An object is dropped straight down 
from a helicopter. The object falls faster and faster but its accelera-
tion (rate of change of its velocity) decreases over time because of 
air resistance. The acceleration is measured in ft>sec2 and 
recorded every second after the drop for 5 sec, as shown:

t 0 1 2 3 4 5

a 32.00 19.41 11.77 7.14 4.33 2.63

a. Find an upper estimate for the speed when t = 5.

b. Find a lower estimate for the speed when t = 5.

c. Find an upper estimate for the distance fallen when t = 3.

14. Distance traveled by a projectile    An object is shot straight 
upward from sea level with an initial velocity of 400 ft > sec.

  a. Assuming that gravity is the only force acting on the object, 
give an upper estimate for its velocity after 5 sec have elapsed. 
Use g = 32 ft>sec2 for the gravitational acceleration.

  b. Find a lower estimate for the height attained after 5 sec.

Average Value of a Function

In Exercises 15–18, use a finite sum to estimate the average value of ƒ
on the given interval by partitioning the interval into four subintervals 
of equal length and evaluating ƒ at the subinterval midpoints.

15. ƒ(x) = x3 on 30, 24
16. ƒ(x) = 1>x on 31, 94
17. ƒ(t) = (1>2) + sin2pt on 30, 24
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Examples of Estimations
19. Water pollution  Oil is leaking out of a tanker damaged at sea. The 

damage to the tanker is worsening as evidenced by the increased 
leakage each hour, recorded in the following table.

Month Jan Feb Mar Apr May Jun

Pollutant
release rate 
(tons >day)

0.20 0.25 0.27 0.34 0.45 0.52

Month Jul Aug Sep Oct Nov Dec

Pollutant
release rate 
(tons >day)

0.63 0.70 0.81 0.85 0.89 0.95

  a. Assuming a 30-day month and that new scrubbers allow only 
0.05 ton >day to be released, give an upper estimate of the 
total tonnage of pollutants released by the end of June. What is 
a lower estimate?

  b. In the best case, approximately when will a total of 125 tons 
of pollutants have been released into the atmosphere?

Time (h) 0 1 2 3 4

Leakage (gal , h) 50 70 97 136 190

a. Give an upper and a lower estimate of the total quantity of oil 
that has escaped after 5 hours.

b. Repeat part (a) for the quantity of oil that has escaped after 
8 hours.

c. The tanker continues to leak 720 gal >h after the first 8 hours. 
If the tanker originally contained 25,000 gal of oil, approxi-
mately how many more hours will elapse in the worst case 
before all the oil has spilled? In the best case?

Time (h) 5 6 7 8

Leakage (gal , h) 265 369 516 720

20. Air pollution  A power plant generates electricity by burning oil. 
Pollutants produced as a result of the burning process are removed 
by scrubbers in the smokestacks. Over time, the scrubbers 
become less efficient and eventually they must be replaced when 
the amount of pollution released exceeds government standards. 
Measurements are taken at the end of each month determining the 
rate at which pollutants are released into the atmosphere, recorded 
as follows.
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21. Inscribe a regular n-sided polygon inside a circle of radius 1 and 
compute the area of the polygon for the following values of n:

  a. 4 (square)  b. 8 (octagon)  c. 16

  d. Compare the areas in parts (a), (b), and (c) with the area of the 
circle.

22. (Continuation of Exercise 21.)

  a. Inscribe a regular n-sided polygon inside a circle of radius 1 and 
compute the area of one of the n congruent triangles formed by 
drawing radii to the vertices of the polygon.

  b. Compute the limit of the area of the inscribed polygon as 
n S q.

  c. Repeat the computations in parts (a) and (b) for a circle of 
radius r.

COMPUTER EXPLORATIONS
In Exercises 23–26, use a CAS to perform the following steps.

  a. Plot the functions over the given interval.

  b. Subdivide the interval into n = 100, 200, and 1000 subinter-
vals of equal length and evaluate the function at the midpoint 
of each subinterval.

  c. Compute the average value of the function values generated in 
part (b).

  d. Solve the equation ƒ(x) = (average value) for x using the aver-
age value calculated in part (c) for the n = 1000 partitioning.

23. ƒ(x) = sin x on 30, p4 24. ƒ(x) = sin2 x on 30, p4
25. ƒ(x) = x sin

1
x on cp

4
, p d 26. ƒ(x) = x sin2 1

x on cp
4

, p d

5.2 Sigma Notation and Limits of Finite Sums

In estimating with finite sums in Section 5.1, we encountered sums with many terms (up to 
1000 in Table 5.1, for instance). In this section we introduce a more convenient notation 
for sums with a large number of terms. After describing the notation and stating several of 
its properties, we look at what happens to a finite sum approximation as the number of 
terms approaches infinity.

Finite Sums and Sigma Notation

Sigma notation enables us to write a sum with many terms in the compact form

a

n

k=1
ak = a1 + a2 + a3 + g + an-1 + an .

The Greek letter Σ  (capital sigma, corresponding to our letter S), stands for “sum.” The 
index of summation k tells us where the sum begins (at the number below the Σ  symbol) 
and where it ends (at the number above Σ). Any letter can be used to denote the index, but 
the letters i, j, and k are customary.

k = 1

ak

n

The index k ends at k = n.

The index k starts at k = 1.

ak is a formula for the kth term.

The summation symbol
(Greek letter sigma)

Thus we can write

12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92 + 102 + 112 = a

11

k=1
k2,

and

ƒ(1) + ƒ(2) + ƒ(3) + g+ ƒ(100) = a

100

i=1
ƒ(i).

The lower limit of summation does not have to be 1; it can be any integer.
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