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Alternatively, we can use the following reasoning. We start with the idea from arith-
metic that the average of n numbers is their sum divided by n. A continuous function ƒ on 3a, b4  may have infinitely many values, but we can still sample them in an orderly way. 
We divide 3a, b4  into n subintervals of equal width ∆x = (b - a)>n and evaluate ƒ at a 
point ck in each (Figure 5.14). The average of the n sampled values is

ƒ(c1) + ƒ(c2) + g + ƒ(cn)
n = 1

n a

n

k=1
ƒ(ck)

= ∆x
b - a a

n

k=1
ƒ(ck) ∆x = b - a

n , so
1
n = ∆x

b - a

= 1
b - a a

n

k=1
ƒ(ck) ∆x. Constant Multiple Rule

The average is obtained by dividing a Riemann sum for ƒ on 3a, b4  by (b - a). As we 
increase the size of the sample and let the norm of the partition approach zero, the average 
approaches (1>(b - a))1

b
a ƒ(x) dx. Both points of view lead us to the following definition.

x

y

0

(ck, f (ck))

y = f (x)

xn = b
ckx0 = a

x1

FIGURE 5.14 A sample of values of a 
function on an interval 3a, b4 .
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FIGURE 5.15 The average 
value of ƒ(x) = 24 - x2 on 
3-2, 2] is p>2 (Example 5). The 
area of the rectangle shown here is 
4 # (p>2) = 2p, which is also the 
area of the semicircle.

DEFINITION If ƒ is integrable on 3a, b4 , then its average value on 3a, b 4 ,
also called its mean, is

av(ƒ) = 1
b - aL

b

a
ƒ(x) dx.

EXAMPLE 5  Find the average value of ƒ(x) = 24 - x2 on 3-2, 24 .
Solution We recognize ƒ(x) = 24 - x2 as a function whose graph is the upper semi-
circle of radius 2 centered at the origin (Figure 5.15).

Since we know the area inside a circle, we do not need to take the limit of Riemann 
sums. The area between the semicircle and the x-axis from -2 to 2 can be computed using 
the geometry formula

Area = 1
2
# pr2 = 1

2
# p(2)2 = 2p.

Because ƒ is nonnegative, the area is also the value of the integral of ƒ from -2 to 2,

L

2

-2
24 - x2 dx = 2p.

Therefore, the average value of ƒ is

av(ƒ) = 1
2 - (-2)L

2

-2
24 - x2 dx = 1

4
(2p) = p

2
.

Notice that the average value of ƒ over 3-2, 24  is the same as the height of a rectangle over 3-2, 24  whose area equals the area of the upper semicircle (see Figure 5.15).

Interpreting Limits of Sums as Integrals
Express the limits in Exercises 1–8 as definite integrals.

1. lim
}P}S0 a

n

k=1
ck

2 ∆xk , where P is a partition of 30, 24
2. lim

}P}S0 a

n

k=1
2ck

3 ∆xk , where P is a partition of 3-1, 04

3. lim0 0P 0 0S0 a

n

k=1
(ck

2 - 3ck) ∆xk , where P is a partition of 3-7, 54
4. lim

}P}S0 a

n

k=1
a 1

ck
b ∆xk , where P is a partition of 31, 44

5. lim0 0P 0 0S0 a

n

k=1

1
1 - ck

∆xk , where P is a partition of 32, 34

Exercises 5.3
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6. lim0 0P 0 0S0 a

n

k=1
24 - ck

2 ∆xk , where P is a partition of 30, 14
7. lim

}P}S0 a

n

k=1
(sec ck) ∆xk , where P is a partition of 3-p>4, 04

8. lim
}P}S0 a

n

k=1
(tan ck) ∆xk , where P is a partition of 30, p>44

Using the Definite Integral Rules
9. Suppose that ƒ and g are integrable and that

L

2

1
ƒ(x) dx = -4,

L

5

1
ƒ(x) dx = 6,

L

5

1
g(x) dx = 8.

  Use the rules in Table 5.6 to find

  a.
L

2

2
g(x) dx b.

L

1

5
g(x) dx

  c.
L

2

1
3ƒ(x) dx d.

L

5

2
ƒ(x) dx

  e.
L

5

1
3ƒ(x) - g(x)4 dx f.

L

5

1
34ƒ(x) - g(x)4 dx

10. Suppose that ƒ and h are integrable and that

L

9

1
ƒ(x) dx = -1,

L

9

7
ƒ(x) dx = 5,

L

9

7
h(x) dx = 4.

  Use the rules in Table 5.6 to find

  a.
L

9

1
-2ƒ(x) dx b.

L

9

7
3ƒ(x) + h(x)4 dx

  c.
L

9

7
32ƒ(x) - 3h(x)4 dx d.

L

1

9
ƒ(x) dx

  e.
L

7

1
ƒ(x) dx f.

L

7

9
3h(x) - ƒ(x)4 dx

11. Suppose that 1
2

1 ƒ(x) dx = 5. Find

  a.
L

2

1
ƒ(u) du b.

L

2

1
23ƒ(z) dz

  c.
L

1

2
ƒ(t) dt d.

L

2

1
3-ƒ(x)4 dx

12. Suppose that 1
0
-3 g(t) dt = 22. Find

  a.
L

-3

0
g(t) dt b.

L

0

-3
g(u) du

  c.
L

0

-3
3-g(x)4 dx d.

L

0

-3

g(r)

22
dr

13. Suppose that ƒ is integrable and that 1
3

0 ƒ(z) dz = 3 and 

1
4

0 ƒ(z) dz = 7. Find

  a.
L

4

3
ƒ(z) dz b.

L

3

4
ƒ(t) dt

14. Suppose that h is integrable and that 1
1
-1 h(r) dr = 0 and 

1
3
-1 h(r) dr = 6.  Find

  a.
L

3

1
h(r) dr b. -

L

1

3
h(u) du

Using Known Areas to Find Integrals
In Exercises 15–22, graph the integrands and use known area formulas to 
evaluate the integrals.

15.
L

4

-2
ax

2
+ 3b dx 16.

L

3>2

1>2
(-2x + 4) dx

17.
L

3

-3
29 - x2 dx 18.

L

0

-4
216 - x2 dx

19.
L

1

-2

0 x 0 dx 20.
L

1

-1
(1 - 0 x 0 ) dx

21.
L

1

-1
(2 - 0 x 0 ) dx 22.

L

1

-1
11 + 21 - x22 dx

Use known area formulas to evaluate the integrals in Exercises 23–28.

23.
L

b

0

x
2

dx, b 7 0 24.
L

b

0
4x dx, b 7 0

25.
L

b

a
2s ds, 0 6 a 6 b 26.

L

b

a
3t dt, 0 6 a 6 b

27. ƒ(x) = 24 - x2 on a. 3-2, 24 , b. 30, 24
28. ƒ(x) = 3x + 21 - x2 on a. 3-1, 04 , b. 3-1, 14
Evaluating Definite Integrals
Use the results of Equations (2) and (4) to evaluate the integrals in 
Exercises 29–40.

29.
L

22

1
x dx 30.

L

2.5

0.5
x dx 31.

L

2p

p

u du

32.
L

522

22
r dr 33.

L

23 7

0
x2 dx 34.

L

0.3

0
s2 ds

35.
L

1>2

0
t2 dt 36.

L

p>2

0
u2 du 37.

L

2a

a
x dx

38.
L

23a

a
x dx 39.

L

23 b

0
x2 dx 40.

L

3b

0
x2 dx

Use the rules in Table 5.6 and Equations (2)–(4) to evaluate the integrals 
in Exercises 41–50.

41.
L

1

3
7 dx 42.

L

2

0
5x dx

43.
L

2

0
(2t - 3) dt 44.

L

22

0
1t - 222 dt

45.
L

1

2
a1 + z

2
b dz 46.

L

0

3
(2z - 3) dz

47.
L

2

1
3u2 du 48.

L

1

1>2
24u2 du

49.
L

2

0
(3x2 + x - 5) dx 50.

L

0

1
(3x2 + x - 5) dx

Finding Area by Definite Integrals
In Exercises 51–54, use a definite integral to find the area of the region 
between the given curve and the x-axis on the interval 30, b4 .
51. y = 3x2 52. y = px2

53. y = 2x 54. y = x
2

+ 1
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Finding Average Value
In Exercises 55–62, graph the function and find its average value over 
the given interval.

55. ƒ(x) = x2 - 1 on 30, 234
56. ƒ(x) = - x2

2
on 30, 34

57. ƒ(x) = -3x2 - 1 on 30, 14
58. ƒ(x) = 3x2 - 3 on 30, 14
59. ƒ(t) = (t - 1)2 on 30, 34
60. ƒ(t) = t2 - t on 3-2, 14
61. g(x) = 0 x 0 - 1 on a. 3-1, 14 , b. 31, 34 , and c. 3-1, 34
62. h(x) = - 0 x 0 on a. 3-1, 04 , b. 30, 14 , and c. 3-1, 14

Definite Integrals as Limits of Sums
Use the method of Example 4a or Equation (1) to evaluate the definite 
integrals in Exercises 63–70.

63.
L

b

a
c dx 64.

L

2

0
(2x + 1) dx

65.
L

b

a
x2 dx, a 6 b 66.

L

0

-1
(x - x2) dx

67.
L

2

-1

(3x2 - 2x + 1) dx 68.
L

1

-1
x3 dx

69.
L

b

a
x3 dx, a 6 b 70.

L

1

0
(3x - x3) dx

Theory and Examples
71. What values of a and b maximize the value of

L

b

a

(x - x2) dx?

  (Hint: Where is the integrand positive?)

72. What values of a and b minimize the value of

L

b

a

(x4 - 2x2) dx?

73. Use the Max-Min Inequality to find upper and lower bounds for 
the value of

L

1

0

1
1 + x2 dx.

74. (Continuation of Exercise 73.) Use the Max-Min Inequality to 
find upper and lower bounds for

L

0.5

0

1
1 + x2 dx and

L

1

0.5

1
1 + x2 dx.

  Add these to arrive at an improved estimate of

L

1

0

1
1 + x2 dx.

75. Show that the value of 1
1

0 sin (x2) dx cannot possibly be 2.

76. Show that the value of 1
1

0 2x + 8 dx lies between 222 ≈ 2.8
and 3.

77. Integrals of nonnegative functions Use the Max-Min Inequality 
to show that if ƒ is integrable then

ƒ(x) Ú 0 on 3a, b4 1
L

b

a
ƒ(x) dx Ú 0.

78. Integrals of nonpositive functions Show that if ƒ is integrable 
then

ƒ(x) … 0 on 3a, b4 1
L

b

a
ƒ(x) dx … 0.

79. Use the inequality sin x … x, which holds for x Ú 0, to find an 
upper bound for the value of 1

1
0 sin x dx.

80. The inequality sec x Ú 1 + (x2>2) holds on (-p>2, p>2). Use 
it to find a lower bound for the value of 1

1
0 sec x dx.

81. If av(ƒ) really is a typical value of the integrable function ƒ(x) on 
3a, b4 , then the constant function av(ƒ) should have the same 
integral over 3a, b4  as ƒ. Does it? That is, does

L

b

a
av(ƒ) dx =

L

b

a
ƒ(x) dx?

  Give reasons for your answer.

82. It would be nice if average values of integrable functions obeyed 
the following rules on an interval 3a, b4 .

  a. av(ƒ + g) = av(ƒ) + av(g)

  b. av(kƒ) = k av(ƒ) (any number k)

  c. av(ƒ) … av(g) if ƒ(x) … g(x) on 3a, b4 .
  Do these rules ever hold? Give reasons for your answers.

83. Upper and lower sums for increasing functions

  a. Suppose the graph of a continuous function ƒ(x) rises steadily 
as x moves from left to right across an interval 3a, b4 . Let P
be a partition of 3a, b4  into n subintervals of equal length 
∆x = (b - a)>n. Show by referring to the accompanying fig-
ure that the difference between the upper and lower sums for 
ƒ on this partition can be represented graphically as the area 
of a rectangle R whose dimensions are 3ƒ(b) - ƒ(a)4  by ∆x.
(Hint: The difference U - L is the sum of areas of rectangles 
whose diagonals Q0Q1, Q1Q2,c, Qn-1Qn lie approximately 
along the curve. There is no overlapping when these rectan-
gles are shifted horizontally onto R.)

  b. Suppose that instead of being equal, the lengths ∆xk of the 
subintervals of the partition of 3a, b4  vary in size. Show that

U - L … 0 ƒ(b) - ƒ(a) 0 ∆xmax,

    where ∆xmax is the norm of P, and hence that lim}P}S0

(U - L) = 0.
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x

y

0 x0 = a xn = bx1

Q1

Q2

Q3

x2

y = f (x)

f (b) − f (a)

R

Δx

84. Upper and lower sums for decreasing functions (Continua-
tion of Exercise 83.)

  a. Draw a figure like the one in Exercise 83 for a continuous 
function ƒ(x) whose values decrease steadily as x moves from 
left to right across the interval 3a, b4 . Let P be a partition of 
3a, b4  into subintervals of equal length. Find an expression 
for U - L that is analogous to the one you found for U - L
in Exercise 83a.

  b. Suppose that instead of being equal, the lengths ∆xk of the 
subintervals of P vary in size. Show that the inequality

U - L … 0 ƒ(b) - ƒ(a) 0 ∆xmax

    of Exercise 83b still holds and hence that lim}P}S0

(U - L) = 0.

85. Use the formula

sin h + sin 2h + sin 3h + g+ sin mh

=
cos (h>2) - cos ((m + (1>2))h)

2 sin (h>2)

   to find the area under the curve y = sin x from x = 0 to 
x = p>2 in two steps:

  a. Partition the interval 30, p>24  into n subintervals of equal 
length and calculate the corresponding upper sum U; then

  b. Find the limit of U as n S q and ∆x = (b - a)>n S 0.

86. Suppose that ƒ is continuous and nonnegative over 3a, b4 , as in 
the accompanying figure. By inserting points

x1, x2,c, xk-1, xk,c, xn-1

  as shown, divide 3a, b4  into n subintervals of lengths ∆x1 = x1 - a,
∆x2 = x2 - x1,c, ∆xn = b - xn-1, which need not be equal.

  a. If mk = min 5ƒ(x) for x in the kth subinterval6 , explain the 
connection between the lower sum

L = m1 ∆x1 + m2 ∆x2 + g+ mn ∆xn

   and the shaded regions in the first part of the figure.

  b. If Mk = max 5ƒ(x) for x in the kth subinterval6 , explain the 
connection between the upper sum

U = M1 ∆x1 + M2 ∆x2 + g+ Mn ∆xn

   and the shaded regions in the second part of the figure.

  c. Explain the connection between U - L and the shaded 
regions along the curve in the third part of the figure.

x

y

0 a bx1 x2 x3 xk−1 xn−1xk

y = f (x)

x

y

0 a bxk+1xk

x

y

0 a bxk+1xk

b − a

P

87. We say ƒ is uniformly continuous on 3a, b4  if given any P 7 0,
there is a d 7 0 such that if x1, x2 are in 3a, b4  and 0 x1 - x2 0 6 d, then 0 ƒ(x1) - ƒ(x2) 0 6 P. It can be shown that a 
continuous function on 3a, b4  is uniformly continuous. Use this 
and the figure for Exercise 86 to show that if ƒ is continuous and 
P 7 0 is given, it is possible to make U - L … P # (b - a) by 
making the largest of the ∆xk>s sufficiently small.

88. If you average 30 mi >h on a 150-mi trip and then return over the 
same 150 mi at the rate of 50 mi >h, what is your average speed 
for the trip? Give reasons for your answer.

COMPUTER EXPLORATIONS
If your CAS can draw rectangles associated with Riemann sums, use 
it to draw rectangles associated with Riemann sums that converge to 
the integrals in Exercises 89–94. Use n = 4, 10, 20, and 50 subinter-
vals of equal length in each case.

89.
L

1

0
(1 - x) dx = 1

2
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90.
L

1

0
(x2 + 1) dx = 4

3
91.

L

p

-p
cos x dx = 0

92.
L

p>4

0
sec2 x dx = 1 93.

L

1

-1

0 x 0 dx = 1

94.
L

2

1

1
x dx (The integral’s value is about 0.693.)

In Exercises 95–102, use a CAS to perform the following steps:

  a. Plot the functions over the given interval.

  b. Partition the interval into n = 100, 200, and 1000 subinter-
vals of equal length, and evaluate the function at the midpoint 
of each subinterval.

  c. Compute the average value of the function values generated in 
part (b).

  d. Solve the equation ƒ(x) = (average value) for x using the aver-
age value calculated in part (c) for the n = 1000 partitioning.

95. ƒ(x) = sin x on 30, p4
96. ƒ(x) = sin2 x on 30, p4
97. ƒ(x) = x sin

1
x on cp

4
, p d

98. ƒ(x) = x sin2 1
x on cp

4
, p d

99. ƒ(x) = xe-x on 30, 14
100. ƒ(x) = e-x2

on 30, 14
101. ƒ(x) = ln x

x on 32, 54
102. ƒ(x) = 1

21 - x2
on c 0,

1
2
d

5.4 The Fundamental Theorem of Calculus

In this section we present the Fundamental Theorem of Calculus, which is the central theorem 
of integral calculus. It connects integration and differentiation, enabling us to compute inte-
grals using an antiderivative of the integrand function rather than by taking limits of Riemann 
sums as we did in Section 5.3. Leibniz and Newton exploited this relationship and started 
mathematical developments that fueled the scientific revolution for the next 200 years.

Along the way, we present an integral version of the Mean Value Theorem, which is 
another important theorem of integral calculus and is used to prove the Fundamental 
Theorem. We also find that the net change of a function over an interval is the integral of 
its rate of change, as suggested by Example 3 in Section 5.1.

Mean Value Theorem for Definite Integrals

In the previous section we defined the average value of a continuous function over a 
closed interval 3a, b4  as the definite integral 1

b
a ƒ(x) dx divided by the length or width 

b - a of the interval. The Mean Value Theorem for Definite Integrals asserts that this 
average value is always taken on at least once by the function ƒ in the interval.

The graph in Figure 5.16 shows a positive continuous function y = ƒ(x) defined over 
the interval 3a, b4 . Geometrically, the Mean Value Theorem says that there is a number c in 3a, b4  such that the rectangle with height equal to the average value ƒ(c) of the function and 
base width b - a has exactly the same area as the region beneath the graph of ƒ from a to b.

FIGURE 5.16 The value ƒ(c) in the 
Mean Value Theorem is, in a sense, 
the average (or mean) height of ƒ on 
3a, b4. When ƒ Ú 0, the area of the 
rectangle is the area under the graph of 
ƒ from a to b,

ƒ(c)(b - a) =
L

b

a
ƒ(x) dx.

y

x
a b0 c

y = f (x)

f (c),

b − a

average
height

Proof  If we divide both sides of the Max-Min Inequality (Table 5.6, Rule 6) by (b - a),
we obtain

min ƒ … 1
b - aL

b

a
ƒ(x) dx … max ƒ.

HISTORICAL BIOGRAPHY

Sir Isaac Newton
(1642–1727)

THEOREM 3—The Mean Value Theorem for Definite Integrals If ƒ is continu-
ous on 3a, b4, then at some point c in 3a, b4,

ƒ(c) = 1
b - aL

b

a
ƒ(x) dx.
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