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Integrals like those in Example 8 occur frequently in electrical engineering.

Integration by Parts
Evaluate the integrals in Exercises 1–24 using integration by parts.

1.
L

x sin
x
2

dx 2.
L
u cos pu du

3.
L

t2 cos t dt 4.
L

x2 sin x dx

5.
L

2

1
x ln x dx 6.

L

e

1
x3 ln x dx

7.
L

xex dx 8.
L

xe3x dx

9.
L

x2e-x dx 10.
L

(x2 - 2x + 1)e2x dx

11.
L

tan -1 y dy 12.
L

sin-1 y dy

13.
L

x sec2 x dx 14.
L

4x sec2 2x dx

15.
L

x3ex dx 16.
L

p4e-p dp

17.
L

(x2 - 5x)ex dx 18.
L

(r2 + r + 1)er dr

19.
L

x5ex dx 20.
L

t2e4t dt

21.
L

eu sin u du 22.
L

e-y cos y dy

23.
L

e2x cos 3x dx 24.
L

e-2x sin 2x dx

Using Substitution
Evaluate the integrals in Exercise 25–30 by using a substitution prior 
to integration by parts.

25.
L

e23s+9 ds 26.
L

1

0
x21 - x dx

27.
L

p>3

0
x tan2 x dx 28.

L
ln (x + x2) dx

29.
L

sin (ln x) dx 30.
L

z(ln z)2 dz

Evaluating Integrals
Evaluate the integrals in Exercises 31–52. Some integrals do not 
require integration by parts.

31.
L

x sec x2 dx 32.
L

cos 2x

2x
dx

33.
L

x (ln x)2 dx 34.
L

1
x (ln x)2 dx

35.
L

ln x
x2 dx 36.

L

(ln x)3

x dx

37.
L

x3 ex4
dx 38.

L
x5 ex3

dx

39.
L

x32x2 + 1 dx 40.
L

x2 sin x3 dx

41.
L

sin 3x cos 2x dx 42.
L

sin 2x cos 4x dx

43.
L
2x ln x dx 44.

L

e2x

2x
dx

45.
L

cos 2x dx 46.
L
2x e2x dx

47.
L

p>2

0
u2 sin 2u du 48.

L

p>2

0
x3 cos 2x dx

49.
L

2

2>23
t sec-1 t dt 50.

L

1>22

0
2x sin-1 (x2) dx

51.
L

x tan-1 x dx 52.
L

x2 tan-1 x
2

dx
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58. Finding volume Find the volume of the solid generated by 
revolving the region bounded by the x-axis and the curve 
y = x sin x, 0 … x … p, about

a. the y-axis.

b. the line x = p.

  (See Exercise 53 for a graph.)

59. Consider the region bounded by the graphs of y = ln x, y = 0,
and x = e.

a. Find the area of the region.

b. Find the volume of the solid formed by revolving this region 
about the x-axis.

c. Find the volume of the solid formed by revolving this region 
about the line x = -2.

d. Find the centroid of the region.

60. Consider the region bounded by the graphs of y = tan-1 x, y = 0,
and x = 1.

a. Find the area of the region.

b. Find the volume of the solid formed by revolving this region 
about the y-axis.

61. Average value A retarding force, symbolized by the dashpot in 
the accompanying figure, slows the motion of the weighted spring 
so that the mass’s position at time t is

y = 2e-t cos t, t Ú 0.

  Find the average value of y over the interval 0 … t … 2p.

0

Massy

Dashpot

y

62. Average value In a mass-spring-dashpot system like the one in 
Exercise 61, the mass’s position at time t is

y = 4e-t(sin t - cos t), t Ú 0.

  Find the average value of y over the interval 0 … t … 2p.

Reduction Formulas
In Exercises 63–67, use integration by parts to establish the reduction 
formula.

63.
L

xn cos x dx = xn sin x - n
L

xn-1 sin x dx

64.
L

xn sin x dx = -xn cos x + n
L

xn-1 cos x dx

Theory and Examples
53. Finding area Find the area of the region enclosed by the curve 

y = x sin x and the x-axis (see the accompanying figure) for

a. 0 … x … p.

b. p … x … 2p.

c. 2p … x … 3p.

d. What pattern do you see here? What is the area between the 
curve and the x-axis for np … x … (n + 1)p, n an arbitrary 
nonnegative integer? Give reasons for your answer.

x

y

0 2pp

5

y = x sin x10

−5

3p

54. Finding area Find the area of the region enclosed by the curve 
y = x cos x and the x-axis (see the accompanying figure) for

a. p>2 … x … 3p>2.

b. 3p>2 … x … 5p>2.

c. 5p>2 … x … 7p>2.

d. What pattern do you see? What is the area between the curve 
and the x-axis for

a2n - 1
2
bp … x … a2n + 1

2
bp,

  n an arbitrary positive integer? Give reasons for your answer.
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55. Finding volume Find the volume of the solid generated by 
revolving the region in the first quadrant bounded by the coordi-
nate axes, the curve y = ex, and the line x = ln 2 about the line 
x = ln 2.

56. Finding volume Find the volume of the solid generated by 
revolving the region in the first quadrant bounded by the coordi-
nate axes, the curve y = e-x, and the line x = 1

a. about the y-axis.

b. about the line x = 1.

57. Finding volume Find the volume of the solid generated by 
revolving the region in the first quadrant bounded by the coordi-
nate axes and the curve y = cos x, 0 … x … p>2, about

a. the y-axis.

b. the line x = p>2.
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For the integral of cos-1 x we get

L
cos -1 xdx = x cos-1 x -

L
cos ydy y = cos-1 x

= x cos-1 x - sin y + C

= x cos-1 x - sin (cos-1 x) + C.

Use the formula

L
ƒ -1(x) dx = xƒ -1(x) -

L
ƒ(y) dy y = ƒ -1(x) (4)

to evaluate the integrals in Exercises 71–74. Express your answers in 
terms of x.

71.
L

sin-1 x dx 72.
L

tan-1 x dx

73.
L

sec-1 x dx 74.
L

log2 x dx

Another way to integrate ƒ -1(x) (when ƒ -1 is integrable, of 
course) is to use integration by parts with u = ƒ -1(x) and dy = dx to 
rewrite the integral of ƒ -1 as

L
ƒ -1(x) dx = xƒ -1(x) -

L
x a d

dx
 ƒ -1(x)b dx. (5)

Exercises 75 and 76 compare the results of using Equations (4) and (5).

75. Equations (4) and (5) give different formulas for the integral of 
cos-1 x:

a.
L

cos-1 x dx = x cos-1 x -  sin  (cos-1 x) + C Eq. (4)

b.
L

cos-1 x dx = x cos-1 x - 21 - x2 + C Eq. (5)

  Can both integrations be correct? Explain.

76. Equations (4) and (5) lead to different formulas for the integral of 
tan-1 x:

a.
L

tan-1 x dx = x tan-1 x - ln sec (tan-1 x) + C Eq. (4)

b.
L

tan-1 x dx = x tan-1 x - ln 21 + x2 + C Eq. (5)

  Can both integrations be correct? Explain.

Evaluate the integrals in Exercises 77 and 78 with (a) Eq. (4) and (b)
Eq. (5). In each case, check your work by differentiating your answer 
with respect to x.

77.
L

 sinh-1 x dx 78.
L

tanh-1 x dx

65.
L

xneax dx = xneax

a - n
a
L

xn-1eax dx, a ≠ 0

66.
L

(ln x)n dx = x(ln x)n - n
L

(ln x)n-1 dx

67.
L

xm(ln x)n dx = xm+1

m + 1
 (ln x)n - n

m + 1
#

L
xm (ln x)n-1 dx, m ≠ -1

68. Use Example 5 to show that

L

p>2

0
sinn x dx =

L

p>2

0
cosn x dx

= μ
ap

2
b1 # 3 # 5g(n - 1)

2 # 4 # 6gn
,  n even

2 # 4 # 6g(n - 1)
1 # 3 # 5gn

,  n odd

69. Show that

L

b

a
a
L

b

x
ƒ(t) dtb dx =

L

b

a
(x - a)ƒ(x) dx.

70. Use integration by parts to obtain the formula

L
21 - x2 dx = 1

2
x 21 - x2 + 1

2L

1

21 - x2
dx.

Integrating Inverses of Functions
Integration by parts leads to a rule for integrating inverses that usually 
gives good results:

L
ƒ -1(x) dx =

L
yƒ′(y) dy

y = ƒ -1(x), x = ƒ( y)
dx = ƒ′( y) dy

= yƒ(y) -
L

ƒ(y) dy  
Integration by parts with 
u = y, dy = ƒ′( y) dy

= xƒ-1(x) -
L

ƒ(y) dy

The idea is to take the most complicated part of the integral, in this 
case ƒ -1(x), and simplify it first. For the integral of ln x, we get

L
ln x dx =

L
yey dy

y = ln x, x = e y

dx = e y dy

= yey - ey + C

= x ln x - x + C.

8.3 Trigonometric Integrals

Trigonometric integrals involve algebraic combinations of the six basic trigonometric 
functions. In principle, we can always express such integrals in terms of sines and cosines, 
but it is often simpler to work with other functions, as in the integral

L
sec2 x dx = tan x + C.
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