Exercises m

Using Trigonometric Substitutions
Evaluate the integrals in Exercises 1-14.
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Assorted Integrations

Use any method to evaluate the integrals in Exercises 15-34. Most
will require trigonometric substitutions, but some can be evaluated by
other methods.
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In Exercises 35-48, use an appropriate substitution and then a trigono-
metric substitution to evaluate the integrals.
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(Hint: Letu = x3/2.)
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Initial Value Problems
Solve the initial value problems in Exercises 4952 for y as a function
of x.
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Applications and Examples
53. Area Find the area of the region in the first quadrant that is
enclosed by the coordinate axes and the curve y = V9 — x2/3.

54. Area Find the area enclosed by the ellipse
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55. Consider the region bounded by the graphs of y = sin™!

and x = 1/2.

a. Find the area of the region.

x,y =0,

b. Find the centroid of the region.

56. Consider the region bounded by the graphs of y = Vxtan'x
and y = 0 for 0 = x = 1. Find the volume of the solid formed
by revolving this region about the x-axis (see accompanying
figure).

y= Vxtan 'x
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57. Evaluate f ¥ V1 — x2dx using b. Solve the equation in part (a) for f(x), using f(30) = 0.

a. integration by parts.

b. a u-substitution. y = f(x) path of skier
¢. atrigonometric substitution.

58. Path of a water skier Suppose that a boat is positioned at the
origin with a water skier tethered to the boat at the point (30, 0)
on a rope 30 ft long. As the boat travels along the positive y-axis,
the skier is pulled behind the boat along an unknown path
y = f(x), as shown in the accompanying figure.

_ _ 2
a. Show that f'(x) = — 200 — &
(Hint: Assume that the skier is always pointed directly at the boat
and the rope is on a line tangent to the path y = f(x).)

NOT TO SCALE

85 Integration of Rational Functions by Partial Fractions

This section shows how to express a rational function (a quotient of polynomials) as a sum
of simpler fractions, called partial fractions, which are easily integrated. For instance, the
rational function (5x — 3)/(x? — 2x — 3) can be rewritten as

Sx =3 _ 2 n 3
2 _2x—3 x+1 x—3

You can verify this equation algebraically by placing the fractions on the right side over a
common denominator (x + 1)(x — 3). The skill acquired in writing rational functions as
such a sum is useful in other settings as well (for instance, when using certain transform
methods to solve differential equations). To integrate the rational function
(5x — 3)/(x* — 2x — 3) on the left side of our previous expression, we simply sum the
integrals of the fractions on the right side:

S5x — 3 3
PRy / "*/x—3d’“

=2In|x + 1| + 3In|x — 3| + C.

The method for rewriting rational functions as a sum of simpler fractions is called the
method of partial fractions. In the case of the preceding example, it consists of finding
constants A and B such that

=3 _ A " B
2 _2%x—3 x+1 x—3

ey

(Pretend for a moment that we do not know that A = 2 and B = 3 will work.) We call the
fractions A/(x + 1) and B/(x — 3) partial fractions because their denominators are
only part of the original denominator x> — 2x — 3. We call A and B undetermined coef-
ficients until suitable values for them have been found.

To find A and B, we first clear Equation (1) of fractions and regroup in powers of x,
obtaining

5x —3=Ax—3)+Bx+1)=(A+ Bx —3A + B.

This will be an identity in x if and only if the coefficients of like powers of x on the two
sides are equal:

A+ B=35, —3A + B =-3.

Solving these equations simultaneously gives A = 2 and B = 3.
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