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In particular, notice that when we double the value of n (thereby halving the value of 
h = ∆x), the T error is divided by 2 squared, whereas the S error is divided by 2 to the 
fourth.

This has a dramatic effect as ∆x = (2 - 1)>n gets very small. The Simpson approxi-
mation for n = 50 rounds accurately to seven places and for n = 100 agrees to nine deci-
mal places (billionths)!

If ƒ(x) is a polynomial of degree less than four, then its fourth derivative is zero, and

ES = - b - a
180

 ƒ(4)(c)(∆x)4 = - b - a
180

 (0)(∆x)4 = 0.

Thus, there will be no error in the Simpson approximation of any integral of ƒ. In other 
words, if ƒ is a constant, a linear function, or a quadratic or cubic polynomial, Simpson’s 
Rule will give the value of any integral of ƒ exactly, whatever the number of subdivisions. 
Similarly, if ƒ is a constant or a linear function, then its second derivative is zero, and

ET = - b - a
12

 ƒ″(c)(∆x)2 = - b - a
12

 (0)(∆x)2 = 0.

The Trapezoidal Rule will therefore give the exact value of any integral of ƒ. This is no 
surprise, for the trapezoids fit the graph perfectly.

Although decreasing the step size ∆x reduces the error in the Simpson and Trapezoi-
dal approximations in theory, it may fail to do so in practice. When ∆x is very small, say 
∆x = 10-8, computer or calculator round-off errors in the arithmetic required to evaluate 
S and T may accumulate to such an extent that the error formulas no longer describe what 
is going on. Shrinking ∆x below a certain size can actually make things worse. You should 
consult a text on numerical analysis for more sophisticated methods if you are having 
problems with round-off error using the rules discussed in this section.

EXAMPLE 6  A town wants to drain and fill a small polluted swamp (Figure 8.11). 
The swamp averages 5 ft deep. About how many cubic yards of dirt will it take to fill the 
area after the swamp is drained?

Solution To calculate the volume of the swamp, we estimate the surface area and multi-
ply by 5. To estimate the area, we use Simpson’s Rule with ∆x = 20 ft and the y’s equal 
to the distances measured across the swamp, as shown in Figure 8.11.

S = ∆x
3  (y0 + 4y1 + 2y2 + 4y3 + 2y4 + 4y5 + y6)

= 20
3  (146 + 488 + 152 + 216 + 80 + 120 + 13) = 8100

The volume is about (8100)(5) = 40,500 ft3 or 1500 yd3.

Vertical spacing = 20 ft 

13 ft

122 ft

Ignored

76 ft

54 ft

40 ft

30 ft

146 ft

FIGURE 8.11 The dimensions of the 
swamp in Example 6.

Estimating Definite Integrals
The instructions for the integrals in Exercises 1–10 have two parts, 
one for the Trapezoidal Rule and one for Simpson’s Rule.

I. Using the Trapezoidal Rule

  a. Estimate the integral with n = 4 steps and find an upper 
bound for 0ET 0 .

  b. Evaluate the integral directly and find 0ET 0 .
  c. Use the formula ( 0ET 0 >(true value)) * 100 to express 0ET 0  as 

a percentage of the integral’s true value.

II. Using Simpson’s Rule

  a. Estimate the integral with n = 4 steps and find an upper 
bound for 0ES 0 .

  b. Evaluate the integral directly and find 0ES 0 .
c. Use the formula ( 0ES 0 >(true value)) * 100 to express 0ES 0  as 

a percentage of the integral’s true value.
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24. Distance traveled The accompanying table shows time-to-
speed data for a sports car accelerating from rest to 130 mph. 
How far had the car traveled by the time it reached this speed? 
(Use trapezoids to estimate the area under the velocity curve, but 
be careful: The time intervals vary in length.)

Speed change Time (sec)

Zero to 30 mph 2.2
40 mph 3.2
50 mph 4.5
60 mph 5.9
70 mph 7.8
80 mph 10.2
90 mph 12.7

100 mph 16.0
110 mph 20.6
120 mph 26.2
130 mph 37.1

25. Wing design The design of a new airplane requires a gasoline 
tank of constant cross-sectional area in each wing. A scale draw-
ing of a cross-section is shown here. The tank must hold 5000 lb 
of gasoline, which has a density of 42 lb>ft3. Estimate the length 
of the tank by Simpson’s Rule.

y1y0
y2 y3 y4 y5 y6

y0 = 1.5 ft, y1 = 1.6 ft, y2 = 1.8 ft, y3 = 1.9 ft,
y4 = 2.0 ft, y5 = y6 = 2.1 ft Horizontal spacing = 1 ft

26. Oil consumption on Pathfinder Island A diesel generator 
runs continuously, consuming oil at a gradually increasing rate 
until it must be temporarily shut down to have the filters replaced. 
Use the Trapezoidal Rule to estimate the amount of oil consumed 
by the generator during that week.

Oil consumption rate
Day (liters , h)

Sun 0.019
Mon 0.020
Tue 0.021
Wed 0.023
Thu 0.025
Fri 0.028
Sat 0.031
Sun 0.035

Theory and Examples
27. Usable values of the sine-integral function The sine-integral 

function,

Si(x) =
L

x

0

sin t
t dt,    “Sine integral of x”

3.
L

1

-1

(x2 + 1) dx 4.
L

0

-2

(x2 - 1) dx

5.
L

2

0

(t3 + t) dt 6.
L

1

-1

(t3 + 1) dt

7.
L
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1

1
s2 ds 8.

L
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2

1
(s - 1)2 ds

9.
L

p

0
sin t dt 10.

L

1

0
sin pt dt

Estimating the Number of Subintervals
In Exercises 11–22, estimate the minimum number of subintervals 
needed to approximate the integrals with an error of magnitude less 
than 10-4 by (a) the Trapezoidal Rule and (b) Simpson’s Rule. (The 
integrals in Exercises 11–18 are the integrals from Exercises 1–8.)
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21.
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0
sin (x + 1) dx 22.

L
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cos (x + p) dx

Estimates with Numerical Data
23. Volume of water in a swimming pool A rectangular swim-

ming pool is 30 ft wide and 50 ft long. The accompanying table 
shows the depth h(x) of the water at 5-ft intervals from one end of 
the pool to the other. Estimate the volume of water in the pool 
using the Trapezoidal Rule with n = 10 applied to the integral

V =
L

50

0
30 # h(x) dx.

Position (ft) Depth (ft) Position (ft) Depth (ft)
x h(x) x h(x)

  0 6.0 30 11.5
  5 8.2 35 11.9

10 9.1 40 12.3
15 9.9 45 12.7
20 10.5 50 13.0
25 11.0    
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  turns out to be

Length = 4a
L

p>2

0
21 - e2 cos2 t dt,

  where e = 2a2 - b2>a is the ellipse’s eccentricity. The integral 
in this formula, called an elliptic integral, is nonelementary 
except when e = 0 or 1.

a. Use the Trapezoidal Rule with n = 10 to estimate the length 
of the ellipse when a = 1 and e = 1>2.

b. Use the fact that the absolute value of the second derivative 
of ƒ(t) = 21 - e2 cos2 t is less than 1 to find an upper 
bound for the error in the estimate you obtained in part (a).

Applications
32. The length of one arch of the curve y = sin x is given by

L =
L

p

0
21 + cos2 x dx.

  Estimate L by Simpson’s Rule with n = 8.

33. Your metal fabrication company is bidding for a contract to make 
sheets of corrugated iron roofing like the one shown here. The 
cross-sections of the corrugated sheets are to conform to the curve

y = sin
3p
20

x, 0 … x … 20 in.

  If the roofing is to be stamped from flat sheets by a process that 
does not stretch the material, how wide should the original mate-
rial be? To find out, use numerical integration to approximate the 
length of the sine curve to two decimal places.

Corrugated sheet

20
y = sin x

20 in.

x (in.)

y

3p
20

Original sheet

0

34. Your engineering firm is bidding for the contract to construct the 
tunnel shown here. The tunnel is 300 ft long and 50 ft wide at the 
base. The cross-section is shaped like one arch of the curve 
y = 25 cos (px>50). Upon completion, the tunnel’s inside sur-
face (excluding the roadway) will be treated with a waterproof 
sealer that costs $2.35 per square foot to apply. How much will it 
cost to apply the sealer? (Hint: Use numerical integration to find 
the length of the cosine curve.)

x (ft)

y

0
−25

25

y = 25 cos (px
50)

300 ft

NOT TO SCALE

T

T

T

  is one of the many functions in engineering whose formulas can-
not be simplified. There is no elementary formula for the antide-
rivative of (sin t) > t. The values of Si(x), however, are readily 
estimated by numerical integration.

    Although the notation does not show it explicitly, the func-
tion being integrated is

ƒ(t) = c sin t
t , t ≠ 0

1, t = 0,

  the continuous extension of (sin t) > t to the interval 30, x4 . The 
function has derivatives of all orders at every point of its domain. 
Its graph is smooth, and you can expect good results from Simp-
son’s Rule.

t

y

0 x 2p

1
dtSi (x) =

x

0L

sin t
t

y = sin t
t

−p p

a. Use the fact that 0 ƒ(4) 0 … 1 on 30, p>24  to give an upper 
bound for the error that will occur if

Siap
2
b =

L

p>2

0

sin t
t dt

  is estimated by Simpson’s Rule with n = 4.

b. Estimate Si(p>2) by Simpson’s Rule with n = 4.

c. Express the error bound you found in part (a) as a percentage 
of the value you found in part (b).

28. The error function The error function,

erf (x) = 2

2pL

x

0
e-t2

dt,

  important in probability and in the theories of heat flow and sig-
nal transmission, must be evaluated numerically because there is 
no elementary expression for the antiderivative of e-t2

.

a. Use Simpson’s Rule with n = 10 to estimate erf (1).

b. In 30, 14 ,
` d4

dt4
(e-t2) ` … 12.

  Give an upper bound for the magnitude of the error of the 
estimate in part (a).

29. Prove that the sum T in the Trapezoidal Rule for 1
b

a ƒ(x) dx is a 
Riemann sum for ƒ continuous on 3a, b4 . (Hint: Use the Inter-
mediate Value Theorem to show the existence of ck in the subin-
terval [xk-1, xk] satisfying ƒ(ck) = (ƒ(xk-1) + ƒ(xk))>2.)

30. Prove that the sum S in Simpson’s Rule for 1
b

a ƒ(x) dx is a 
Riemann sum for ƒ continuous on 3a, b4 . (See Exercise 29.)

31. Elliptic integrals The length of the ellipse

x2

a2 +
y2

b2 = 1

T
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Find, to two decimal places, the areas of the surfaces generated by 
revolving the curves in Exercises 35 and 36 about the x-axis.

35. y = sin x, 0 … x … p
36. y = x2>4, 0 … x … 2

37. Use numerical integration to estimate the value of

sin-1 0.6 =
L

0.6

0

dx

21 - x2
.

  For reference, sin-1 0.6 = 0.64350 to five decimal places.

38. Use numerical integration to estimate the value of

p = 4
L

1

0

1
1 + x2 dx.

39. Drug assimilation An average adult under age 60 years assimi-
lates a 12-hr cold medicine into his or her system at a rate modeled by

dy
dt

= 6 - ln (2t2 - 3t + 3),

  where y is measured in milligrams and t is the time in hours since 
the medication was taken. What amount of medicine is absorbed 
into a person’s system over a 12-hr period?

40. Effects of an antihistamine The concentration of an antihista-
mine in the bloodstream of a healthy adult is modeled by

C = 12.5 - 4 ln (t2 - 3t + 4),

  where C is measured in grams per liter and t is the time in hours 
since the medication was taken. What is the average level of con-
centration in the bloodstream over a 6-hr period?

8.8 Improper Integrals

Up to now, we have required definite integrals to have two properties. First, the domain of 
integration 3a, b4  must be finite. Second, the range of the integrand must be finite on this 
domain. In practice, we may encounter problems that fail to meet one or both of these con-
ditions. The integral for the area under the curve y = (ln x)>x2 from x = 1 to x = q is 
an example for which the domain is infinite (Figure 8.12a). The integral for the area under 
the curve of y = 1>2x between x = 0 and x = 1 is an example for which the range of 
the integrand is infinite (Figure 8.12b). In either case, the integrals are said to be improper
and are calculated as limits. We will see in Section 8.9 that improper integrals play an 
important role in probability. They are also useful when investigating the convergence of 
certain infinite series in Chapter 10.

Infinite Limits of Integration

Consider the infinite region (unbounded on the right) that lies under the curve y = e-x>2 in 
the first quadrant (Figure 8.13a). You might think this region has infinite area, but we will 
see that the value is finite. We assign a value to the area in the following way. First find the 
area A(b) of the portion of the region that is bounded on the right by x = b (Figure 
8.13b).

A(b) =
L

b

0
e-x>2 dx = -2e-x>2 d

0

b

= -2e-b>2 + 2

Then find the limit of A(b) as b S q

lim
bSq

A(b) = lim
bSq

(-2e-b>2 + 2) = 2.

The value we assign to the area under the curve from 0 to q is

L

q

0
e-x>2 dx = lim

bSqL

b

0
e-x>2 dx = 2.

FIGURE 8.12 Are the areas under these 
infinite curves finite? We will see that the 
answer is yes for both curves.
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