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Evaluating Improper Integrals
The integrals in Exercises 1–34 converge. Evaluate the integrals with-
out using tables.

1.
L

q

0

dx
x2 + 1

2.
L

q

1

dx
x1.001

3.
L

1

0

dx

2x
4.

L

4

0

dx

24 - x

5.
L

1

-1

dx
x2>3 6.

L

1

-8

dx
x1>3

7.
L

1

0

dx

21 - x2
8.

L

1

0

dr
r0.999

9.
L

-2

-q

2 dx
x2 - 1

10.
L

2

-q

2 dx
x2 + 4

11.
L

q

2

2
y2 - y

dy 12.
L

q

2

2 dt
t2 - 1

13.
L

q

-q

2x dx
(x2 + 1)2

14.
L

q

-q

x dx
(x2 + 4)3>2

15.
L

1

0

u + 1

2u2 + 2u
du 16.

L

2

0

s + 1

24 - s2
ds

17.
L

q

0

dx

(1 + x)2x
18.

L

q

1

1

x2x2 - 1
dx

19.
L

q

0

dy
(1 + y2) (1 + tan-1 y)

20.
L

q

0

16 tan-1 x
1 + x2 dx

21.
L

0

-q
ueu du 22.

L

q

0
2e-u sin u du

23.
L

0

-q
e- 0x 0 dx 24.

L

q

-q
2xe-x2

dx

25.
L

1

0
x ln x dx 26.

L

1

0
(- ln x) dx

27.
L

2

0

ds

24 - s2
28.

L

1

0

4r dr

21 - r4

29.
L

2

1

ds

s2s2 - 1
30.

L

4

2

dt

t2t2 - 4

31.
L

4

-1

dx

2 0 x 0 32.
L

2

0

dx

2 0 x - 1 0
33.

L

q

-1

du
u2 + 5u + 6

34.
L

q

0

dx
(x + 1)(x2 + 1)

Testing for Convergence
In Exercises 35–64, use integration, the Direct Comparison Test, or 
the Limit Comparison Test to test the integrals for convergence. If 
more than one method applies, use whatever method you prefer.

35.
L

p>2

0
tan u du 36.

L

p>2

0
cot u du

37.
L

1

0

ln x
x2 dx 38.

L

2

1

dx
x ln x

39.
L

 ln 2

0
x-2e-1>x dx 40.

L

1

0

e-2x

2x
dx

41.
L

p

0

dt

2t + sin t
42.

L

1

0

dt
t - sin t

(Hint: t Ú sin t for t Ú 0)

43.
L

2

0

dx
1 - x2 44.

L

2

0

dx
1 - x

45.
L

1

-1
 ln 0 x 0 dx 46.

L

1

-1
-x ln 0 x 0 dx

47.
L

q

1

dx
x3 + 1

48.
L

q

4

dx

2x - 1

49.
L

q

2

dy

2y - 1
50.

L

q

0

du
1 + eu

51.
L

q

0

dx

2x6 + 1
52.

L

q

2

dx

2x2 - 1

53.
L

q

1

2x + 1
x2 dx 54.

L

q

2

x dx

2x4 - 1

55.
L

q

p

2 + cos x
x dx 56.

L

q

p

1 + sin x
x2 dx

57.
L

q

4

2 dt
t3>2 - 1

58.
L

q

2

1
ln x

dx

59.
L

q

1

ex

x dx 60.
L

q

ee

 ln (ln x) dx

61.
L

q

1

1

2ex - x
dx 62.

L

q

1

1
ex - 2x dx

63.
L

q

-q

dx

2x4 + 1
64.

L

q

-q
  

dx
ex + e-x

Theory and Examples
65. Find the values of p for which each integral converges.

a.
L

2

1

dx
x(ln x) p    b.

L

q

2

dx
x(ln x) p

66. 1
H

−H ƒ(x) dx may not equal lim
bSH 1

b
-b ƒ(x) dx Show that

L

q

0

2x dx
x2 + 1

diverges and hence that

L

q

-q

2x dx
x2 + 1

diverges. Then show that

lim
bSq L

b

-b
  

2x dx
x2 + 1

= 0.

Exercises 67–70 are about the infinite region in the first quadrant 
between the curve y = e-x and the x-axis.

67. Find the area of the region.

68. Find the centroid of the region.

69. Find the volume of the solid generated by revolving the region 
about the y-axis.
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about that for a moment. It is common sense that a finite 
amount of paint cannot cover an infinite surface. But if we fill 
the horn with paint (a finite amount), then we will have cov-
ered an infinite surface. Explain the apparent contradiction.

77. Sine-integral function The integral

Si (x) =
L

x

0

sin t
t dt,

called the sine-integral function, has important applications in 
optics.

a. Plot the integrand (sin t)>t for t 7 0. Is the sine-integral 
function everywhere increasing or decreasing? Do you think 
Si (x) = 0 for x 7 0? Check your answers by graphing the 
function Si (x) for 0 … x … 25.

b. Explore the convergence of

L

q

0

sin t
t dt.

If it converges, what is its value?

78. Error function The function

erf (x) =
L

x

0
  

2e-t2

2p dt,

called the error function, has important applications in probabil-
ity and statistics.

a. Plot the error function for 0 … x … 25.

b. Explore the convergence of

L

q

0

2e-t2

2p dt.

If it converges, what appears to be its value? You will see 
how to confirm your estimate in Section 15.4, Exercise 41.

79. Normal probability distribution The function

ƒ(x) = 1

s22p
e- 1

2 1x -m
s 22

  is called the normal probability density function with mean m and 
standard deviation s. The number m tells where the distribution 
is centered, and s measures the “scatter” around the mean. (See 
Section 8.9.)

From the theory of probability, it is known that

L

q

-q
ƒ(x) dx = 1.

In what follows, let m = 0 and s = 1.

a. Draw the graph of ƒ. Find the intervals on which ƒ is increas-
ing, the intervals on which ƒ is decreasing, and any local 
extreme values and where they occur.

b. Evaluate

L

n

-n
 ƒ(x) dx

for n = 1, 2, and 3.

T

T

T

70. Find the volume of the solid generated by revolving the region 
about the x-axis.

71. Find the area of the region that lies between the curves y = sec x
and y = tan x from x = 0 to x = p>2.

72. The region in Exercise 71 is revolved about the x-axis to generate 
a solid.

a. Find the volume of the solid.

b. Show that the inner and outer surfaces of the solid have infi-
nite area.

73. Evaluate the integrals.

a.
L

1

0

dt

2t (1 + t)
b.

L

q

0

dt

2t (1 + t)

74. Evaluate
L

q

3

dx

x2x2 - 9
.

75. Estimating the value of a convergent improper integral whose 
domain is infinite

a. Show that

L

q

3
e-3x dx = 1

3
e-9 6 0.000042,

and hence that 1
q

3 e-x2
dx 6 0.000042. Explain why this 

means that 1
q

0 e-x2
dx can be replaced by 1

3
0 e-x2

dx without 
introducing an error of magnitude greater than 0.000042.

b. Evaluate 1
3

0  e
-x2

dx numerically.

76. The infinite paint can or Gabriel’s horn As Example 3 shows, 
the integral 1

q
1 (dx>x) diverges. This means that the integral

L

q

1
2p

1
xA1 + 1

x4 dx,

which measures the surface area of the solid of revolution traced 
out by revolving the curve y = 1>x, 1 … x, about the x-axis,
diverges also. By comparing the two integrals, we see that, for 
every finite value b 7 1,

L

b

1
2p

1
xA1 + 1

x4 dx 7 2p
L

b

1

1
x dx.

x

y

1
0

b

y = 1
x

  However, the integral

L

q

1
pa1xb

2

dx

for the volume of the solid converges.

a. Calculate it.

b. This solid of revolution is sometimes described as a can that 
does not hold enough paint to cover its own interior. Think 

T
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c. Give a convincing argument that

L

q

-q
 ƒ(x) dx = 1.

(Hint: Show that 0 6 ƒ(x) 6 e-x>2 for x 7 1, and for b 7 1,

L

q

b
e-x>2 dx S 0 as b S q.)

80. Show that if ƒ(x) is integrable on every interval of real numbers 
and a and b are real numbers with a 6 b, then

a. 1
a
-q ƒ(x) dx and 1

q
a  ƒ(x) dx both converge if and only if

1
b
-q ƒ(x) dx and 1

q
b  ƒ(x) dx both converge.

b. 1
a
-q ƒ(x) dx + 1

q
a  ƒ(x) dx = 1

b
-q ƒ(x) dx + 1

q
b  ƒ(x) dx

when the integrals involved converge.

COMPUTER EXPLORATIONS
In Exercises 81–84, use a CAS to explore the integrals for various 
values of p (include noninteger values). For what values of p does the 
integral converge? What is the value of the integral when it does con-
verge? Plot the integrand for various values of p.

81.
L

e

0
x p ln x dx 82.

L

q

e
x p ln x dx

83.
L

q

0
x p ln x dx 84.

L

q

-q
x p ln 0 x 0 dx

Use a CAS to evaluate the integrals.

85.
L

2>p

0
sin 

1
x dx 86.

L

2>p

0
x sin 

1
x dx

8.9 Probability

The outcome of some events, such as a heavy rock falling from a great height, can be mod-
eled so that we can predict with high accuracy what will happen. On the other hand, many 
events have more than one possible outcome and which one of them will occur is uncer-
tain. If we toss a coin, a head or a tail will result with each outcome being equally likely, 
but we do not know in advance which one it will be. If we randomly select and then weigh 
a person from a large population, there are many possible weights the person might have, 
and it is not certain whether the weight will be between 180 and 190 lb. We are told it is 
highly likely, but not known for sure, that an earthquake of magnitude 6.0 or greater on the 
Richter scale will occur near a major population area in California within the next one 
hundred years. Events having more than one possible outcome are probabilistic in nature, 
and when modeling them we assign a probability to the likelihood that a particular out-
come may occur. In this section we show how calculus plays a central role in making pre-
dictions with probabilistic models.

Random Variables

We begin our discussion with some familiar examples of uncertain events for which the 
collection of all possible outcomes is finite.

EXAMPLE 1

(a) If we toss a coin once, there are two possible outcomes 5H, T6 , where H represents 
the coin landing head face up and T a tail landing face up. If we toss a coin three times, 
there are eight possible outcomes, taking into account the order in which a head or tail 
occurs. The set of outcomes is 5HHH, HHT, HTH, THH, HTT, THT, TTH, TTT6 .

(b) If we roll a six-sided die once, the set of possible outcomes is 51, 2, 3, 4, 5, 66  repre-
senting the six faces of the die.

(c) If we select at random two cards from a 52-card deck, there are 52 possible outcomes 
for the first card drawn and then 51 possibilities for the second card. Since the 
order of the cards does not matter, there are (52 # 51)>2 = 1,326 possible outcomes 
altogether.

It is customary to refer to the set of all possible outcomes as the sample space for an 
event. With an uncertain event we are usually interested in which outcomes, if any, are 
more likely to occur than others, and to how large an extent. In tossing a coin three times, 
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