Chen-Stein method for Poisson: key estimate

Janko Gravner

MAT 235A

November 25, 2025

Stein's equation

Let P_{λ} denote the Poisson probability function with parameter λ , that is $P_{\lambda}(k) = e^{-\lambda} \lambda^k / k!$ for $k \ge 0$, and $P_{\lambda}(A) = \sum_{k \in A} P_{\lambda}(k)$.

Fix a set $A \subset \mathbb{Z}_+$. Then the *Stein's equation* for the function $f_A : \mathbb{Z}_+ \to \mathbb{R}$ is

$$1_{\{k \in A\}} - P_{\lambda}(A) = \lambda f_{A}(k+1) - kf_{A}(k), \quad k = 0, 1, \dots$$

$$f_{A}(0) = 0.$$
(1)

Note that f_A is uniquely determined by (1).

Stein's equation

Let L be the operator on functions $f: \mathbb{Z}_+ \to \mathbb{R}$, given by $Lf(k) = \lambda f(k+1) - kf(k)$, $k \ge 0$. This is a linear operator. Furthermore, let $g_A(k) = 1_{\{k \in A\}} - P_\lambda(A)$. Then f_A is the unique function f that solves $Lf = g_A$ and satisfies f(0) = 0. Note that L is linear, and

$$g_{A\cup B}=g_A+g_B \quad ext{if } A\cap B=\emptyset, \ g_{A^c}=-g_A.$$

Then, by linearity of L,

$$f_{A \cup B} = f_A + f_B$$
 if $A \cap B = \emptyset$,
 $f_{A^c} = -f_A$. (2)

From the equation

$$f_A(k+1) = \frac{1}{\lambda} \mathbf{1}_{\{k \in A\}} - \frac{1}{\lambda} P_{\lambda}(A) + \frac{1}{\lambda} k f_A(k)$$

we get

$$f_{A}(1) = \frac{1}{\lambda} \mathbf{1}_{\{0 \in A\}} - \frac{1}{\lambda} P_{\lambda}(A)$$

$$f_{A}(2) = \frac{1}{\lambda} \mathbf{1}_{\{1 \in A\}} + \frac{1}{\lambda^{2}} \mathbf{1}_{\{0 \in A\}} - \left(\frac{1}{\lambda} + \frac{1}{\lambda^{2}}\right) P_{\lambda}(A)$$

$$f_{A}(3) = \frac{1}{\lambda} \mathbf{1}_{\{2 \in A\}} + \frac{2}{\lambda^{2}} \mathbf{1}_{\{1 \in A\}} + \frac{2}{\lambda^{3}} \mathbf{1}_{\{0 \in A\}} - \left(\frac{1}{\lambda} + \frac{2}{\lambda^{2}} + \frac{2}{\lambda^{3}}\right) P_{\lambda}(A)$$

/

By induction, for any $k \ge 0$,

$$f_{A}(k+1) = \frac{1}{\lambda} 1_{\{k \in A\}} + \frac{k}{\lambda^{2}} 1_{\{k-1 \in A\}} + \frac{k(k-1)}{\lambda^{3}} 1_{\{k-2 \in A\}} + \dots + \frac{k!}{\lambda^{k+1}} 1_{\{0 \in A\}} - \left(\frac{1}{\lambda} + \frac{k}{\lambda^{2}} + \frac{k(k-1)}{\lambda^{3}} + \dots + \frac{k!}{\lambda^{k+1}}\right) P_{\lambda}(A) = \frac{k!}{\lambda^{k+1}} \left(\sum_{i=0}^{k} \frac{\lambda^{i}}{i!} 1_{\{i \in A\}} - P_{\lambda}(A) \sum_{i=0}^{k} \frac{\lambda^{i}}{i!}\right).$$

E

Let
$$U_{k} = \{0, 1, \dots, k\}.$$

$$f_{A}(k+1)$$

$$= \frac{k!}{\lambda^{k+1}} \left(\sum_{i=0}^{k} \frac{\lambda^{i}}{i!} 1_{\{i \in A\}} - P_{\lambda}(A) \sum_{i=0}^{k} \frac{\lambda^{i}}{i!} \right)$$

$$= \frac{k!}{\lambda^{k+1}} e^{\lambda} [P_{\lambda}(A \cap U_{k}) - P_{\lambda}(A) P_{\lambda}(U_{k})]$$

$$= \frac{k!}{\lambda^{k+1}} e^{\lambda} [P_{\lambda}(A \cap U_{k}) - P_{\lambda}(A \cap U_{k}) P_{\lambda}(U_{k})$$

$$+ P_{\lambda}(A \cap U_{k}) P_{\lambda}(U_{k}) - P_{\lambda}(A) P_{\lambda}(U_{k})]$$

$$= \frac{k!}{\lambda^{k+1}} e^{\lambda} [P_{\lambda}(A \cap U_{k}) P_{\lambda}(U_{k}^{c}) - P_{\lambda}(A \cap U_{k}^{c}) P_{\lambda}(U_{k})].$$
(3)

For $A \subset \mathbb{Z}_+$, write $A_n = A \cap U_n$ and $A'_n = A \setminus A_n$.

The second line of (3) says

$$f_A(k+1) = \frac{k!}{\lambda^{k+1}} e^{\lambda} [P_{\lambda}(A \cap U_k) - P_{\lambda}(A)P_{\lambda}(U_k)],$$

Apply this to $A = A'_n$: for large n, $A'_n \cap U_k = \emptyset$ and $P_\lambda(A'_n) \to 0$.

We get that, for every fixed k, $f_{A_n}(k+1) \to 0$ as $n \to \infty$.

Therefore, by additivity (the first line of (2)),

$$f_{A_n}(k+1) \to f_A(k+1)$$
 as $n \to \infty$, (4)

pointwise in k.

-

Stein's equation: key bound

For $f: \mathbb{Z}_+ \to \mathbb{R}$, let

$$\Delta f = \sup\{|f(k+1) - f(k)| : k \ge 1\}.$$

Lemma

For any $A \subset \mathbb{Z}_+$,

$$\Delta f_{\mathcal{A}} \leq \lambda^{-1} (1 - e^{-\lambda}) \leq \min(1, \lambda^{-1}).$$

۶

Proof.

First we claim that it suffices to prove that

$$f_A(k+1) - f_A(k) \le \lambda^{-1} (1 - e^{-\lambda}),$$
 (5)

for all A and $k \ge 1$. Indeed, if this holds, we can apply it to the complement, and the second line of (2) implies that

$$f_A(k+1) - f_A(k) = -(f_{A^c}(k+1) - f_{A^c}(k)) \ge -\lambda^{-1}(1 - e^{-\lambda}),$$

and thus
$$|f_A(k+1) - f_A(k)| \le \lambda^{-1}(1 - e^{-\lambda}).$$

Ç

Proof, continued.

To prove (5) we may, by (4), assume that A is finite. In this case, using the abbreviation $f_i = f_{\{i\}}$, additivity (first line of (2)) implies

$$f_A = \sum_{j \in A} f_j. \tag{6}$$

Proof, continued.

The second line of (3) says

$$f_A(k+1) = \frac{k!}{\lambda^{k+1}} e^{\lambda} [P_{\lambda}(A \cap U_k) - P_{\lambda}(A) P_{\lambda}(U_k)],$$

so

$$f_{j}(k+1) = \frac{k!}{\lambda^{k+1}} e^{\lambda} P_{\lambda}(j) [1_{\{j \le k\}} - P_{\lambda}(U_{k})]. \tag{7}$$

If $k \ge j$, then, by (7),

$$f_j(k+1) = \frac{1}{\lambda} P_{\lambda}(j) \sum_{i=1}^{\infty} \frac{\lambda^i}{(i+k)(i-1+k)\cdots(1+k)},$$

which is positive and decreasing in k.

Proof, continued.

Now we use (7), which says

$$f_j(k+1) = \frac{k!}{\lambda^{k+1}} e^{\lambda} P_{\lambda}(j) [1_{\{j \leq k\}} - P_{\lambda}(U_k)].$$

for k < j:

$$f_j(k+1) = -\frac{1}{\lambda}P_{\lambda}(j)\left(1+\frac{k}{\lambda}+\frac{k(k-1)}{\lambda^2}+\cdots+\frac{k!}{\lambda^k}\right),$$

which is negative and decreasing in k. The only $k \ge 1$ for which $f_j(k+1) - f_j(k) \ge 0$ then is k = j.

Proof, continued.

For $j \ge 1$, by the fourth line of (3),

$$f_{j}(j+1) - f_{j}(j) = \frac{j!}{\lambda^{j+1}} e^{\lambda} P_{\lambda}(j) P_{\lambda}(U_{j}^{c}) + \frac{(j-1)!}{\lambda^{j}} e^{\lambda} P_{\lambda}(j) P_{\lambda}(U_{j-1})$$

$$= \frac{1}{\lambda} \sum_{i=j+1}^{\infty} \frac{\lambda^{i}}{i!} e^{-\lambda} + \frac{1}{j} \sum_{i=0}^{j-1} \frac{\lambda^{i}}{i!} e^{-\lambda}$$

$$= \frac{e^{-\lambda}}{\lambda} \left(\sum_{i=j+1}^{\infty} \frac{\lambda^{i}}{i!} + \sum_{i=1}^{j} \frac{\lambda^{i}}{i!} \cdot \frac{i}{j} \right)$$

$$\leq \frac{e^{-\lambda}}{\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i}}{i!} = \lambda^{-1} (1 - e^{-\lambda}).$$

(8)

Proof, continued.

For j = 0, we use that $f_0(k + 1)$ is decreasing for all $k \ge 0$, so that $f_0(k + 1) - f_0(k) \le 0$ for $k \ge 1$.

Thus we have, by (6), for every A and $k \ge 1$,

$$f_A(k+1) - f_A(k) = \sum_{j \in A} (f_j(k+1) - f_j(k))$$

 $\leq f_k(k+1) - f_k(k) \leq \lambda^{-1} (1 - e^{-\lambda}),$

which proves (5) and ends the proof.

Setup for applications of Stein's equation

It is easy to show that, if W is a Poisson random variable with $EW = \lambda$, and f is any function on \mathbb{Z}_+ that grows at most exponentially (that is, $|f(x)| \leq \exp(Cx)$ for some constant C), $E[\lambda f(W+1) - Wf(W)] = 0$. It is reasonable to expect that, if a random variable W with values in \mathbb{Z}_+ is such that this equality approximately holds for a class of functions f, then W is approximately Poisson.

That class are functions f_A !

Note that, by the Lemma, f_A do not grow faster than linearly.

Setup for applications of Stein's equation

Assume W is a random variable with values in \mathbb{Z}_+ . The essence of Chen-Stein method is that an estimate

$$E[\lambda f_{\mathcal{A}}(W+1) - Wf_{\mathcal{A}}(W)] \le \alpha, \tag{9}$$

where α does not depend on A, immediately implies (as we can apply it to $f_{A^c}=-f_A$) the same bound for the absolute value and, as we will now check, for the total variation distance from P_{λ} .

Plug in k = W into (1) to get

$$1_{\{W\in A\}}-P_{\lambda}(A)=\lambda f_{A}(W+1)-Wf_{A}(W)$$

and then, by taking expectation,

$$d_{\text{TV}}(W, P_{\lambda}) = \sup_{A} |P(W \in A) - P_{\lambda}(A)|$$

=
$$\sup_{A} |E[\lambda f_{A}(W+1) - Wf_{A}(W)]| \leq \alpha.$$

Setup for applications of Stein's equation

To get (9) using the Lemma, one needs to produce Δf_A as a factor in an upper bound for $E[\lambda f_A(W+1) - Wf_A(W)]$, multiplied by a small quantity.

This can be done in many cases when W is a sum of mildly dependent indicators. In fact, the estimate typically works with arbitrary f (satisfying the restriction on its growth), only using that $f = f_A$ at the end, when we need an estimate for Δf_A .