Final Exam

Due: Monday, Dec. 8, 11:59pm, in Gradescope.

Directions: Work on these problems alone; you cannot discuss any part of the exam with anybody or use any books, papers, web sites, etc.; you can consult only your notes from 235A. Try to give concise solutions; none of the problems requires a long argument or computation. To facilitate grading, please solve each problem on a separate page, and select the corresponding problem number for each question when you upload to Gradescope. I will not reply to specific questions about exam problems. However, if you think that a problem is misstated, please let me know. You will receive extra credit if you are the first person to spot a mistake and I will post any corrections or clarifications on the course's web page.

- 1. (a) Assume that random variables X_n have $E|X_n| < \infty$ for all n and $\lim_n E|X_n| = 0$. Show that X_n are uniformly integrable. (*Hint*. Recall that sup in the definition of u.i. can be replaced by $\lim \sup$.)
- (b) On $(\Omega, \mathcal{F}) = ([0, 1], \mathcal{B}([0, 1]), \text{ with } P \text{ the Lebesgue measure, define the random variables}$

$$X_n = \frac{n}{\log n} \mathbb{1}_{(0,1/n)}$$

Show that X_n are uniformly integrable. Show that there is no random variable $Y \ge 0$ with $EY < \infty$ and $X_n \le Y$ for all n. (*Hint*. Find the lower bound on Y on $(1/2^{k+1}, 1/2^k)$.)

- 2. Let U_n be i.i.d. random variables, uniform on [0,1]. For each sequence X_n of random variables below, show that it converges a.s., and that there exists a constant a and a deterministic sequence b_n so that $b_n(X_n a)$ converges in distribution to a nontrivial (that is, not a.s. constant) random variable. Let $S_n = U_1 + \cdots + U_n$.
- (a) $X_n = S_n/n$.
- (b) $X_n = (U_1^2 + \dots + U_n^2)/n$.
- (c) $X_n = S_n/(U_1^2 + \dots + U_n^2)$.
- (d) $X_n = (U_1 \cdots U_n)^{1/n}$. (*Hint*: log.)
- (e) $X_n = \sqrt{S_n(n S_n)}/n$.
- 3. (a) Assume that X_n , $n=1,2,3,\ldots$ are independent random variables with values in [0,b], where $b\in(0,\infty)$ is a nonrandom constant. Prove that $\sum_{n=1}^{\infty}X_n$ converges a.s. if and only if $\sum_{n=1}^{\infty}EX_n<\infty$.
- (b) Assume that X with values in [0,1] has the bounded Pareto distribution with parameter $\alpha > 0$, given by $P(X \ge x) = (1-x)^{\alpha}$ for $x \in [0,1]$. Show that $n^{\alpha}E(X^n)$ converges to a limit in $(0,\infty)$. (*Hint*. Use substitution t = (1-x)n.)
- (c) Let now X_n be i.i.d. with the distribution from (b). Assume a_n is a bounded sequence of nonegative numbers. Show that the "power series with randomized variable"

$$S = \sum_{n=1}^{\infty} a_n X_n^n$$

converges if and only if $\sum_{n=1}^{\infty} a_n/n^{\alpha} < \infty$.

- 4. Let X and $X_1, X_2, ...$ be random variables. Show that $X_n \stackrel{d}{\longrightarrow} X$ if and only if $E(g(X_n)) \rightarrow E(g(X))$ for all continuous functions $g : \mathbb{R} \to \mathbb{R}$ with compact support. (Hint. Prove tightness first, and recall that sup can be replaced by \limsup .)
- 5. Suppose X_n , n = 1, 2, ... are i.i.d. with common density

$$f(x) = |x|^{-3} \mathbf{1}_{\{|x| \ge 1\}}.$$

Let $S_n = X_1 + \cdots + X_n$.

- (a) Check that $E(X_1) = 0$ but $E(X_1^2) = \infty$.
- (b) Prove that $S_n/\sqrt{n\log n} \stackrel{d}{\longrightarrow} N(0,1)$. (*Hint*. One way is to follow these steps: truncate $Y_n = X_n 1_{\{|X_n| \le \sqrt{n}\}}$, use Lindeberg-Feller to handle the sum of Y_n , and L^1 distance to handle the difference between the sum of X_n and the sum of X_n .)
- 6. Let X_k be independent with $P(X_k = k) = P(X_k = -k) = 1/(2k)$, $P(X_k = 0) = 1 1/k$. Let $S_n = X_1 + \cdots + X_n$. Prove that S_n/n converges in distribution to a random variable Z. (*Hint*. Look for a Riemann sum in $\log \varphi_{S_n/n}$.) Show that Z is not Normal, but has a continuous distribution function F_Z .
- 7. In the Hat check problem that was introduced in class, we apply a random permutation π to the set $\{1, 2, ..., n\}$, where each of the possible n! permutations is equally likely. Let X_n be the number of fixed points of the random permutation, that is, $X_n = \sum_{i=1}^n 1_{\{\pi(i)=i\}}$. If Z is a Poisson(1) random variable, show that the first n moments of X_n and Z agree, that is, $E[X_n^k] = EZ^k$ for k = 1, ..., n. (Hint. Argue that this follows from $E[X_n(X_n 1) \cdots (X_n k + 1)] = 1$ for k = 1, 2, ..., n and devise an inductive argument.)