Homework 3

Durrett: 1.2.4. (*Hint*. Consider the "inverse" $\varphi(y) = \sup\{z : F(z) < y\}$ that we defined in class. Show that $F(\varphi(y)) = y$.)

- 1.(a) Assume that \mathcal{M} is a set of measurable functions on (Ω, \mathcal{F}, P) , $\mathcal{A} \subset \mathcal{F}$ is a π -system and:
 - (i) If $f_1, f_2 \in \mathcal{M}$, $a, b \in \mathbb{R}$, then $af_1 + bf_2 \in \mathcal{M}$.
 - (ii) If $f_1 \leq f_2 \leq f_3 \leq \ldots$ is a sequence of functions in \mathcal{M} and $f(\omega) = \lim_{n \to \infty} f_n(\omega) < \infty$ for each $\omega \in \Omega$, then $f \in \mathcal{M}$.
- (iii) $1_A \in \mathcal{M}$ for each $A \in \mathcal{A}$.

Then \mathcal{M} contains all $\sigma(\mathcal{A})$ -measurable functions. Prove this (so-called *Monotone class theorem*).

(*Hint*. First use π - λ theorem to conclude that (iii) holds for each $A \in \sigma(A)$. Then use approximation with simple functions.)

(b) Let X, Y be random variables on (Ω, \mathcal{F}, P) . Assume that Y is $\sigma(X)$ -measurable. Show that there is a Borel function $f : \mathbb{R} \to \mathbb{R}$ so that Y = f(X).

(*Hint*. Define \mathcal{M} to be the class of all random variables of the form f(X) where f is a Borel function, and $\mathcal{A} = \sigma(X)$. Show that \mathcal{M} satisfies (i), (ii), (iii) above.)

- (c) Let X, Y be random variables on (Ω, \mathcal{F}, P) . If Y is $\sigma(X)$ -measurable, must X be $\sigma(Y)$ -measurable?
- 2. From New York Times, April 10, 2001:

"Three players enter a room and a red or blue hat is placed on each person's head. The color of each hat is determined by [an independent] coin toss. No communication of any sort is allowed, except for an initial strategy session before the game begins. Once they have had a chance to look at the other hats [but not their own], the players must simultaneously guess the color of their own hats or pass. The puzzle is to find a group strategy that maximizes the probability that at least one person guesses correctly and no-one guesses incorrectly."

One strategy would be for the group to agree that one person should guess and the others pass. This would have probability 1/2 of success. Find a strategy with a greater chance for success.

Now generalize the problem by allowing every person i to place an even bet x_i on the color of his or her own hat. The bet can either be on red or on blue and the amount x_i of the bet is arbitrary. (Even bet means a correct guess wins x_i , while an incorrect guess means loss of the same amount.) The group wins if their combined wins are strictly greater than their losses. Find, with proof, a strategy with maximal winning probability. Generalize to n people.

- 3. Assume that μ is a probability measure on $\mathcal{B}(\mathbb{R}^3)$. A plane $\pi \subset \mathbb{R}^3$ is a fair cut (for μ) if μ of both components of π^c is exactly 1/2. Prove the following three statements.
- (a) If $\mu(\pi) = 0$ for every plane π , there is a fair cut perpendicular to the z-axis.
- (b) Optional. If $\mu(\ell) = 0$ for every line ℓ , there is a fair cut through the origin. (Hint. The number of different planes π for which $\mu(\pi) > 0$ is at most countable.)
- (c) Optional. If $\mu(\lbrace x \rbrace) = 0$ for every $x \in \mathbb{R}^3$, there is a fair cut.