Conditional Expectation

Janko Gravner

MAT/STA 235B January 19, 2024

Conditional expectation

Definition

Let (Ω, \mathcal{F}, P) be a probability space and X a random variable on this space such that $E|X| < \infty$. Let $\mathcal{G} \subset \mathcal{F}$ be a σ -algebra. We define a *conditional expectation* $E[X \mid \mathcal{G}]$ of X given \mathcal{G} to a be a random variable Y such that:

- \bigcirc Y is \mathcal{G} -measurable;
- ② $E|Y| < \infty$; and
- $oldsymbol{\circ}$ for all $G \in \mathcal{G}$, $\int_G Y dP = \int_G X dP$, i.e., $E[Y1_G] = E[X1_G]$.

Any such Y is called a version of $E[X \mid G]$.

2

(1) "For every $G \in \mathcal{G}$ " can be replaced by "For every $G \in \mathcal{P}$," where \mathcal{P} is any π -system that generates \mathcal{G} .

Proof.

This is because

$$\mathcal{L} = \{G \in \mathcal{G} : E[Y1_G] = E[X1_G]\}$$

is a λ -system.

Why? By assumption, $\Omega \in \mathcal{L}$. If $G_1, G_2 \in \mathcal{L}$ with $G_1 \subset G_2$, then $G_2 \setminus G_1 \in \mathcal{L}$ as $1_{G_2 \setminus G_1} = 1_{G_2} - 1_{G_1}$. If $G_n \in \mathcal{L}$, $G_n \uparrow G$, then $1_{G_n}(\omega) \uparrow 1_G(\omega)$ for every $\omega \in \Omega$. So we can use DCT to conclude that $E[X1_{G_n}] \to E[X1_G]$, $E[Y1_{G_n}] \to E[Y1_G]$, and so $E[X1_G] = E[Y1_G]$, $G \in \mathcal{L}$.

Now, the π - λ theorem implies that $\mathcal{G} = \sigma(\mathcal{P}) \subset \mathcal{L}$.

(2) $E[X \mid \mathcal{G}]$ is unique up to modifications on sets of measure 0. That is, if Y and Y' are both versions of $E[X \mid \mathcal{G}]$, then P(Y = Y') = 1.

Proof.

Take an $\epsilon > 0$. Take $A = \{Y - Y' \ge \epsilon\}$. Then $A \in \mathcal{G}$ and so $E[Y1_A] = E[X1_A] = E[Y'1_A]$. Observe also that $(Y - Y')1_A \ge \epsilon 1_A$. It follows that

$$0 = E[(Y - Y')1_A] \ge \epsilon P(A),$$

and so P(A)=0 for all $\epsilon>0$. By taking intersection over countably many ϵ , P(Y-Y'>0)=0. By symmetry, P(Y-Y'<0)=0.

4

(3) Define

$$E[X \mid Z] = E[X \mid \sigma(Z)]$$
$$E[X \mid Z_1, \dots, Z_n] = E[X \mid \sigma(Z_1, \dots, Z_n)]$$

Here, Z, Z_1, \dots, Z_n are arbitrary r.v.'s. Sometimes, it is also written, for $B \in \mathcal{F}$,

$$P(B \mid \mathcal{G}) = E[1_B \mid \mathcal{G}],$$

but this is a bit confusing, as $P(B \mid A)$ (a number) is not the same as $E[1_B \mid 1_A]$ (a random variable).

5

(4) Existence follows from the *Radon-Nikodym theorem*.

If μ , ν are σ -finite positive measures on (Ω, \mathcal{F}) , then we say that ν is absolutely continuous w.r.t. μ , denoted by $\nu \ll \mu$ if $\mu(A) = 0 \Longrightarrow \nu(A) = 0$.

For practice, let's prove the following continuity characterization: $\nu \ll \mu \iff (\forall \epsilon > 0)(\exists \delta > 0)(\forall A \in \mathcal{F})(\mu(A) < \delta \implies \nu(A) < \epsilon)$

Proof.

$$(\longleftarrow)$$
 If $\mu(A) = 0$, then $\nu(A) < \epsilon$ for all $\epsilon > 0$.

(⇒) Assume the negation:

$$(\exists \epsilon > 0)(\forall \delta > 0)(\exists A_{\delta} \in \mathcal{F})(\mu(A_{\delta}) < \delta \& \nu(A_{\delta}) \ge \epsilon).$$

Take $A = \{A_{2^{-n}} \text{ i.o.}\}.$

Note that $\mu(A_{2^{-n}}) < 2^{-n}$ and $\nu(A_{2^{-n}}) \ge \epsilon$.

Then, by BC,
$$\mu(A) = 0$$
, but $\nu(A) \ge \limsup \nu(A_{2^{-n}}) \ge \epsilon$.

Aside. The measures μ and ν on (Ω, \mathcal{F}) are *equivalent* if they have the same measure-zero sets: $\nu \ll \mu$ and $\mu \ll \nu$. For two equivalent probability measures, we cannot tell *with certainty* which one is used in a random experiment.

For example, suppose we have a fair coin and a unfair coin with heads probability $p \in (0, 1/2)$. If we toss each a finite number n times, the resulting two measures μ and ν are equivalent.

However, if we toss each infinitely many times, there exists a set A so that $\mu(A)=\nu(A^c)=1$, i.e., the two measures are *orthogonal*, denoted $\mu\perp\nu$. Why is this true?

7

Aside. The measures μ and ν on (Ω, \mathcal{F}) are *equivalent* if they have the same measure-zero sets: $\nu \ll \mu$ and $\mu \ll \nu$. For two equivalent probability measures, we cannot tell *with certainty* which one is used in a random experiment.

For example, suppose we have a fair coin and a unfair coin with heads probability $p \in (0, 1/2)$. If we toss each a finite number n times, the resulting two measures μ and ν are equivalent.

However, if we toss each infinitely many times, there exists a set A so that $\mu(A)=\nu(A^c)=1$, i.e., the two measures are *orthogonal*, denoted $\mu\perp\nu$. Why is this true?

SLLN! Let
$$X_k = 1_{\{k'\text{th toss H}\}}$$
. Let

$$A = \{ \lim_{n \to \infty} (X_1 + \ldots + X_n) / n = 1/2 \}.$$

Theorem (Radon-Nikodym Theorem)

If $\nu \ll \mu$, then there exists an \mathcal{F} -measurable function $f \geq 0$ such that for every $A \in \mathcal{F}$, $\nu(A) = \int_A f \, d\mu$.

Observe that the reverse holds as well: if $\nu(A) = \int_A f d\mu$, then $\nu \ll \mu$.

The statement that $\nu(A) = \int_A f \, d\mu$ for every $A \in \mathcal{F}$ is often abbreviated as $d\nu = f \, d\mu$ or $f = d\nu/d\mu$, and f is called the *Radon-Nikodym derivative*.

۶

Existence of conditional expectation.

Suppose $X \geq 0$. Let $\mu = P$ and $\nu(A) = \int_A X \, dP$, viewed as measures on (Ω, \mathcal{G}) . Then $\nu \ll \mu$ so by RN, there exits a r.v. Y on (Ω, \mathcal{G}) so that

$$\int_{A} X \, dP = \nu(A) = \int_{A} Y \, dP$$

for every $A \in \mathcal{G}$. For general X, split $X = X_+ - X_-$.

Note: the proof shows we can define $E[X \mid G]$ for any $X \ge 0$.

(5) Intuitively, $E[X \mid \mathcal{G}]$ is "the best guess of X based on information in \mathcal{G} ." We will state this precisely later, but for now we make two observations.

If X is \mathcal{G} -measurable, then $E[X \mid \mathcal{G}] = X$.

If X is independent of \mathcal{G} , then $E[X \mid \mathcal{G}] = EX$, because for every $G \in \mathcal{G}$

$$E[X1_G] = EX \cdot E1_G = E[EX \cdot 1_G]$$

Assume that all conditional expectations below exist, i.e., all r.v.'s have finite expectation, and $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ are σ -algebras.

(1) Linearity: For $\alpha, \beta \in \mathbb{R}$, $E[(\alpha X + \beta Y) \mid \mathcal{G}] = \alpha E[X \mid \mathcal{G}] + \beta E[Y \mid \mathcal{G}]$, a.s.

Proof.

Easy verification.

(2)
$$E[E[X | G]] = EX$$
.

Proof.

Apply the definition to $G = \Omega$.

(3) Monotonicity: If $X \leq Y$ a.s., then $E[X \mid \mathcal{G}] \leq E[Y \mid \mathcal{G}]$ a.s.

Proof.

Let
$$G = \{E[X \mid \mathcal{G}] > E[Y \mid \mathcal{G}]\} \in \mathcal{G}$$
. Then

$$0 \leq E[(E[X \mid \mathcal{G}] - E[Y \mid \mathcal{G}]) \mathbf{1}_G] = E[(X - Y) \mathbf{1}_G] \leq 0,$$

and so
$$P(G) = 0$$
.

(4) Monotone convergence: If $0 \le X_n \uparrow X$ (with finite expectation), then $E[X_n \mid \mathcal{G}] \uparrow E[X \mid \mathcal{G}]$ a.s.

Proof.

By (3), $E[X_n \mid \mathcal{G}] \uparrow Y$ a.s., for some \mathcal{G} -measurable r.v. Y. Take $G \in \mathcal{G}$. Then

$$E[E[X_n \mid \mathcal{G}]1_G] = E[X_n1_G]$$

and, by MCT, the LHS converges to $E[Y1_G]$ while the RHS converges to $E[X1_G]$. So $E[X1_G] = E[Y1_G]$, Y has finite expectation, and, then, by definition $Y = E[X \mid \mathcal{G}]$ a.s.

(5) Fatou: If $X_n \ge 0$, then $E[\liminf X_n \mid \mathcal{G}] \le \liminf E[X_n \mid \mathcal{G}]$ a.s.

Proof.

Apply (4) to
$$X'_n = \inf\{X_n, X_{n+1}, \ldots\}$$
:
as $0 \le X'_n \uparrow \liminf X_n$, $E[X'_n \mid \mathcal{G}] \uparrow E[\liminf X_n \mid \mathcal{G}]$, but by (3)
 $E[X'_n \mid \mathcal{G}] \le E[X_n \mid \mathcal{G}]$.

(6) Dominant convergence: Assume $|X_n| \le V$, and $EV < \infty$. If $X_n \to X$ a.s., then $E[X_n \mid \mathcal{G}] \to E[X \mid \mathcal{G}]$ a.s.

Proof.

WLOG,
$$X_n \ge 0$$
. Apply (5) to X_n and $V - X_n$.

(7) Jensen's inequality: Assume that $\varphi: \mathbb{R} \to \mathbb{R}$ is convex and $E|\varphi(X)| < \infty$. Then $E[\varphi(X) \mid \mathcal{G}] \ge \varphi(E[X \mid \mathcal{G}])$ a.s.

For example, $E[|X| \mid \mathcal{G}] \ge |E[X \mid \mathcal{G}]|$, $E[X^2 \mid \mathcal{G}] \ge (E[X \mid \mathcal{G}])^2$.

Proof.

As φ is convex, we can write

$$\varphi(z) = \sup\{\alpha z + \beta : \alpha, \beta \in \mathbb{Q}, \alpha z + \beta \le \varphi(z) \text{ for all } z\}.$$

If $\alpha z + \beta \le \varphi(z)$ for all z, then $\alpha X + \beta \le \varphi(X)$ and so $\alpha E[X \mid \mathcal{G}] + \beta \le E[\varphi(X) \mid \mathcal{G}]$ a.s. Now take the supremum over α and β .

(8) Tower property: If $\mathcal{H} \subset \mathcal{G}$, then

$$E[E[X \mid \mathcal{G}] \mid \mathcal{H}] = E[E[X \mid \mathcal{H}] \mid \mathcal{G}] = E[X \mid \mathcal{H}]$$
 a.s.

Proof.

The second tower conditioning is clear, as $E[X \mid \mathcal{H}]$ is \mathcal{G} -measurable. For the first one, take $A \in \mathcal{H}$. We need to show that

$$E[E[X \mid \mathcal{G}]1_A] = E[X1_A],$$

which holds because $A \in \mathcal{G}$.

(9) Taking out what is known: If Z is \mathcal{G} -measurable, and $E|XZ| < \infty$, then $E[XZ \mid \mathcal{G}] = ZE[X \mid \mathcal{G}]$ a.s.

Proof.

WLOG, $X \ge 0$. Take $Z = 1_A$ for some $A \in \mathcal{G}$. Then, for every $G \in \mathcal{G}$,

$$E[(X1_A)1_G] = E[X1_{A \cap G}] = E[E[X \mid \mathcal{G}]1_{A \cap G}]$$

=
$$E[(E[X \mid \mathcal{G}]1_A)1_G],$$

and so $E(X1_A \mid \mathcal{G}] = 1_A E(X \mid \mathcal{G}]$, i.e., the claim holds when Z is an indicator. Then, by (1), it holds when Z is simple, then, by (4), when Z is positive, and finally by (1) for arbitrary Z.

(9) Discarding independent information: If \mathcal{H} and $\sigma(\sigma(X) \cup \mathcal{G})$ are independent, then $E[X \mid \sigma(\mathcal{G} \cup \mathcal{H})] = E[X \mid \mathcal{G}]$ a.s.

Proof.

WLOG, $X \ge 0$. Let $Y = E[X \mid \mathcal{G}] \ge 0$.

Fix $G \in \mathcal{G}$, $H \in \mathcal{H}$. Then, by independence,

$$E[X1_{G\cap H}] = E[X1_G1_H] = E[X1_G]P(H).$$

Applying the same reasoning to Y, we get

$$E[Y1_{G\cap H}] = E[Y1_G]P(H) = E[X1_G]P(H) = E[X1_{G\cap H}].$$

Now, $\{G \cap H : G \in \mathcal{G}, H \in \mathcal{H}\}$ is a π -system that generates $\sigma(\mathcal{G} \cup \mathcal{H})$, and Y is $\sigma(\mathcal{G} \cup \mathcal{H})$ -measurable, and so $Y = E[X \mid \sigma(\mathcal{G} \cup \mathcal{H})]$.

Example. Assume that X, Y are independent and equally distributed, with $P(X = \pm 1) = 1/2$. Let Z = XY, $\mathcal{G} = \sigma(Y)$ and $\mathcal{H} = \sigma(Z)$. Then X is independent of \mathcal{G} (and also on \mathcal{H}), and \mathcal{G} and \mathcal{H} are independent. However, as X = YZ,

$$E[X \mid \sigma(\mathcal{G} \cup \mathcal{H})] = X$$

but

$$E[X \mid \mathcal{G}] = EX = 0.$$

Observe that \mathcal{H} and $\sigma(\sigma(X) \cup \mathcal{G})$ are not independent.

Example. Assume X_1, \ldots, X_n are i.i.d., with $E|X_1| < \infty$, and let $S_n = X_1 + \cdots + X_n$. Compute $E[X_1 \mid S_n]$.

Example. Assume X_1, \ldots, X_n are i.i.d., with $E|X_1| < \infty$, and let $S_n = X_1 + \cdots + X_n$. Compute $E[X_1 \mid S_n]$.

We have $E[X_1 \mid S_n] = E[X_i \mid S_n]$ for all i, because of symmetry. For example,

$$E[X_11_{\{S_n\in B\}}]=E[X_21_{\{S_n\in B\}}]$$

for all $B \in \mathcal{B}(\mathbb{R})$. So,

$$E[X_1 \mid S_n] = \frac{1}{n} E[S_n \mid S_n] = \frac{1}{n} S_n.$$

(1) Assume $\Omega_1, \Omega_2, \ldots$ are disjoint measurable sets with nonzero probability such that $\Omega = \cup_i \Omega_i$. Let $\mathcal{G} = \sigma(\Omega_1, \Omega_2, \ldots)$. Then

$$E[X \mid \mathcal{G}] = \sum_{i} \frac{E[X1_{\Omega_{i}}]}{P(\Omega_{i})} \cdot 1_{\Omega_{i}}$$

Proof.

Denote the RHS by Y. Observe that that Y is \mathcal{G} -measurable and that $E|Y| \leq E|X|$. Notice that $\{\Omega,\emptyset,\Omega_j,j=1,2,\ldots\}$ is a π -system. For $A=\Omega_j$, clearly $E[X1_A]=E[Y1_A]$. By DCT, this is true for $A=\Omega$ as well.

In particular,

$$E[1_B | 1_A] = P(B | A) 1_A + P(B | A^c) 1_{A^c}$$

(2) Suppose X and Y have joint density f(x, y), i.e.,

$$P((X, Y) \in B) = \int_B f(x, y) dxdy$$
, for every $B \in \mathcal{B}(\mathbb{R}^2)$

Assume that $g: \mathbb{R} \to \mathbb{R}$ is Borel measurable and $E|g(X)| < \infty$. Then

$$E[g(X) \mid Y] = h(Y)$$

where

$$h(y) = \frac{\int_{\mathbb{R}} g(x) f(x, y) \, dx}{\int_{\mathbb{R}} f(x, y) \, dx} = \text{``}E[g(X) 1_{Y \in [y, y + dy]}] / P(Y \in [y, y + dy])\text{''}.$$

Note that the denominator is the density $f_Y(y)$ of Y. Using the "0/0 = 0" convention, the formula means that h(y) = 0 when $f_Y(y) = 0$. We call $f(x,y)/f_Y(y)$ the *conditional density* of X given Y = y.

Proof.

WLOG, $g \ge 0$. Obviously, h(Y) is $\sigma(Y)$ -measurable. To verify the other two properties, take any $A \in \sigma(Y)$, that is, $A = \{Y \in B\}$ for some $B \in \mathcal{B}(\mathbb{R})$. Then

$$\begin{split} E[h(Y)1_A] &= E[h(Y)1_{\{Y \in B\}}] \\ &= \int_B h(y)f_Y(y) \, dy = \int_B f_Y(y) \, dy \int_{\mathbb{R}} g(x) \frac{f(x,y)}{f_Y(y)} \, dx \\ &= \int_{\mathbb{R}^2} 1_{\{y \in B\}} g(x)f(x,y) \, dx dy \\ &= E[g(X)1_{\{Y \in B\}}] \\ &= E[g(X)1_A]. \end{split}$$

Example. Let T_1 , T_2 be independent Exp(1) random variables, and $S_1 = T_1$, $S_2 = T_1 + T_2$. Describe conditional distribution of S_1 given S_2 .

$$f_{S_1,S_2}(s_1,s_2) = f_{T_1,T_2}(s_1,s_2-s_1) = e^{-s_1}e^{-(s_2-s_1)}1_{\{0 \le s_1 \le s_2\}}$$
$$= e^{-s_2}1_{\{0 \le s_1 \le s_2\}}$$

and

$$f_{S_2}(s_2) = s_2 e^{-s_2} 1_{\{0 \le s_2\}}$$

The conditional density is the quotient, which equals

$$\frac{1}{s_2}\mathbf{1}_{\{0\leq s_1\leq s_2\}},$$

uniform on $[0, s_2]$.

(3) Assume that X and Y are independent, and $\varphi: \mathbb{R}^2 \to \mathbb{R}$ Borel, with $E|\varphi(X,Y)| < \infty$.

Let $h(y) = E\varphi(X, y) = \int_{\mathbb{R}} \varphi(x, y) d\mu_X(x)$.

Then $E[\varphi(X,Y) \mid Y] = h(Y) (= E_X[\varphi(X,Y)])$.

Proof.

WLOG, $\varphi \geq 0$. Again, take $A = \{ Y \in B \}, B \in \mathcal{B}(\mathbb{R})$. Then

$$E[h(Y)1_{A}] = E[h(Y)1_{\{Y \in B\}}] = \int_{\mathbb{R}} h(y)1_{\{y \in B\}} d\mu_{Y}(y)$$

$$= \int_{\mathbb{R}} 1_{\{y \in B\}} d\mu_{Y}(y) \int_{\mathbb{R}} \varphi(x, y) d\mu_{X}(x)$$

$$= \int_{\mathbb{R}^{2}} 1_{\{y \in B\}} \varphi(x, y) d\mu_{X}(x) d\mu_{Y}(y)$$

$$= \int_{\mathbb{R}^{2}} 1_{\{y \in B\}} \varphi(x, y) d\mu_{(X,Y)}(x, y)$$

$$= E[\varphi(X, Y)1_{A}].$$

Regular conditional distribution

Let (Ω, \mathcal{F}, P) be a probability space and (S, \mathcal{S}) a set with a σ -algebra. Let $X:(\Omega, \mathcal{F}) \to (S, \mathcal{S})$ be a measurable map. Assume that $\mathcal{G} \subset \mathcal{F}$ is a σ -algebra. We say that $\mu: \Omega \times S \to [0,1]$ is a *regular conditional distribution* of X given \mathcal{G} if:

- for every $A \in \mathcal{S}$, $\mu(\cdot, A)$ is a version of $E[1_A \mid \mathcal{G}]$; and
- there exists a set $\Omega_0 \subset \Omega$ such that $P(\Omega_0) = 1$ and such that, for every $\omega \in \Omega_0$, $A \mapsto \mu(\omega, A)$ is a probability measure on (S, S).

So μ is a *random* probability measure on (S, S).

Note that we cannot just take $\mu(\cdot,A)$ to be *any* version of $E[1_A \mid \mathcal{G}]$ as we need countable additivity simultaneously for all pairwise disjoint countable collections of sets and for all $\omega \in \Omega_0$.

Regular conditional distribution

If we find a regular conditional distribution μ , then the standard argument (indicator \to simple \to positive \to all) shows that for every measurable function $g:(S,\mathcal{S})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$, such that $E|g(X)|<\infty$,

$$E[g(X) \mid \mathcal{G}] = \int_{\mathcal{S}} g(x) \, \mu(\cdot, dx).$$

For example, if (X, Y) is a pair of r.v.'s with joint density f, $(S, S) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $\mathcal{G} = \sigma(Y)$, then r.c.d. is the (random) measure given by its density w.r.t. the Lebesgue measure:

$$\mu(\cdot, dx) = \frac{f(x, Y)}{f_Y(Y)} dx.$$

Regular conditional distribution

The existence of r.c.d. for all X is a property of the target space (S, S). If $(S, S) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, then it always exists. More generally, it always exists when $S = \sigma\{S_1, S_2, \ldots\}$ is generated by a countable collection of $S_i \in S$; then we call $(S, S) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ a *Borel space*.

Any complete separable metric space (a.k.a. a Polish space) with a Borel σ -algebra is a Borel space, as its Borel σ -algebra is generated by the set of open balls of rational radii around points in a countable dense subset. Although there are counterexamples, for practical purposes r.c.d. always exists. While the proof of existence is not very difficult, it is not provided here.

Conditional expectation: L^2 theory

Theorem

Assume $EX^2 < \infty$. Then $E[X \mid \mathcal{G}]$ is the unique (up to a.s. equality) \mathcal{G} -measurable random variable Z that minimizes $E[(X-Z)^2]$.

Proof.

WLOG, $EZ^2 < \infty$, as otherwise $E[(X-Z)^2] = \infty$. Let $Y = E[X \mid \mathcal{G}]$, so that $E[(X-Y) \mid \mathcal{G}] = 0$. Assume that W is a \mathcal{G} -measurable random variable with $EW^2 < \infty$. Then (X-Y)W has finite expectation by Cauchy-Schwarz. Moreover,

$$E[(X - Y)W] = E[E[(X - Y)W \mid \mathcal{G}]]$$

=
$$E[W E[(X - Y) \mid \mathcal{G}]] = 0.$$

Conditional expectation: L^2 theory

Proof, continued.

Therefore, as Y - Z is a \mathcal{G} -measurable,

$$E[(X - Z)^{2}] = E[((X - Y) + (Y - Z))^{2}]$$

$$= E[(X - Y)^{2}] + E[(Y - Z)^{2}] + 2E[(X - Y)(Y - Z)]$$

$$= E[(X - Y)^{2}] + E[(Y - Z)^{2}],$$

and is clearly minimized when Z = Y.

Observe from the proof that X - Y is orthogonal to the subspace of L^2 \mathcal{G} -measurable r.v.'s, so that $Y = E[X \mid \mathcal{G}]$ is the projection of X onto that space.