Markov chains: definition and basic properties

Janko Gravner

MAT 235B

February 22, 2024

Definition. Assume $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots$ is a filtration. Assume that X_n are random variables with values in the *state space* (S, S), and that X_0, X_1, \ldots is an adapted process (that is, X_n is \mathcal{F}_n -measurable). If

(1)
$$P(X_{n+1} \in B \mid \mathcal{F}_n) = P(X_{n+1} \in B \mid X_n),$$

for all $B \in \mathcal{S}$, then X_n is called a (discrete-time) Markov chain.

Normally, $\mathcal{F}_n = \sigma\{X_0, \dots, X_n\}.$

Note: if you compute the LHS of (1) and is a function of X_n only, you are done, by the tower property.

We will restrict to:

- time-homogeneous MC: $P(X_{n+1} \in B \mid X_n)$ depends only on X_n (and not on n); and
- countable state-space, $S = 2^S$, with *transition probabilities* $p(i,j) = P(X_{n+1} = j \mid X_n = i)$.

Example. Random walk $S_n = X_0 + \xi_1 + \cdots + \xi_n$, where ξ_i are i.i.d., \mathbb{Z}^d -valued. So $S = \mathbb{Z}^d$. Then $p(i,j) = P(\xi_1 = j - i)$:

$$P(S_{n+1} = j \mid S_n = i)$$
= $P(X_0 + \xi_1 + \dots + \xi_n + \xi_{n+1} = j \mid X_0 + \xi_1 + \dots + \xi_n = i)$
= $P(\xi_{n+1} = j - i) = P(\xi_1 = j - i)$

Example. Branching process. $S = \{0, 1, 2, ...\}$. If $\xi_1, \xi_2, ...$ are i.i.d. with offspring distribution, then $p(i,j) = P(\xi_1 + \cdots + \xi_i = j)$ for i > 0, and p(0,0) = 1.

Example. Birth-death chain. $S = \{0, 1, 2, ...\}$. Here, we assume that p(i, j) = 0 if |i - j| > 1.

Example. Voter model. Let V be a finite set, and let E be a collection of undirected edges, that is,

 $E \subset \{\{x,y\} \subset V : x \neq y\}$. The state of the system at time $n=0,1,2,\ldots$ is determined by a function $\zeta_n:V \to \{0,1\}$ (where 0s and 1s are opinions), so $S=\{0,1\}^V$. At each time n a random ordered pair (x,y) of neighbors is chosen and then x assumes the opinion of y to get ζ_{n+1} . This is a MC.

However,

$$X_n = |\{\zeta_n = 1\}| = \text{number of opinions 1}$$

is not a MC! For example, in the cycle of 4 points, with two 0 opinions and two 1 opinions, the probability that X_n transitions from 2 to 3 can be 1/2 or 1/4, depending on whether the two 1s are separate or together.

In general a function of a MC is not necessarily a MC.

Example. M/G/1 queue. Customers arrive at a single (1) counter as a Poisson process with rate λ (M). Each customer requires an independent serving time with d.f. F (G). Let X_n be the number of customers at the time nth customer starts being served. Probability that k customers arrive during the service time is

$$a_k = \int_0^\infty e^{-\lambda t} \frac{(\lambda t)^k}{k!} \, dF(t)$$

and then

$$p(0, k-1) = a_k, \ k \ge 2, \quad p(0,0) = a_0 + a_1,$$

 $p(j, j-1+k) = a_k, \ j \ge 1, k \ge 0$

Transition probabilities satisfy

(2)
$$p(i,j) \ge 0$$
, $\sum_{j \in S} p(i,j) = 1$ for every $i \in S$

and they, together with the initial distribution $\mu=\mu_{X_0}$,

$$P(X_0 = i) = \mu(\{i\}) = \mu(i),$$

determine all probabilities:

$$P(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = \mu(i_0)p(i_0, i_1)\cdots p(i_{n-1}, i_n).$$

We sometimes give μ as a subscript when computing probabilities and expectations. If p is interpreted as a matrix and μ as a row vector,

$$P_{\mu}(X_n=y)=(\mu p^n)(y),$$

the *y*th coordinate of the row vector μp^n .

Proposition

If $p(\cdot, \cdot)$ satisfying (2), and μ , are given, there exists a MC X_0, X_1, \ldots such that $\mu_{X_0} = \mu$ and $p(i, j) = P(X_{n+1} = j \mid X_n = i)$.

Proof.

Let X_0 and $D_{i,n}$ be independent with $\mu_{X_0}=\mu$ and $\mu_{D_{i,n}}=p(i,\cdot)$. Then define $X_{n+1}=D_{X_n,n}$.

Denote by $(S^{\infty}, S^{\infty}) = (S \times S \times \cdots, S^{\infty})$ the *trajectory space*, where the σ -algebra S^{∞} is generated by the sets

$$\{S \times \cdots \times S \times A \times S \times \cdots : A \subset S, \text{ at any position } n \geq 1\},$$

or equivalently and more usefully by the *cylinder sets*

$${A_0 \times \cdots \times A_n \times S \times S \times \cdots : A_i \subset S, n \geq 0},$$

which is a π -system that generates S^{∞} .

Define the (left) shift operator $\theta_n: S^\infty \to S^\infty$ by

$$\theta_n(x_0,x_1,\ldots)=(x_n,x_{n+1},\ldots)$$

C

Assume X_0, X_1, \ldots is a sequence of r.v.'s with values in (S, S). Then $X : (\Omega, \mathcal{F}) \to (S^{\infty}, S^{\infty})$ is given by

$$\omega \mapsto (X_0(\omega), X_1(\omega), \ldots)$$

which is measurable, as each X_n is.

Moreover, $A \in \sigma\{X_0, X_1, ...\}$ iff $A = \{(X_0, X_1, ...) \in B\}$ for some $B \in S^{\infty}$.

Any sequence of r.v.'s induces a probability measure on (S^{∞}, S^{∞}) which is the distribution of (X_0, X_1, \ldots) .

Now let X_0, X_1, \ldots be a time-homogeneous Markov chain with countable state space S, $S = 2^S$, $\mathcal{F}_n = \sigma\{X_0, \ldots, X_n\}$. Recall that the distribution of X_0 is indicated by the subscript (e.g., P_μ when $\mu_{X_0} = \mu$ or P_X when $X_0 = x \in S$).

Theorem (Markov property)

Let $\Phi: S^{\infty} \to \mathbb{R}$ be bounded measurable. Let $\varphi(x) = E_x[\Phi(X)]$. Then

$$E_{\mu}[\Phi(\theta_n(X)) \mid \mathcal{F}_n] = E_{X_n}[\Phi(X)] := \varphi(X_n).$$

Corollary

We have

$$E_{\mu}[\Phi(\theta_n(X))] = E_{\mu}[E_{X_n}[\Phi(X)]]$$

provided $\Phi \geq 0$ or at least one side is finite when Φ is replaced by $|\Phi|$.

In words, at time n, the distribution of the rest of trajectory is the same as the distribution of trajectory started at X_n .

Example. Let S_n be a simple symmetric random walk in 2d. Assume $A \subset \mathbb{Z}^2$ and $A^c = B_1 \cup B_2$, with $B_1 \cap B_2 = \emptyset$. Let $T = \inf\{n > 0 : S_n \notin A\} > 0.$ Let $\varphi(x) = P_x(S_T \in B_1)$, $x \in \mathbb{Z}^2$. If A is finite, can we compute $\varphi(x)$? Let $\Phi = \mathbf{1}_{\{S_T \in B_1\}}$, so that $\varphi(x) = E_x[\Phi(X)]$. If $x \in A$, $\varphi(x) = E_x[\Phi(\theta_1(X))]$ (because $x \in A$) $= E_X[E_X, \Phi(X)]$ (Markov property) $= E_{x}[\varphi(X_{1})]$ $=\frac{1}{4}\sum_{i=1}^{4}\varphi(x+e_i)$

We say that φ is *harmonic* on A. We also have boundary conditions, $\varphi \mid_{B_1} = 1$, $\varphi \mid_{B_2} = 0$.

If A is finite, and φ is harmonic on A, φ satisfies the maximum principle: its maximum (and minimum) must be achieved outside A. It follows that there is a unique harmonic function with given boundary condition; the above linear equations for φ have a unique solution.

This argument is not limited to 2d random walks.

Proof of Markov property.

Let Φ be the indicator of a cylinder set,

$$\Phi = \mathbf{1}_{A_0 \times \cdots \times A_k \times S \times S \times \cdots},$$

for some k and $A_i \subset S$. Take also $F \in \mathcal{F}_n$ of the form

$$F=\{X_0\in B_0,\ldots,X_n\in B_n\},$$

for some $B_i \subset S$. Then

$$E_{\mu}[\Phi(\theta_n(X))1_F] = \sum \mu(i_0)p(i_0,i_1)\cdots p(i_{n+k-1},i_{n+k}),$$

over

$$i_0 \in B_0, \dots, i_{n-1} \in B_{n-1}, i_n \in B_n \cap A_0, i_{n+1} \in A_1, \dots, i_{n+k} \in A_k$$

Proof of Markov property, continued.

Also,

$$E_{\mu}[\varphi(X_n)\mathbf{1}_F] = \sum \mu(i_0)p(i_0,i_1)\cdots p(i_{n-1},i_n)\varphi(i_n)$$

over the same range of indices i_0, \ldots, i_n , as $\varphi(i_n) = 0$ unless $i_n \in A_0$, so we may indeed restrict $i_n \in B_n \cap A_0$. Then,

$$\varphi(i_{n}) = P_{i_{n}}(X_{0} \in A_{0}, X_{1} \in A_{1}, \dots, X_{k} \in A_{k})$$

$$= P_{i_{n}}(X_{1} \in A_{1}, \dots, X_{k} \in A_{k})$$

$$= \sum p(i_{n}, i_{n+1}) \cdots p(i_{n+k-1}, i_{n+k})$$

again over the same range of indices $i_{n+1}, \dots i_{n+k}$. It follows that

$$E_{\mu}[\Phi(\theta_n(X))1_F] = E_{\mu}[\varphi(X_n)1_F].$$

Proof of Markov property, continued.

We have

$$E_{\mu}[\Phi(\theta_n(X))1_F] = E_{\mu}[\varphi(X_n)1_F].$$

The set of F's we have chosen is a π -system that generates \mathcal{F}_n , so the above is true for all $F \in \mathcal{F}_n$ by the $\pi - \lambda$ theorem. Also, by the same theorem, the above is true for $\Phi = \mathbf{1}_D$, $D \in \mathcal{S}^{\infty}$. Then, by linearity, it is true for simple functions Φ , then by MCT for all positive Φ , and then by linearity again for all bounded Φ .

Recall that *N* is a stopping time if $\{N = n\} \in \mathcal{F}_n$. Define the information available at time *N*:

$$\mathcal{F}_N = \{ A \in \mathcal{F} : A \cap \{ N = n \} \in \mathcal{F}_n, \text{ for all } n < \infty \}$$

(If you stop at time *n*, you know at that time whether *A* happened or not.)

Proposition

The family \mathcal{F}_N is a σ -algebra, N and $X_N 1_{\{N < \infty\}}$ are \mathcal{F}_N -measurable, and so is any stopping time $M \leq N$.

Proof.

HW.

We define the random shift on $\{N < \infty\} \subset S^{\infty}$, $\theta_N : \{N < \infty\} \to S^{\infty}$, by

$$\theta_N(x) = \theta_n(x) \text{ on } \{N = n\}$$

Theorem (Strong Markov property)

Let $\Phi_n: S^\infty \to R$ be measurable and uniformly bounded, $|\Phi_n| \le M$ for every n. Let $\varphi(x, n) = E_x[\Phi_n(X)]$. Then, on $\{N < \infty\}$,

$$E_{\mu}[\Phi_N(\theta_N(X)) \mid \mathcal{F}_N] = E_{X_N}[\Phi_N(X)] := \varphi(X_N, N).$$

Corollary

If
$$P(N < \infty) = 1$$
 and $\Phi \ge 0$,

$$E_{\mu}[\Phi(\theta_N(X))] = E_{\mu}[E_{X_N}[\Phi(X)]].$$

Proof.

Take $A \in \mathcal{F}_N$. Then

$$\begin{split} &E_{\mu}[\Phi_{N}(\theta_{N}(X))1_{A\cap\{N<\infty\}}]\\ &=\sum_{n=0}^{\infty}E_{\mu}[\Phi_{n}(\theta_{n}(X))1_{A\cap\{N=n\}}]\\ &=\sum_{n=0}^{\infty}E_{\mu}[\varphi(X_{n},n)1_{A\cap\{N=n\}}] \quad (\text{MP, as } A\cap\{N=n\}\in\mathcal{F}_{n})\\ &=E_{\mu}[\varphi(X_{N},N)1_{A\cap\{N<\infty\}}]. \end{split}$$

Example. Let S_n be a simple 1d random walk, with $p \ge 1/2$, started at 0. Let T_b be the time to reach b > 0. Show that

$$T_1, T_2 - T_1, T_3 - T_2, \dots$$

are i.i.d.

It is enough to show that for bounded Borel functions f,

$$E_0[f(T_b-T_{b-1})\mid \mathcal{F}_{T_{b-1}}]=E_0[f(T_1)].$$

Let $\Phi(X) = f(T_b)$ and $N = T_{b-1}$. Then

$$\Phi(\theta_N(X)) = \sum_{n=1}^{\infty} \Phi(\theta_n(X)) 1_{\{T_{b-1} = n\}}$$

$$= \sum_{n=1}^{\infty} f(T_b - n) 1_{\{T_{b-1} = n\}}$$

$$= f(T_b - T_{b-1}).$$

Also, $X_N = b - 1$ and

$$\varphi(b-1) = E_{b-1}[f(T_b)] = E_0[f(T_1)].$$