Markov chains: recurrence and transience

Janko Gravner

MAT 235B

February 29, 2024

Assume X_n is a MC on a state space S. Fix $y \in S$. Define

$$T_y^0 = 0$$

 $T_y^k = inf\{n > T_y^{k-1} : X_n = y\}$

to be the times of successive visits to k (except possibly for k = 0). Let $T_y = T_y^1$ be the time of first visit to y after time 0 and

$$\rho_{xy}=P_x(T_y<\infty).$$

A state $a \in S$ is absorbing if p(a, a) = 1. For such a state $\rho_{ay} = 1_{a=y}$.

Example. If $S = \{a, b, c\}$, a and c are absorbing, and $p(b, \cdot) \equiv \frac{1}{3}$, then $\rho_{ac} = 0$, $\rho_{bc} = \frac{1}{2}$, $\rho_{cc} = 1$.

0

Proposition

For every $x, y, z \in S$, $k \ge 1$,

$$P_X(T_y^k < \infty) = \rho_{XY}\rho_{yy}^{k-1},$$

$$\rho_{XY} \ge \rho_{XZ}\rho_{ZY}$$

Proof.

Use SMP: go from x to y, then return to y k - 1 times; go from x to z, then from z to y.

A state $y \in S$ is recurrent if $\rho_{yy} = 1$ and transient if $\rho_{yy} < 1$.

Example. In the previous example, *a* and *c* are recurrent, while *b* is transient as $\rho_{bb} = \frac{1}{3}$.

Let $N(y) = \sum_{n=1}^{\infty} 1_{\{X_n = y\}}$ be the total no. of visits to y. By the proposition, if y is recurrent, then $P_y(T_y^k < \infty) = 1$ for all k, so that $P_y(X_n = y \text{ i.o.}) = P_y(N(y) = \infty) = 1$. We have

$$E_xN(y)=\sum_{n=1}^{\infty}\rho^n(x,y),$$

and on the other hand

$$E_{x}N(y) = \sum_{k=1}^{\infty} P_{x}(N(y) \ge k)$$

$$= \sum_{k=1}^{\infty} P_{x}(T_{y}^{k} < \infty)$$

$$= \sum_{k=1}^{\infty} \rho_{xy}\rho_{yy}^{k-1} = \frac{\rho_{xy}}{1 - \rho_{yy}}$$

Next proposition follows.

Proposition

The state y is recurrent iff

$$E_y N(y) = \sum_{n=1}^{\infty} p^n(y, y) = \infty.$$

Proposition (Recurrence is contagious)

Assume $x, y \in S$, $x \neq y$. If x is recurrent and $\rho_{xy} > 0$, then y is also recurrent and $\rho_{yx} = 1$, and so also $\rho_{xy} = 1$.

5

Proof.

Assume ρ_{yx} < 1. As ρ_{xy} > 0, there exists a $K \ge 1$ so that $p^K(x,y)$ > 0; assume that K is the smallest such. As

$$p^{K}(x,y) = \sum_{y_{1},...,y_{K-1} \in S} p(x,y_{1}) \cdots p(y_{K-1},y),$$

there exits $y_1,\ldots,y_{K-1}\in \mathcal{S}\setminus\{x,y\}$ so that $p(x,y_1)>0,\ldots p(y_{K-1},y)>0$. Then

$$1 - \rho_{xx} = P_x(T_x = \infty) \ge p(x, y_1) \cdots p(y_{K-1}, y)(1 - \rho_{yx}) > 0,$$

and *x* is not recurrent. This shows that $\rho_{yx} = 1$.

Proof, continued.

To show that y is recurrent, find L so that $p^{L}(y,x) > 0$. Then, for all $n \ge 1$,

$$p^{L+n+K}(y,y) \ge p^L(y,x)p^n(x,x)p^K(x,y)$$

and

$$\sum_{n=1}^{\infty} p^n(y,y) \ge \sum_{n=1}^{\infty} p^{L+n+K}(y,y) = \infty.$$

We say that a subset $C \subset S$ of states is *closed* if $x \in C$ and $\rho_{xy} > 0$ imply that $y \in C$. That is, for every $x \in C$, $P_x(X_n \in C \text{ for all } n) = 1$.

We say that a subset $D \subset S$ of states is *irreducible* if $\rho_{xy} > 0$ for all $x, y \in D$.

The previous proposition implies the following.

Corollary

The set of all recurrent sites is closed. If $D \subset S$ is irreducible, and contains at least one recurrent state, then all states in D are recurrent.

Я

Proposition

If C is a finite closed set, then C includes at least one recurrent state.

Proof.

Take an $x \in C$. Then

$$\sum_{y \in C} E_x N(y) = \sum_{y \in C} \sum_{n=1}^{\infty} p^n(x, y)$$

$$= \sum_{n=1}^{\infty} \sum_{y \in C} p^n(x, y)$$

$$= \sum_{n=1}^{\infty} P_x(X_n \in C) = \infty,$$

so $E_x N(y) = \infty$ for at least one $y \in C$.

A chain is *irreducible* if the entire state space *S* is irreducible. Irreducible chain is *recurrent* if one (equivalently, every) state is recurrent and *transient* otherwise.

Example. Let S_n be SRW on \mathbb{Z} with probability $p \in (0,1)$ of rightward jump. We know (by martingale arguments) that this chain is recurrent if p = 1/2, and that the chain is transient if $p \neq 1/2$. In fact, if p > 1/2,

$$\rho_{00} = 1 - p + p P_0(T_{-1} < \infty) = 1 - p + p \frac{1 - p}{p} = 2(1 - p).$$

Theorem (Decomposition theorem)

Let $R = \{x : \rho_{xx} = 1\}$ be the set of recurrent states. Then $R = \bigcup_i R_i$, a disjoint union of closed irreducible sets R_i .

Proof.

For $x, y \in R$ let $x \sim y$ iff x = y or $\rho_{xy} > 0$. This is an equivalence relation on R. Any equivalence class is clearly closed and irreducible.

Example. Branching process with offspring distribution ξ with $P(\xi=0)>0$. Then 0 is absorbing. Also, $\rho_{k0}>0$ for all k. This alone implies that all states except 0 are transient. (But we already knew this.)

Example. M/G/1 queue. Recall that a_k is the probability that k customers arrive during service time. Let $\mu = \sum_{k=0}^{\infty} k a_k$ be the expected number of such customers. We assume that the server time is not deterministically zero, so that all $a_k > 0$, which implies that the chain is irreducible.

Think of arriving customers as children of the customer who is next in line when the serving starts (if there is such a customer). Assume $x \ge 1$. If $\mu > 1$, then $P_x(T_0 < \infty) = \rho^x$, where ρ is the probability that the branching process with offspring distribution given by a_k dies out. The chain is transient. If $\mu \le 1$, then $P_x(T_0 < \infty) = 1$, the chain is recurrent.

Example. Let $S_n^{(d)}$ be the *d*-dimensional symmetric simple random walk, $S_n = S_n^{(1)}$.

We have, by Stirling

$$P_0(S_{2n} = 0) = \binom{2n}{n} 2^{-2n} \sim \frac{1}{\sqrt{\pi n}},$$

which implies, one more time, recurrence of 1d SSRW.

Let B_n be a Binomial(n, p) r.v. Then

$$p_n = P(B_n \text{ is even}) = \frac{1}{2} + \frac{1}{2}(1 - 2p)^n,$$

because

$$p_{n+1} = (1-p)p_n + p(1-p_n) = p_n(1-2p) + p, \quad p_0 = 1.$$

Lemma

Let ξ_1, ξ_2, \dots be i.i.d. bounded with $E\xi_1 = \mu$, $S_n = \xi_1 + \dots + \xi_n$. Then for every $\epsilon > 0$ there exists a $\gamma = \gamma_{\epsilon} > 0$, so that

$$P(S_n \notin [n(\mu - \epsilon), n(\mu + \epsilon)] \le e^{-\gamma n}$$

Proof.

For $\lambda \in \mathbb{R}$, let $h(\lambda) = \lambda(\mu + \epsilon) - \log E[e^{\lambda \xi_1}]$. As ξ_1 is bounded, $h(\lambda)$ exists and is smooth for all λ , with $h'(\lambda) = (\mu + \epsilon) - E[\xi_1 e^{\lambda \xi_1}] / E[e^{\lambda \xi_1}]$. Observe that h(0) = 0 and $h'(0) = \epsilon > 0$, so there exists a $\lambda > 0$ so that $h(\lambda) > 0$. But by Markov,

$$P(S_n \ge n(\mu + \epsilon)) \le P(e^{\lambda S_n - \lambda n(\mu + \epsilon)} \ge 1) \le e^{-nh(\lambda)}.$$

The other inequality follows by replacing all ξ_i be $-\xi_i$.

Assume d = 2. If the walk makes 2n steps, let B_{2n} be the number of steps in horizontal direction, which is Binomial(2n, 1/2). Then for any $\epsilon > 0$ and a large enough n,

$$\begin{split} &P(S_{2n}^{(2)} = 0) \\ &= \sum_{k=0}^{n} P(B_{2n} = 2k) P(S_{2k} = 0) P(S_{2(n-k)} = 0) \\ &\geq \sum_{(1-\epsilon)n/2 \leq k \leq (1+\epsilon)n/2} P(B_{2n} = 2k) \left(\frac{1-\epsilon}{\sqrt{\pi(1+\epsilon)\frac{n}{2}}} \right)^{2} \\ &\geq \frac{(1-\epsilon)^{2}}{1+\epsilon} \frac{2}{\pi n} \sum_{k=0}^{n} P(B_{2n} = 2k) - e^{-\gamma n} \sim \frac{(1-\epsilon)^{2}}{1+\epsilon} \frac{1}{\pi n} \end{split}$$

By the analogous upper bound, $P(S_{2n}^{(2)}=0)\sim \frac{1}{\pi n}$, and the RW is recurrent. (In fact, $P(S_{2n}^{(2)}=0)=P(S_{2n}=0)^2$.)

Assume d=3. Now the number of steps in the *z*-direction B_{2n} is Binomial (2n,1/3) and

$$\begin{split} &P(S_{2n}^{(3)}=0)\\ &=\sum_{k=0}^{n}P(B_{2n}=2k)P(S_{2k}=0)P(S_{2(n-k)}^{(2)}=0)\\ &\sim\sum_{k=0}^{n}P(B_{2n}=2k)\frac{1}{\sqrt{\pi\frac{n}{3}}}\frac{1}{\pi\frac{2n}{3}}\\ &\sim\frac{3^{3/2}}{4\pi^{3/2}}\cdot\frac{1}{n^{3/2}} \end{split}$$

Therefore, the RW is transient and $\rho_{00} <$ 1. In fact $\rho_{00} \approx$ 0.3405, as can be computed by

$$\frac{\rho_{00}}{1-\rho_{00}}=\sum_{n=1}^{\infty}P(S_{2n}^{(3)}=0),$$

but there are better methods.

Example. Birth-death chain X_n , with $S = \{0, 1, 2...\}$, $p_i = p(i, i + 1) > 0$ for $i \ge 0$, $q_i = p(i, i - 1) > 0$ for $i \ge 1$, $q_0 = 0$, and $r_i = 1 - p_i - q_i = p(i, i) \ge 0$ for $i \ge 0$. This is an irreducible chain.

For $k \geq 0$, let

$$\varphi(k) = \sum_{m=0}^{k-1} \prod_{j=1}^m \frac{q_j}{p_j}.$$

Here, $\varphi(0) = 0$, $\varphi(1) = 1$. Let $N = \inf\{n : X_n = 0\}$. Let $Y_n = X_{n \wedge N}$. Note that Y_n is also a BD chain, but now $p_0 = 0$, i.e., 0 is absorbing.

Claim 1. $\varphi(Y_n)$ is a martingale wrt. $\mathcal{F}_n = \sigma\{Y_0, \dots, Y_n\}$. For this, we need to check that $E[\varphi(Y_{n+1}) \mid Y_n = k] = \varphi(k)$.

For k = 0, this is clear. For $k \ge 1$, this works out to be:

$$q_{k}\varphi(k-1) + r_{k}\varphi(k) + p_{k}\varphi(k+1) = \varphi(k)$$

$$q_{k}\varphi(k-1) + p_{k}\varphi(k+1) = (p_{k} + q_{k})\varphi(k)$$

$$\varphi(k+1) - \varphi(k) = \frac{q_{k}}{p_{k}}(\varphi(k) - \varphi(k-1)),$$

which is clearly true.

Now let

$$T_c = \inf\{n \ge 1 : X_n = c\}$$

Claim 2. For $0 \le a < x < b$,

$$P_{x}(T_{a} > T_{b}) = \frac{\varphi(x) - \varphi(a)}{\varphi(b) - \varphi(a)}.$$

Let $T = T_a \wedge T_b$. Then $\varphi(X_{n \wedge T}) = \varphi(Y_{n \wedge T})$ is a bounded martingale, so u.i., and $P_x(T < \infty) = 1$, so by optional stopping,

$$\varphi(x) = E_X(\varphi(Y_T)) = \varphi(a)P_X(T_a < T_b) + \varphi(b)P_X(T_a > T_b).$$

Claim 3. 0 is recurrent iff

$$\varphi(\infty) = \sum_{m=0}^{\infty} \prod_{j=1}^{m} \frac{q_j}{p_j} = \infty.$$

We have from Claim 2, for any x > 0, and large enough b,

$$P_{x}(T_{0} > T_{b}) = \frac{\varphi(x)}{\varphi(b)}.$$

By sending $b \to \infty$, we get

$$1 - \rho_{x0} = P_x(T_0 = \infty) = 0$$

iff $\varphi(b) \to \infty$.

For example if $p_i = p$, $q_i = q$, then $\varphi(\infty) = \infty$ if $q \ge p$ and 1/(1 - q/p) if q < p.