# Markov chains: invariant measures

Janko Gravner

**MAT 235B** March 9, 2024

We are considering a Markov chain  $X_n$  on a countable state space S with transition probabilities  $p(\cdot, \cdot)$ .

Let  $\mu: S \to [0, \infty)$  be arbitrary. We extend  $\mu$  to a measure on S, so it is actually a function on  $2^S$ . We call  $\mu$  a *stationary* (or *invariant*) measure if

$$\sum_{x \in S} \mu(x) p(x, y) = \mu(y) \quad \text{ for every } y \in S$$

So,  $\mu$  is a left eigenvector for p, with eigenvalue 1.

If  $\mu(S) = 1$ , then  $\mu$  is a *stationary* (or *invariant*) *distribution*. In this case, if  $\mu_{X_0} = \mu$ , then  $\mu_{X_n} = \mu$  for all n.

We call a measure  $\mu$  reversible if

$$\mu(x)p(x,y) = \mu(y)p(y,x)$$
 for all  $x, y \in S$ 

A reversible measure is invariant:

$$\sum_{\mathbf{x}} \mu(\mathbf{x}) p(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{x}} \mu(\mathbf{y}) p(\mathbf{y}, \mathbf{x}) = \mu(\mathbf{y})$$

Why the name? If  $\mu$  is a reversible distribution,

$$P_{\mu}[X_{n} = y \mid X_{n+1} = x_{n+1}, \dots, X_{n+k} = x_{n+k}]$$

$$= \frac{\mu(y)p(y, x_{n+1})p(x_{n+1}, x_{n+2}), \dots, p(x_{n+k-1}, x_{n+k})}{\mu(x_{n+1})p(x_{n+1}, x_{n+2}), \dots, p(x_{n+k-1}, x_{n+k})}$$

$$= p(x_{n+1}, y)$$

Statistically, it is impossible to tell the direction of time.

**Example**. If p(x,y) = p(y,x) for all  $x,y \in S$ , then  $\mu \equiv 1$  is reversible. SSRW on  $\mathbb{Z}^d$  is such an example.

In general,  $\mu \equiv 1$  is invariant if and only if the transition matrix  $p(\cdot,\cdot)$  is doubly stochastic,  $\sum_{x} p(x,y) = 1$ . As an example, consider SRW on a discrete circle, going counterclockwise w.p. p and clockwise w.p. 1-p. This chain has a doubly stochastic transition matrix but is non-reversible if  $p \neq 1/2$ .

**Example**. For birth-death chain,

$$\mu(x) = \prod_{k=1}^{x} \frac{p_{k-1}}{q_k}$$

(where  $\mu(0) = 1$ ) is reversible. For this, we need to show

$$\mu(x)p(x,x-1) = \mu(x-1)p(x-1,x), \quad x \ge 1$$
  
 $\mu(x)p(x,x+1) = \mu(x+1)p(x+1,x), \quad x \ge 0$ 

These two say the same thing, and the second says:

$$\prod_{k=1}^{X} \frac{p_{k-1}}{q_k} \cdot p_x = \prod_{k=1}^{X+1} \frac{p_{k-1}}{q_k} \cdot q_{X+1},$$

which clearly holds.

Assume that  $x \in S$  is a recurrent state, a *base point*. As before, let  $T_x = \inf\{n \ge 1 : X_n = x\}$ . Let  $\mu$  be the expected number of visits to y before returning to x (now including time 0), that is,

$$\mu(y) = E_X \left[ \sum_{n=0}^{T_X - 1} 1_{\{X_n = y\}} \right]$$

$$= E_X \left[ \sum_{n=0}^{\infty} 1_{\{X_n = y, T_X > n\}} \right]$$

$$= \sum_{n=0}^{\infty} P_X(X_n = y, T_X > n)$$

Observe that  $\mu(x) = 1$ , and that also that

$$\mu(y) = E_X \left[ \sum_{n=1}^{T_X} 1_{\{X_n = y\}} \right] = \sum_{n=1}^{\infty} P_X(X_n = y, T_X \ge n)$$

Let  $q_n(x, y) = P_x(X_n = y, T_x > n)$ , so that

$$\mu(y) = \sum_{n=0}^{\infty} q_n(x, y)$$

### Theorem (Existence)

As defined above,  $\mu$  is an invariant measure.

#### Proof.

Note that  $\mu(x) = 1$ . For any  $z \in S$ ,

$$\sum_{y} \mu(y) p(y,z) = \sum_{n=0}^{\infty} \sum_{y} p(y,z) q_n(x,y),$$

and we need to prove that this equals  $\mu(z)$ .

#### Proof, continued.

Case 1:  $z \neq x$ .

$$\sum_{y} p(y,z)q_{n}(x,y) = \sum_{y} q_{n}(x,y)P_{x}[X_{n+1} = z \mid X_{n} = y]$$

$$= \sum_{y} q_{n}(x,y)P_{x}[X_{n+1} = z \mid X_{n} = y, T_{x} > n]$$

$$(as \{T_{x} > n\} \in \mathcal{F}_{n})$$

$$= \sum_{y} P_{x}[X_{n+1} = z, X_{n} = y, T_{x} > n]$$

$$= P_{x}[X_{n+1} = z, T_{x} > n] \qquad (*)$$

$$= P_{x}[X_{n+1} = z, T_{x} > n + 1] \qquad (as z \neq x)$$

$$= q_{n+1}(x,z)$$

### Proof, continued.

and

$$\sum_{n=0}^{\infty} q_{n+1}(x,z) = \sum_{n=0}^{\infty} q_n(x,z) \quad (\text{as } z \neq x, \, q_0(x,z) = 0)$$
$$= \mu(z)$$

Ç

#### Proof, continued.

Case 2: z = x. The above computation is valid through (\*), where we join it.

$$\sum_{y} p(y,x)q_{n}(x,y) = P_{x}[X_{n+1} = x, T_{x} > n]$$

$$= P_{x}[T_{x} = n+1]$$
(\*)

and

$$\sum_{n=0}^{\infty} P_X[T_X = n+1] = P(_X T_X < \infty) = 1 = \mu(X)$$

#### Proof, continued.

Finally, we need to prove that  $\mu(y) < \infty$  for all y. If  $\rho_{xy} = 0$ , then  $\mu(y) = 0$ . If  $\rho_{xy} > 0$ , then  $\rho_{yx} > 0$  and  $p^n(y, x) > 0$  for some n. We already know that  $\sum_z \mu(z) p^n(z, x) = 1$ , and so  $\mu(y) p^n(y, x) < 1$ .

### Theorem (Uniqueness)

Assume a MC is irreducible and recurrent. Then it has a unique stationary measure, up to constant multipliers.

#### Proof.

Let  $\nu$  be an arbitrary stationary measure. Pick  $a \in S$  to use as a base point for  $\mu$ . Then, for any  $n \ge 1$ ,

$$\nu(x) = \sum_{y} \nu(y) p(y, x) = \nu(a) p(a, x) + \sum_{y \neq a} \nu(y) p(y, x)$$

$$= \nu(a) P_{a}(X_{1} = x) + \sum_{y \neq a} \sum_{z} \nu(z) p(z, y) p(y, x)$$

$$= \nu(a) P_{a}(X_{1} = x) + \sum_{y \neq a} \nu(a) p(a, y) p(y, x)$$

$$+ \sum_{y \neq a, z \neq a} \nu(z) p(z, y) p(y, x)$$

### Proof.

$$\nu(x) = \nu(a)P_{a}(X_{1} = x) + \sum_{y \neq a} \nu(a)p(a, y)p(y, x)$$

$$+ \sum_{y \neq a, z \neq a} \nu(z)p(z, y)p(y, x)$$

$$= \nu(a)P_{a}(X_{1} = x) + \nu(a)P_{a}(X_{1} \neq a, X_{2} = x)$$

$$+ \sum_{y \neq a, z \neq a} \nu(a)p(a, z)p(z, y)p(y, x) + (sth. \geq 0)$$

$$= \nu(a)P_{a}(X_{1} = x) + \nu(a)P_{a}(X_{1} \neq a, X_{2} = x)$$

$$+ \nu(a)P_{a}(X_{1} \neq a, X_{2} \neq a, X_{3} = x) + (sth. \geq 0)$$
...
$$= \nu(a)\sum_{m=1}^{n} P_{a}(X_{1} \neq a, ..., X_{m-1} \neq a, X_{m} = x) + (sth. \geq 0)$$

#### Proof, continued.

So,

$$u(x) \ge \nu(a) \sum_{m=1}^{\infty} P_a(X_1 \ne a, \dots, X_{m-1} \ne a, X_m = x)$$

$$= \nu(a) \sum_{m=1}^{\infty} P_a[X_m = x, T_a \ge m] = \nu(a)\mu(x)$$

#### Proof, continued.

So,  $\nu(x) \ge \nu(a)\mu(x)$ , with equality when x = a. So, for any  $n \ge 0$ ,

$$\nu(a) = \sum_{x} \nu(x) p^{n}(x, a) \ge \nu(a) \sum_{x} \mu(x) p^{n}(x, a)$$
$$= \nu(a) \mu(a) = \nu(a)$$

Take an  $x \in S$ . If, for some n,  $p^n(x, a) > 0$ , then  $\nu(x) = \nu(a)\mu(x)$ , to avoid the strict inequality above. By irreducibility, such n exists for any x.

# Stationary distributions

### **Proposition**

If there is a stationary distribution  $\pi$ , then all  $y \in S$  with  $\pi(y) > 0$  are recurrent.

Therefore, an invariant distribution cannot exist for irreducible transient chains, although an invariant measure may exist (e.g., 3d SSRW).

# Stationary distributions

#### Proof.

Recall that N(y) is the total number of visits to y, not counting time 0. If  $\pi(y) > 0$ ,

$$E_{\pi}[N(y)] = \sum_{x} \pi(x) \sum_{n=1}^{\infty} p^{n}(x, y)$$
$$= \sum_{n=1}^{\infty} \sum_{x} \pi(x) p^{n}(x, y) = \sum_{n=1}^{\infty} \pi(y) = \infty$$

and

$$E_{\pi}[N(y)] = \sum_{X} \pi(X) E_{X}[N(y)] = \sum_{X} \pi(X) \frac{\rho_{XY}}{1 - \rho_{YY}} \le \frac{1}{1 - \rho_{YY}},$$

so 
$$\rho_{yy} = 1$$
.



# Stationary distributions

#### Proposition

Assume a chain is irreducible and has stationary distribution  $\pi$ .

$$\pi(x)=\frac{1}{E_xT_x}>0,$$

for all  $x \in S$ .

### Proof.

Then

As, for all  $x,y\in \mathcal{S},\,\pi(x)p^n(x,y)\leq \pi(y)$ , irreducibility implies  $\pi(x)>0$  for all x and so all sites are recurrent. Therefore,  $\pi$  is unique. Moreover, using x as the base point,

$$\mu(y) = \sum_{n=0}^{\infty} P_x(X_n = y, T_x > n) = \frac{\pi(y)}{\pi(x)}.$$

Sum over y: 
$$E_x(T_x) = \sum_{n=0}^{\infty} P_x(T_x > n) = \frac{1}{\pi(x)}$$
.

### Positive recurrence

A recurrent site x is positive recurrent if  $E_x T_x < \infty$  and null recurrent otherwise.

#### **Theorem**

For an irreducible chain, TFAE:

- (i) some state is positive recurrent;
- (ii) every state is positive recurrent; and
- (iii) there exists a stationary distribution

#### Proof.

The only remaining implication to prove is  $(i) \Longrightarrow (iii)$ . To this end, assume  $x \in S$  is a positive recurrent state. Then

$$\pi(y) = \frac{1}{E_x T_x} \sum_{n=0}^{\infty} P_x(X_n = y, T_x > n)$$

is a stationary measure and a distribution.



**Example**. SSRW in dimensions 1 and 2 is null recurrent, as  $\mu \equiv$  1 is invariant.

**Example**. Birth-death chain has  $\mu(x) = \prod_{k=1}^{x} \frac{p_{k-1}}{q_k}$  and so is positive recurrent iff

$$\sum_{x=0}^{\infty}\mu(x)<\infty$$

We proved earlier that recurrence is equivalent to

$$\sum_{x=0}^{\infty} \frac{1}{\mu(x)p_x} = \infty.$$

**Example**. In M/G/1 queue, consider the embedded chain  $X_n$  with

$$p(0, k-1) = a_k, \ k \ge 2, \quad p(0,0) = a_0 + a_1, p(j, j-1+k) = a_k, \ j \ge 1, k \ge 0,$$

 $a_k > 0$  for all k. Let  $\xi$  be the r.v. with distribution  $P(\xi = k) = a_k$  and  $E\xi = \sum_{k=0}^{\infty} ka_k = \mu$ .

We know this irreducible chain is recurrent iff  $\mu \leq 1$ .

Note that  $E_1 T_0 = EN$ , where N is the total population of the branching process with offspring distribution  $\xi$ . Also,

$$E_k T_{k-1} = EN$$
 for all  $k \ge 1$ , so  $E_k T_0 = kEN$ .

Let  $N_k$  be the population at time k, so that  $N = \sum_{k=0}^{\infty} N_k$  and

$$EN = \sum_{k=0}^{\infty} EN_k = \sum_{k=0}^{\infty} \mu^k = \begin{cases} \frac{1}{1-\mu} & \mu < 1\\ \infty & \mu \ge 1 \end{cases}$$

The chain is positive recurrent iff  $\mu$  < 1.

Can we compute the invariant distribution?

To begin with,

$$E_0 T_0 = 1 + \sum_{k=1}^{\infty} a_k \frac{k-1}{1-\mu}$$
$$= 1 + \frac{\mu - 1 + a_0}{1-\mu}$$
$$= \frac{a_0}{1-\mu}$$

We can compute  $\pi$ , as  $\pi(0) = 1/E_0 T_0$ , and then use recursion:

$$\pi(0) = \pi(0)(a_0 + a_1) + \pi(1)a_0$$
  
 $\pi(1) = \pi(0)a_2 + \pi(1)a_1 + \pi(2)a_0$ 

. . .