Homework 1

Durrett, 4.1.3, 4.1.5, 4.1.6, 4.1.7, 4.1.9, 4.1.10. (Expanded hint for 4.1.10: Use Jensen to prove $|X| = E(|Y| \mid \mathcal{G})$, conclude that $E((|Y| - Y)1_{\{X \ge 0\}}) = 0$, then that $1_{\{X \ge 0\}} = 1_{\{Y \ge 0\}}$ a.s., and finally replace 0 by arbitrary $c \in \mathbb{Q}$.)

- 1. Assume that $p \in (0,1)$. Let $X_1, X_2, ...$ be a sequence of independent Bernoulli randoms variables with parameter p, that is, $p = P(X_k = 1) = 1 P(X_k = 0)$. Let $N = \inf\{k : X_k = 1\}$. Compute $E[X_k \mid N]$.
- 2. A set $A \in \mathcal{G}$ is an atom of a σ -algebra \mathcal{G} if, for every $B \in \mathcal{G}$ with $B \subset A$, either P(B) = P(A) or P(B) = 0. Assume X is a random variable with finite expectation. Show that $E[X \mid \mathcal{G}]$ is a.s. constant on any atom of \mathcal{G} and determine that constant. (First formulate formally what this means.)
- 3. For a given random variable X and $g: \mathbb{R} \to \mathbb{R}$, such that $E|g(X)| < \infty$, find the formula for $E(g(X) \mid X_+)$. In particular, if X is a standard Normal random variable, compute $E(X \mid X_+)$.
- 4. Assume that for two random variables X and Y with finite expectation we have $E[X \mid Y] = Y$ and $E[Y \mid X] = X$. Show that X = Y a.s. (*Hint*. Show that, for every $x \in \mathbb{R}$,

$$E[(Y-X)1_{\{X>x,Y>x\}}] = E[(X-Y)1_{\{Y\leq x < X\}}] = E[(X-Y)1_{\{X\leq x < Y\}}].)$$