Homework 5

Durrett, 4.6.1.

- 1. Let $X_n = \prod_{k=1}^n \xi_k$, where ξ_k are independent, $\xi_k \ge 0$, $E\xi_k = 1$. Show first that X_n converges to an a.s. finite r.v. X_{∞} . Let $a_k = E\sqrt{\xi_k}$. Show that the following are equivalent:
 - (a) X_n are u.i.;
 - (b) X_n converges in L^1 ;
 - (c) $EX_{\infty} = 1$; and
 - (d) $\prod_{k=1}^{\infty} a_k > 0$.

(*Hint*. Consider the martingale $M_n = \prod_{k=1}^n \frac{\sqrt{\xi_k}}{a_k}$. If (d) does not hold, convergence of M_n implies that $X_n \to 0$. If (d) does hold, show first that $a_k \le 1$, that M_n converges in L^2 , and then that M_n^2 is u.i.) This is known as Kakutani's theorem.

2. Let ξ_n , n = 1, 2, ... be i.i.d. random variables with $P(\xi_1 = 0) = P(\xi_1 = 1) = 1/2$. (Think of n as time.) Let T be the first time the complete segment 1010001101 appears in the sequence $(\xi_1, \xi_2, \xi_3, ...)$. Compute ET with hints provided below.

Just before every time n = 1, 2, ... start a new betting scheme: bet \$1 on $\xi_n = 1$. If $\xi_n = 0$, you lose the \$1, and this scheme is over. If $\xi_n = 1$, you gain \$1, and you bet your entire capital of \$2 on $\xi_{n+1} = 0$. If you lose, you lose \$2 and quit; if you win, you invest your new capital of \$4 into betting on $\xi_{n+2} = 1$, and so on through the entire 1010001101 sequence. Note: several schemes may go on at the same time, because you start a new one even if some of the old schemes are still winning. For example, if $\xi_1 = 1$, then you put \$2 of your old scheme on $\xi_2 = 0$, but also \$1 of your new scheme on $\xi_2 = 1$.

Let X_n be the total capital (of all schemes) at (i.e., right after) time n; this does not involve \$1 bet of the new scheme at time n + 1. In particular, X_n might be 0. Also, define $X_0 = 0$.

- (a) Show that $M_n = X_n n$ is a martingale.
- (b) Show that $M_{T \wedge n}$ is a uniformly integrable martingale. Compute ET.
- (c) How does ET change if the distribution of ξ_1 changes to $P(\xi_1 = 0) = 1 p$, $P(\xi_1 = 1) = p$, for some $p \in (0, 1)$?
- 3. Assume that X_n is a non-negative supermartingale and T a stopping time.
- (a) Prove that $E(X_T 1_{\{T < \infty\}}) \leq E(X_0)$.
- (b) Prove that, for each c > 0, $P(\sup_n X_n \ge c) \le E(X_0)/c$.
- 4. You are on a starship in space at distance R_0 from the space station. Your control system is not functioning properly. All you can do is set a distance to travel. After that, your ship performs a "space-hop": it moves the chosen distance in a randomly chosen direction, with all 3-dimensional directions equally likely. If you manage to reach a distance at most r from the station, you can call for help.

Let R_n be the distance from the station after n space-hops and D_n the distance chosen for the n'th hop. Make the natural assumption that D_n is predictable.

- (a) Show that, whatever strategy you choose, $1/R_n$ is a supermartingale. If your stategy is such that the distance you choose at time n is always at most R_{n-1} , then $1/R_n$ is a martingale. (*Hint*: Argue by symmetry that the problem reduces to computing $(1/(4\pi)) \int_{S^2} (a^2 + 2abx + b^2)^{-1/2} d\sigma(x, y, z)$, for a, b > 0, where σ is the surface measure on the sphere S^2 . The integral equals $(a \wedge b)/ab$.)
- (b) Conclude that for every strategy, $P(\text{your ship ever reaches help}) \leq r/R_0$. (*Hint*: Use the previous problem.)