Math 236A, Fall 2012.

Homework Assignment 3

Due: Oct. 26, 2012

1. Let \(\tau_a \) be the first time a standard Brownian motion in one dimension hits \(a > 0 \).
 (a) Compute the density of \(\tau_a \).
 (b) Either from (a) or (much more easily) by using an appropriate martingale, compute \(E(\exp(-\lambda \tau_a)) \), for any \(\lambda > 0 \).
 (c) Let \(b > 0 \) and let \(\tau_{-b} \) be the first time the Brownian motion hits \(-b \). Show that
 \[
 E(\exp(-\lambda \tau_{-b}) 1_{\{\tau_a < \tau_{-b}\}}) = E(\exp(-\lambda \tau_a) 1_{\{\tau_a < \tau_{-b}\}}) \cdot E(\exp(-\lambda \tau_{a+b})).
 \]
 (d) Let \(\tau = \tau_a \wedge \tau_{-a} \). Compute \(E(\exp(-\lambda \tau)) \).

2. Let \(B \) be the Brownian motion in two dimensions, started at \((0,a), a > 0\). Let now \(\tau \) be the first time \(B \) hits the line \(ax \). Also, let \(X \) be the x-coordinate of the point \(B(\tau) \).
 (a) Determine the density of \(X \) when \(\alpha = 0 \). \textit{(Hint.} Condition on the value of the stopping time \(\tau_a \) from problem 1(a).\textit{)}
 (b) Now determine the density of \(X \) when \(\alpha \neq 0 \). \textit{(Hint. Use orthogonal invariance.)}