1. (a) Assume that \(f = f(t, x) \) is a \(C^{1,2}(\mathbb{R}^+ \times \mathbb{R}) \) such that \(\partial_t f + \frac{1}{2} \partial_{xx} f = 0 \). Show that \(f(t, B_t) \) is a local martingale.

(b) For \(f \) as in (a), let \(g(t, x) = \int_0^x f(t, z) \, dz - \frac{1}{2} \int_0^t \partial_x f(s, 0) \, ds \). Show that \(g(t, B_t) \) is also a local martingale.

(c) Let \(h_n \) be the Hermite polynomial of degree \(n \). (The first four are 1, \(x \), \(x^2 - 1 \), \(x^3 - 3x \).) Let \(f_n(t, x) = t^{n/2} h_n(x/\sqrt{t}) \) for \(n \geq 0 \). Show that \(f_n(t, B_t) \) is a martingale for every \(n \).

(d) Define the processes \(X^n_t \) recursively by \(X^n_0 \equiv 1 \) and \(X^n_{t+1} = \int_0^t X^n_s \, ds \). Find the connection between \(X^n_t \) and the martingales from (c).

2. Assume that \(B_1^1 \) and \(B_2^2 \) are independent Brownian motions. Consider \(X_t = \int_0^t B^1_s \, dB^1_s \) and \(X_t = \int_0^t B^2_s \, dB^1_s \). Then the two bracket processes \(\langle X \rangle_t \) and \(\langle Y \rangle_t \) are equal in distribution, but it is not even true that \(X_t \) and \(Y_t \) are equal in distribution for a fixed \(t > 0 \). Prove this.

3. What should be the quadratic variation process for a process given by \(dX_t = a \, dt + b_1 \, dB^1_t + b_2 \, dB^2_t \)? Give the reasoning for your formula although a complete proof is not necessary. In particular, compute the quadratic variation process in the case \(dX_t = B^1_t \, dB^1_t + |B^1_t| \, dB^2_t \).