Math 236A, Fall 2022.

Homework Assignment 4

Due: Nov. 2, 2022

1. Show that the following processes are martingales, and compute their variances. (a) $X_t = \int_0^t |B_s| dB_s$. (b) $X_t = \int_0^t M_s dB_s$, where $M_s = \max\{B_u : 0 \le u \le s\}$. (c) $X_t = \int_0^t B_{s/2} dB_s$. (d) $X_t = \int_0^t I_s \, dB_s$, where $I_s = \int_0^s B_u^2 \, du$. (e) $X_t = \int_0^{\bar{t}} B_s \bar{B}_s \, dB_s$, where \bar{B}_s is a Brownian motion independent of B_s .

2. Consider $\int_0^t B_{s+1} dB_s$, $0 \le t \le 1$. (a) This is not an Itô integral. Why?

(b) Still, one may hope that, as $n \to \infty$, the limit of the approximating sums $\sum_{i=0}^{n-1} B_{t_i+1}(B_{t_{i+1}} - B_{t_i})$ exists in an appropriate sense. Show that the limit indeed exists (state in what sense), express it with a genuine Itô integral, and show that it results in a continuous process which is *not* a martingale.

3. Assume that $f \in \mathcal{H}^2[0,T]$ and τ is a stopping time with $P(\tau \leq T) = 1$. Let X_t be the continuous martingale given by the Itô integral: $X_t = \int_0^t f(s) dB(s)$. Show that

$$X_{\tau} = \int_0^T \mathbf{1}_{[0,\tau]}(s) f(s) \, dB(s)$$

(*Hints.* Call the two sides $I_{\ell} = I_{\ell}(f)$ and $I_r = I_r(f)$. You may follow these steps: both I_{ℓ} and I_r are linear in f; the L^2 -norms of $I_{\ell}(f)$ and $I_r(f)$ are both bounded by a constant times the \mathcal{H}^2 -norm of f; the claim is true for $f = a \cdot 1_{(u,v]}$, where a is \mathcal{F}_u -measurable and $Ea^2 < \infty$.)

Remark. The random variable I_{ℓ} is defined for any random time $\tau \leq T$, while I_r is only defined when τ is a stopping time. Indeed, only then is $1_{[0,\tau(\omega)]}(t)$ an adapted process, as then, for a fixed t, the event that this random variable is 1 is $\{t \leq \tau\} = \{\tau < t\}^c \in \mathcal{F}_t$. The solution is given in the next page.

Homework Assignment 4: Solution to problem 3

3. For I_{ℓ} , linearity in f follows by continuity of X_t and linearity of Itô integral. For I_r , just linearity of Itô integral suffices. Next, by Doob's inequality and Itô isometry,

$$E(X_{\tau}^2) \le E\left(\max_{t \in [0,T]} X_t^2\right) \le 4E(X_T^2) = 4||f||_{\mathcal{H}^2[0,T]}^2.$$

Further by Itô isometry,

$$E(I_r^2) = ||1_{[0,\tau]}f||_{\mathcal{H}^2[0,T]}^2 \le ||f||_{\mathcal{H}^2[0,T]}^2$$

For f as in the hint,

$$X_t = a(B(t \wedge v) - B(t \wedge u)).$$

Assuming τ only has finitely many values t_k , we can write

$$\begin{split} \mathbf{1}_{[0,\tau]}(s)f(s) &= a\mathbf{1}_{(u,v]}(s) - a\mathbf{1}_{\{\tau < s\}}\mathbf{1}_{(u,v]}(s) \\ &= a\mathbf{1}_{(u,v]}(s) - \sum_{k} a\mathbf{1}_{\{\tau = t_k\}}\mathbf{1}_{(t_k,T]}(s)\mathbf{1}_{(u,v]}(s) \\ &= a\mathbf{1}_{(u,v]}(s) - \sum_{k:t_k \le u} a\mathbf{1}_{\{\tau = t_k\}}\mathbf{1}_{(u,v]}(s) - \sum_{k:t_k \in (u,v]} a\mathbf{1}_{\{\tau = t_k\}}\mathbf{1}_{(t_k,v]}(s) \end{split}$$

All summands are functions in \mathcal{H}_0^2 , and therefore,

$$\begin{split} \int_0^T \mathbf{1}_{[0,\tau]}(s)f(s)\,dB(s) &= a(B(v) - B(u)) \\ &\quad -\sum_{k:t_k \le u} a\mathbf{1}_{\{\tau = t_k\}}(B(v) - B(u)) \\ &\quad -\sum_{k:t_k \in (u,v]} a\mathbf{1}_{\{\tau = t_k\}}(B(v) - B(t_k)) \\ &= \sum_{k:t_k \in (u,v]} a\mathbf{1}_{\{\tau = t_k\}}(B(t_k) - B(u)) + \sum_{k:t_k > v} a\mathbf{1}_{\{\tau = t_k\}}(B(v) - B(u)) \\ &= a(B(\tau \wedge v) - B(\tau \wedge u)) = X_{\tau}, \end{split}$$

as desired. Now let τ be arbitrary and take a decreasing sequence τ_n of stopping times, with finitely many values, that converge to τ . Then

$$X_{\tau_n} \to X_{\tau}$$

a.s., by continuity. Moreover

$$1_{[0,\tau_n]}(s)f(s) \to 1_{[0,\tau_n]}(s)f(s)$$

for every ω and s, and therefore by DCT also in $L^2(dP \times dt)$, as

$$|1_{[0,\tau_n]}(s)f(s)| \le |a| \in L^2(dP \times dt)$$

Therefore,

$$X_{\tau_n} = \int_0^T \mathbf{1}_{[0,\tau_n]}(s)f(s) \, dB(s) \to \int_0^T \mathbf{1}_{[0,\tau]}(s)f(s) \, dB(s)$$

in $L^2[0,T]$. This proves that the claim holds for functions f as in the hint, and thus, by linearity, the claim holds for all $f \in \mathcal{H}^2_0[0,T]$. Finally, take an arbitrary $f \in \mathcal{H}^2_0[0,T]$. Pick any sequence $f_n \in \mathcal{H}^2_0[0,T]$ so that $f_n \to f$ in $\mathcal{H}^2[0,T]$, and use the two norm estimates to conclude that both $I_\ell(f_n) \to I_\ell(f)$ and $I_r(f_n) \to I_r(f)$ in $L^2(dP)$. As $I_\ell(f_n) = I_r(f_n)$ for all n, $I_\ell(f) = I_r(f)$.