Discussion Problems 9

Note. These problems should be viewed as partial practice for the final exam. Problems from other discussions and homework problems are also good for preparation.

1. Assume that a sequence \((a_n)\) is unbounded. Show that there exists a subsequence \((a_{n_k})\) so that either \(\lim_{k\to\infty} a_{n_k} = \infty\) or \(\lim_{k\to\infty} a_{n_k} = -\infty\).

2. Show that a set \(A \subseteq \mathbb{R}\) is bounded if and only if its closure \(\bar{A}\) is compact.

3. (a) Assume that a sequence \((a_n)\) satisfies \(\lim_{n\to\infty} \frac{a_n}{5|a_n|+4} = 0\). Show that \(\lim_{n\to\infty} a_n = 0\). (You may use Problem 1 to show first that \((a_n)\) is bounded.)
 (b) Does the conclusion from (a) hold if \(\lim_{n\to\infty} \frac{a_n}{5a_n^2+4} = 0\)?
 (c) Does the conclusion from (a) hold if \(\lim_{n\to\infty} \frac{a_n}{5\sqrt{|a_n|+4}} = 0\)?

4. (a) State precisely what this means: \(A \subseteq \mathbb{R}\) is compact.
 For each of the following statements determine, with proof, whether it is true or false.
 (b) If \(A \subseteq \mathbb{R}\) is compact then \(A^c\) is open.
 (c) If \(A \subseteq \mathbb{R}\) is compact then \(A \cap (0,1)\) is compact.
 (d) If \(A \subseteq \mathbb{R}\) is compact, and \(x_n \in A\), then \((x_n)\) is a convergent sequence.
 (e) If \(A \subseteq \mathbb{R}\), and there exist an open cover of \(A\) with a finite subcover, then \(A\) is compact.
 (f) If \(A \subseteq \mathbb{R}\) is compact, and \((x_n)\) is a convergent sequence with limit in \(A\), then \(A \cup \{x_n : n \in \mathbb{N}\}\) is compact.

5. Assume the sequence \((x_n)\) is given recursively by \(x_1 = a > 0\) and
 \[x_{n+1} = \frac{1}{2} \sqrt{x_n + x_n^3} \quad \text{for } n \in \mathbb{N}.

 (a) Assume \(a = 3\). Show that the sequence is decreasing and bounded and compute its limit.
 (b) Assume \(a = 4\). Show that the sequence is increasing and unbounded.

6. Assume \(a_n > 0\) for all \(n\). For each of the following statements determine, with proof, whether it is true or false.
 (a) If \(a_n \leq 4\) for all \(n\), then \((a_n)\) is convergent.
 (b) If \(a_n \geq 4\) for all \(n\), then \((a_n)\) is divergent.
 (c) If \(a_{n+1} \leq a_n\) for all \(n\), then \((a_n)\) is a Cauchy sequence.
 (d) If \((a_n)\) is convergent, then \(\lim \sup (-1)^n a_n = \lim a_n\).
 (e) If \(\sum_{n=1}^{\infty} a_n\) converges, then \(\sum_{n=1}^{\infty} (a_n + n^{-3/2})\) converges.
 (f) If \(\sum_{n=1}^{\infty} a_n\) converges, then \(\sum_{n=1}^{\infty} \frac{2}{n^{3/2}}\) converges.
 (g) If \(\sum_{n=1}^{\infty} (3 - a_n)\) converges, then \(\lim a_n = 3\).
(h) If $\sum_{n=1}^{\infty} a_n$ converges, $\sum_{n=1}^{\infty} (-1)^{n^2+3n} a_n$ converges.
(i) If $\sum_{n=1}^{\infty} a_n$ diverges and $s_n = a_1 + \ldots + a_n$, then $\sum_{n=1}^{\infty} (-1)^n \frac{1}{s_n}$ converges.

7. (a) Assume that $A \subseteq \mathbb{R}$ is nonempty and bounded. State the definition of $\text{sup} A$ and $\text{max} A$. Does $\text{sup} A$ always exist? Does $\text{max} A$ always exist?
(b) Let $s_n = \sum_{i=1}^{n} 3^{-i}$. Let $A = \{s_n : n \in \mathbb{N}\}$. Determine $\text{sup} A$ and $\text{inf} A$. Does $\text{max} A$ exist? Does $\text{min} A$?
(c) Let $s_n = \sum_{i=1}^{n} \frac{(d)^2}{(2i)!}$. Let $A = \{s_n : n \in \mathbb{N}\}$. Does $\text{sup} A$ exist?
(d) Let $A = \bigcup_{n=1}^{\infty} (1/(n + 1), 1/n)$. Determine $\text{sup} A$ and $\text{inf} A$.
(e) Is the set A from (d) connected?
(f) Compute \bar{A} for the set in (d). Is \bar{A} connected?
(g) Let $A = \left\{ \frac{(-1)^n}{(-1)^n n + 1} : n \in \mathbb{N} \right\}$. Determine $\text{sup} A$ and $\text{inf} A$. Does $\text{max} A$ exist? Does $\text{min} A$?
1. Let \(n_1 = 1 \). Assume \(n_1, \ldots, n_{k-1} \) are chosen for some \(k \geq 2 \). The sequence \((a_{n_k+1}, a_{n_k+2}, \ldots)\) is also unbounded, so there exists a \(n_k > n_{k-1} \) so that \(|a_{n_k}| > k\). Thus we have \(\lim_k |a_{n_k}| = \infty \). If only finitely many terms \(a_{n_k} \) are positive, then \(\lim_k a_{n_k} = -\infty \). If, on the other hand, infinitely many terms \(a_{n_k} \) are positive, modify the subsequence by eliminating all negative terms from it. The remaining terms form a subsequence whose terms are all positive so it diverges to \(\infty \).

2. If \(A \) is bounded, then \(A \subset [-M, M] \) for some \(M \geq 0 \). As \([-M, M] \) is closed, \(\overline{A} \subset [-M, M] \), and so \(\overline{A} \) is closed and bounded, thus compact.

3. (a) Let
\[
b_n = \frac{a_n}{5|a_n| + 4}.
\]
We first show that \((a_n)\) is bounded. If not, then by Problem 1, there is a subsequence \((a_{n_k})\) which either diverges to \(\infty \) or \(-\infty \). If the subsequence diverges to \(\infty \), then
\[
\lim_{k \to \infty} b_{n_k} = \lim_{k \to \infty} \frac{a_{n_k}}{5|a_{n_k}| + 4} = \lim_{k \to \infty} \frac{a_{n_k}}{5a_{n_k} + 4} = \lim_{k \to \infty} \frac{1}{5 + 4/a_{n_k}} = \frac{1}{5},
\]
which is a contradiction as this limit must be equal 0 (which is the limit of the full sequence \(b_n \)). A similar contradiction (with \(-1/5\) instead of \(1/5\)) is obtained if the subsequence diverges to \(-\infty \). Therefore \(a_n \) is bounded, say \(|a_n| \leq M \) for all \(n \). As \(a_n = b_n(5|a_n| + 4) \),
\[
|a_n| \leq |b_n|(5M + 4)
\]
and so \(|a_n| \to 0 \).

(b) No. Take \(a_n = n \).

(c) Yes. As in (a), we let
\[
b_n = \frac{a_n}{5\sqrt{|a_n|} + 4}
\]
and prove that \((a_n)\) must be bounded. If not, there is a subsequence \((a_{n_k})\) which either diverges to \(\infty \) or \(-\infty \). Assume the subsequence diverges to \(\infty \) (the other case is similar), then
\[
\lim_{k \to \infty} b_{n_k} = \lim_{k \to \infty} \frac{a_{n_k}}{5\sqrt{a_{n_k}} + 4} = \lim_{k \to \infty} \frac{\sqrt{a_{n_k}}}{5 + 4/\sqrt{a_{n_k}}} = \infty,
\]
which is a contradiction as this limit must be equal 0. Therefore \(a_n \) is bounded, say \(|a_n| \leq M \) for all \(n \). As \(a_n = b_n(5\sqrt{|a_n|} + 4) \),
\[
|a_n| \leq |b_n|(5\sqrt{M} + 4)
\]
and so \(|a_n| \to 0 \).

4. (a) Omitted.

(b) Yes. As \(A \) is compact, it must be closed, and then \(A^c \) is open.

(c) No. Take \(A = [0, 1] \), then \(A \) is compact, but \(A \cap (0, 1) = (0, 1) \) is not closed.

(d) No. A subsequence is convergent, but the full sequence may not be. For example, take \(A = [-1, 1] \) and \(x_n = (-1)^n \).
(e) No. Every subset of \(\mathbb{R} \) has a finite open cover by a single set \(\mathbb{R} \). (The theorem says that \(A \) is compact if every (and not just one) open cover of \(A \) has finite subcover.

(f) Yes. Let \(x = \lim x_n \in A \). Then \(B = \{x_n : n \in \mathbb{N}\} \cup \{x\} \) is compact (as it contains its only limit point \(x \)), and

\[
A \cup \{x_n : n \in \mathbb{N}\} = A \cup B,
\]

which is compact as the union of two compact sets.

5. (a) By obvious induction \(x_n > 0 \) for all \(n \). We prove by induction that \(x_{n+1} < x_n \). For \(n = 1 \), this is true as \(x_2 = \frac{1}{2} \sqrt{30} > 3 = x_1 \). For the \((n \rightarrow n + 1)\) step, observe

\[
x_{n+1} < x_n \implies x_{n+1}^3 < x_n^3 \implies x_{n+1}^3 + x_n^3 < x_n^3 + x_n^3 \implies \frac{1}{2} \sqrt{x_{n+1}^3 + x_n^3} < \frac{1}{2} \sqrt{x_n^3 + x_n^3},
\]

which states \(x_{n+2} < x_{n+1} \). Thus the sequence is decreasing, and bounded as \(0 < x_n < 3 \) for all \(n \). Thus \(x = \lim x_n \) exits and satisfies the equation

\[
x = \frac{1}{2} \sqrt{x + x^3}.
\]

Then \(x(x^2 - 4x + 1) = 0 \), with three solutions \(x = 0 \) and \(x = 2 \pm \sqrt{3} \). We can immediately eliminate \(2 + \sqrt{3} > 3 \).

To eliminate \(x = 0 \), we show \(x_n > 2 - \sqrt{3} \) for all \(n \) by induction. Clearly this is true for \(n = 1 \) and for \((n \rightarrow n + 1)\) step observe that under the hypothesis

\[
x_{n+1} \geq \frac{1}{2} \sqrt{(2 - \sqrt{3}) + (2 - \sqrt{3})^3} = 2 - \sqrt{3},
\]

as \(2 - \sqrt{3} \) solves the above equation for \(x \). Thus \(\lim x_n = 2 - \sqrt{3} \).

(b) The proof that the sequence is increasing is almost the same as in (a) with reversed inequalities. If the sequence were bounded, it would have a limit \(x = \lim x_n > 4 \), but then \(x \) would have to satisfy the same equation as in (a), and that equation has no solution larger than 4, as the largest solution is \(2 + \sqrt{3} < 4 \).

6. (a) No. For example, \(a_n = 2 + (-1)^n \) satisfies \(1 \leq a_n \leq 3 \) for all \(n \), but diverges.

(b) No. For example, \(a_n = 4 + 1/n \to 4 \).

(c) Yes. It is decreasing an positive, therefore monotone and bounded, therefore convergent, and therefore Cauchy.

(d) Yes. The even terms converge to \(\lim a_n \) and the odd ones to \(-\lim a_n \).

(e) Yes. \(\sum_{n=1}^{\infty} n^{-3/2} \) converges and then \(\sum_{n=1}^{\infty} (a_n + n^{-3/2}) \) converges as the sum of two convergent series.

(f) No. Take \(a_n = n^{-5/4} \); then \(a_n^{2/3} = n^{-5/6} \) and \(\sum n^{-5/4} \) converges while \(\sum n^{-5/6} \) diverges.

(g) Yes. By the nth term test, \(\lim (3 - a_n) = 0 \), so \(\lim a_n = 3 \).

(h) Yes. The second sum converges absolutely (as \(|(-1)^{17n^2+3n}a_n| = a_n \)).

(i) Yes. The sequence \((s_n) \) is increasing, hence \(1/s_n \) is decreasing. Also \(s_n \to \infty \), so \(1/s_n \to 0 \). Thus \(\sum (-1)^n n^{-1/s_n} \) converges by the alternating series test.

7. (a) A number \(b \in \mathbb{R} \) is the least upper bound of \(A \), also called sup \(A \), if \(b \) is (1) an upper bound, that is, \(a \leq b \) for all \(a \in A \); and (2) the smallest of all upper bounds, that is, if \(\beta \in \mathbb{R} \) is such that \(a \leq \beta \) for all \(a \in A \), then \(b \leq \beta \). If \(A \) is bounded and nonempty, sup \(A \) exists by the completeness axiom (in
fact, nonempty and bounded *above* is enough). We say that \(m = \max A \) if \(m \in A \) and \(a \leq m \) for all \(a \in A \). If \(\sup A \not\in A \), then \(\max A \) does not exist, e.g., \(A = [0, 1) \) has \(\sup A = 1 \not\in A \).

(b) The sequence \(s_n \) is increasing and converges to the sum of the geometric series \(1/2 \). Thus \(\sup A = 1/2 \not\in A \) so \(\max A \) does not exist, and \(\inf A = \min A = s_1 = \frac{1}{3} \).

(c) This is another way to ask whether \(\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} \) converges. To determine this, denote the \(n \)th term by \(a_n \) and use the ratio test

\[
\frac{a_{n+1}}{a_n} = \frac{(n+1)^2}{2(n+1)(2n+1)} \to \frac{1}{4}
\]

to show that the series converges and that the answer is yes.

(d) We see that \(A = (0, 1) \setminus \{1/n : n = 2, 3, \ldots\} \). Thus \(\sup A = 1 \) and \(\inf A = 0 \).

(e) No. For example, \(2/5 \in A \) and \(3/5 \in A \), and \(2/5 < 1/2 < 3/5 \), but \(1/2 \not\in A \).

(f) Every number in \([0, 1]\) is a limit point of \(A \), so \(\bar{A} = [0, 1] \). As an interval, \(\bar{A} \) is connected.

(g) Let \(a_n = \frac{(-1)^n}{n^{1/n} + n+1} \). For even \(n \), \(a_n = \frac{n}{n+1} = -\frac{1}{1-1/n} \). So, for even \(n \), \(a_n \) is an increasing subsequence, converging to \(-1\). For odd \(n \), \(a_n = \frac{n}{n+1} = -\frac{1}{1+1/n} \). So, for odd \(n \), \(a_n \) is an decreasing subsequence, converging to \(-1\). Thus \(\inf A = \min A = a_2 = -2 \), and \(\sup A = \max A = a_1 = -1/2 \).