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Bootstrap percolation

Select a graph G = (V ,E). (In fact, a sequence of graphs, say,
Gn.)
Fix an integer threshold θ ≥ 1.

Choose a set ω0 of initially occupied (“infected,” 1) vertices of
G, and call the remaining sites empty (“susceptible,” 0).
Typically, the sites are initially occupied independently with
probability p ∈ (0,1) (which depends on n).

Bootstrap percolation: for t = 0,1, . . ., is the increasing
sequence (ωt )

∞
t=0 of configurations ωt ∈ {0,1}V . At time t + 1,

an empty site x becomes occupied iff:
at least θ of the neighbors of x are occupied at time t .

Once occupied, a site never changes state.

The “final” configuration ω∞ is the configuration of eventually
occupied sites. The event {ω∞ ≡ 1} is called spanning.
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Example with V = Z2

Start with the finite occupied set below, on the infinite
2-dimensional nearest-neighbor lattice with θ = 2:

· · • · · • ·
• · • · · · ·
· · · · · · ·
· · · · · · ·
· • · · · · ·
• · · • · · •
· • • · • · ·
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Nucleation in bootstrap percolation

V = Z2, θ = 2,
p = 0.045,
400× 400 square
with periodic
boundary,
t = 20
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Nucleation in bootstrap percolation

V = Z2, θ = 2,
p = 0.045,
400× 400 square
with periodic
boundary,
t = 100
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Nucleation in bootstrap percolation

V = Z2, θ = 2,
p = 0.045,
400× 400 square
with periodic
boundary,
t = 200
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Nucleation in bootstrap percolation

V = Z2, θ = 2,
p = 0.045,
400× 400 square
with periodic
boundary,
t = 500
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Bootstrap percolation: brief history

First rigorous result is due to van Enter (1987) for d = 2,
extended to d ≥ 2 by Schonmann (1992).

Theorem (Nearest-neighbor infinite lattice Zd )

If θ ≤ d, then Pp(ω∞ ≡ 1) = 1 for all p > 0. If θ > d, then
Pp(ω∞ ≡ 1) = 0 for all p < 1.

For finite graphs, the critical value pc is defined as

Ppc (ω∞ ≡ 1) = 1/2.

Many deep and surprising results have been proved for
bootstrap percolation on finite subboxes of Zd , starting with
Aizenman and Lebowitz (1988), who proved that for V = Zd

n
with nearest neighbor edges, and θ = 2, pc � (log n)−(d−1).
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Bootstrap percolation: brief history

Discrete tori: V = Z2
n, nearest neighbor edges, θ = 2:

pc � 1
log n [Aizenman, Lebowitz, 1988].

pc ∼ π2

18 log n [Holroyd, 2003]

pc = π2

18 log n −
1

(log n)3/2−o(1) [G., Holroyd, Morris, 2012]

pc = π2

18 log n −
Θ(1)

(log n)3/2 [Hartarsky, Morris, 2018]

Discrete tori: V = Zd
n , nearest neighbor edges, 2 ≤ θ ≤ d :

pc � (logθ−1 n)−(d−θ+1) [Cerf & Cirillo, 1999;
Cerf & Manzo, 2002]

pc ∼ λ(d , θ) (logθ−1 n)−(d−θ+1)

[Balogh, Bollobás, Duminil-Copin, Morris, 2012]

Hypercube: V = {0,1}n, nearest neighbor edges, θ = 2.
pc ∼ λn−22−2

√
n [Balogh, Bollobás, Morris, 2010]
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Bootstrap percolation: brief history

In all these cases, the thresholds are sharp: for any ε > 0,

P(1−ε)pc (ω∞ ≡ 1)→ 0,P(1+ε)pc (ω∞ ≡ 1)→ 1.

Sharpness of a transitions is in fact often easier to establish
than its location, due to the general results of Friedgut and
Kalai. For Z2

n, the above is valid for ε = (log n)−1+o(1), so the
“tightening” is faster than convergence.

For V = Z2
n, sharp thresholds have been identified for other

neighborhoods:
‘cross’ neighborhood [Holroyd, Liggett, Romik, 2004]
anisotropic [Duminil-Copin, Van Enter, 2013]
balanced [Duminil-Copin, Holroyd, 2015]
drift/oriented [Bollobás, Duminil-Copin, Morris, Smith, 2016]
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The Hamming graph

The Hamming graph with side length n and dimension d is the
graph with the following vertex set V , and edge set E :

V = {1,2, . . . ,n}d

E = {(x , y) ∈ V × V : dH(x , y) = 1} ,

where dH(x , y) is the Hamming distance between x and y
(number of coordinates at which they differ). This is the
Cartesian product of d complete graphs Kn, so we denote it by
K d

n = Kn × · · · × Kn.
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G = K 2
n , θ ≥ 2

Precise result for the Hamming square:

Theorem (Gravner, Hoffman, Pfeiffer, S., 2015)

Let ` ≥ 2 and p = a · n−(`+1)/`.
If θ = 2`− 1, then Pp(ω∞ ≡ 1)→ 1− exp(−2a`/`!).

If θ = 2`, then Pp(ω∞ ≡ 1)→
[
1− exp(−a`/`!)

]2
.

If θ = 2 and p = an−2, then Pp(ω∞ ≡ 1)→ 1− (1 + a)e−a.

Note that the threshold pc is not sharp.
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G = K 2
n , odd θ (θ = 7)

P(ω∞ ≡ 1) ≈
P(∃ line with ≥ 4 points) ×

∏
k<θ/2

P(∃ row with ≥ k points)2
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P(ω∞ ≡ 1) ≈
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G = K 2
n , Even θ = 8

P(ω∞ ≡ 1) ≈
P(row with ≥ 4 points)2 ×

∏
k<θ/2

P(row with ≥ k points)2
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G = K 2
n , θ ≥ 3

Choose p so that the number of rows with ` = dθ/2e points is
Θ(1):

n ·
(

n
`

)
p` = Constant ⇒ p � n−(`+1)/`.

Then rows with ≥ `− 1 points are plentiful, and for even θ = 2`

P(ω∞ ≡ 1) ≈ P(row with ≥ ` points)2

≈ P(Poisson(n`+1p`/`!) ≥ 1)2.
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Large deviations

Assume that the initial configuration with density p > 0 on the
Hamming rectangle Kn × Km. We want to say that

n ≈ p−α, m ≈ p−β =⇒ Pp(ω∞ ≡ 1) ≈ pI.

To be precise, we assume that, as p → 0, n,m→∞ and

log n ∼ −α log p, log m ∼ −β log p,

and call the quantity

I(α, β) = lim
p→0

logPp(ω∞ ≡ 1)

log p

the large deviation rate for the event {ω∞ ≡ 1}, provided it
exists.
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The energy-entropy functional

For a finite set B ⊆ Z2
+, let πx (B) and πy (B) be projections of B

on the x-axis and y -axis, respectively. Then, for a finite set
A ⊂ Z2

+, let

ρ(α, β,A) = max
B⊆A

(
|B| − α|πx (B)| − β|πy (B)|

)
= max

B⊆A
((energy of B)− (entropy of B)) .

For any B ⊆ A, Pp(ω0 contains A) ≤ Pp(ω0 contains B)
≤ CBn|πx (B)|m|πy (B)|p|B| = CBp|B|−α|πx (B)|−β|πy (B)|+o(1)

A

B

|B| − α|πx (B)| − β|πy (B)

= 8− 4α− 5β
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Variational principle for I

Let A be the set of finite spanning sets. Any set A ∈ A gives a
lower bound on Pp(ω∞ ≡ 1) of about pρ(α,β,A); we select the
“best” such set.

Theorem (G., Sivakoff, Slivken, 2017)

The large deviation rate I(α, β) exists. Moreover, there exists a
finite set A0 ⊆ A, independent of α and β, so that

I(α, β) = inf{ρ(α, β,A) : A ∈ A} = min{ρ(α, β,A) : A ∈ A0}.

Moreover, supp I ⊂ [0,1]2 can be
determined and Pp(ω∞ ≡ 1)→ 1 if
(α, β) /∈ supp I. However, explicit
formula for I is known only on the
diagonal α = β. More general growth
dynamics on Hamming rectangle can
be considered.
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Hamming graphs K d
n of dimension d ≥ 3

The problems are much harder, even for d = 3.

Theorem (Slivken, 2015)

Assume d ≥ 3 and θ = 2, J(J + 1) < d < (J + 1)(J + 2) for
some J ≥ 1, and p = an−d/(J+1)−J , then

Pp(ω∞ ≡ 1)→ 1− exp

[
−
(

d
2J

)
(2J)!2−J−1aJ+1

]
.

Theorem (G., Hoffman, Pfeiffer, Sivakoff, 2015)

Assume d = 3 and θ = 3. Let p = an−2. As n→∞,

Pp(ω∞ ≡ 1)→ 1− e−a3−(3/2)a2(1−e−2a)×[
3
2

a2
((

e−a + ae−3a
)2
− e−2a

)
e−a2e−2a

+ ea3e−3a
]
.
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Hamming graphs K d
n of dimension d ≥ 3

Critical exponents for large θ (GHPS, 2015)
For fixed d ≥ 3, θ sufficiently large depending on d , and n
sufficiently large depending on d , θ,

1 +
2
θ

+

√
7

θ3/2 ≤
− log pc

log n
≤ 1 +

2
θ

+
4(d2 + 1)

θ3/2 .

Gradual transition is expected for all d and θ, but for most larger
d and θ, the critical scaling, i.e., determining γ = γ(d , θ) so that
pc ≈ n−γ , is an open problem.
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Graphs with community structure

Consider the Cartesian product of complete graphs with a
lattice.

We will consider Cartesian products Zd × Kn and Z2 × K 2
n .
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Bootstrap percolation on Zd × Kn

If θ ≤ d , then by theorems of van Enter and Schonman,
Pp(ω∞ ≡ 1) = 1 for all p > 0. This is not true if θ > d : e.g.,
when d = 2 and θ = 3 a 2× 2 box of empty “communities,” e.g.,
{0,1}2 × K 2

n , cannot be invaded. We are thus interested in the
final occupation density, i.e., Pp(ω∞(v) = 1) for a fixed vertex v .

Theorem (G., Sivakoff, 2018)

Assume θ > d. Let p = a · n−1. Then both
lim infn Pp(ω∞(v) = 1) and lim supn Pp(ω∞(v) = 1)

are in (0,1);
converge to 0 as a→ 0; and
converge to 1 as a→∞.

Moreover, if θ is sufficiently large, then limn Pp(ω∞(v0) = 1)
exists and is continuous in a.

Question: Is the last statement true for all θ > d?
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Bootstrap percolation on Zd × Kn

Idea of the proof:
On each fiber {x} × Kn, the positions of initially occupied sites
converge to a Poisson point location on R+ of intensity a, as
n→∞. Thus there is a limiting dynamics on Zd × R+, which
can be appropriately coupled to the one for finite n.
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G = Z2 × K 2
n and θ = 2`+ 1

Assume p = a · 1
n1+1/` .

Theorem (G., Sivakoff, 2018)

For ` ≥ 1, there exists ac = ac(`) ∈ (0,∞) such that the
following hold.

If a < ac , then limn Pp(ω∞(v) = 1) = 0.
If a > ac , then Pp(ω∞(v) = 1) is bounded away from 0 and
1. Furthermore,

lim inf
n

Pp(ω∞(v) = 1)→ 1 as a→∞.

Question: existence of limit, and continuity in a.
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G = Z2 × K 2
n and θ = 2`+ 2

Assume p = a · (log n)1/`

n1+1/` .

Theorem (G., Sivakoff, 2018)

For ` ≥ 1, let ac = [2(`− 1)!]1/`.
If a < ac , then Pp(ω∞(v) = 1) = n−2/`+o(1).
If a ≥ ac , then lim

n
Pp(ω∞(v) = 1) = 1.

Moreover, if a > ac , then

Pp(ω∞(v) = 0) =

{
n4/`−4a`/`!+o(1) ` ≥ 2
n−2a+o(1) ` = 1

as n→∞,

Question: determine f (n) so that the critical scaling
p = ac · (log n)1/`n−(1+1/`) + f (n) makes limn Pp(ω∞(v) = 1)
nontrivial.
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Heterogeneous bootstrap percolation on Z2

Main idea for all proofs: Couple with a heterogeneous bootstrap
percolation process on Z2, then analyze this process.

Given an initial state ξ0 ∈ {0,1,2,3,4,5}Z
2
, the HBP dynamics

follow the rule

ξt+1(x) =

{
0 if #{y : y ∼ x and ξt (y) = 0} ≥ ξt (x)

ξt (x) otherwise.

If ξ0(x) = i , then x needs the help of i 0s in its neighborhood to
turn to 0. Thus a 5 will never turn to 0. (We now think of 0s as
advancing occupation. Bootstrap percolation with θ = 2: only
0s and 2s.) For the next example, we start with a configuration
on a 5× 5 square, will 5s outside.
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Heterogeneous bootstrap percolation on Z2
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Heterogeneous bootstrap percolation on Z2
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Heterogeneous bootstrap percolation on Z2
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Heterogeneous bootstrap percolation on Z2
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Coupling with HBP: domination from below

Call a Hamming plane {x} × K 2
n r -internally spanned (r -IS) iff

bootstrap percolation with threshold r and initial configuration
ω0|{x}×K 2

n
spans {x} × K 2

n .

Initialize ξ0 as follows:
ξ0(x) = 0 if {x} × K 2

n is θ-IS;
ξ0(x) = k ∈ {1,2,3,4} if {x} × K 2

n is (θ − k)-IS, but not
(θ − k + 1)-IS; and
ξ0(x) = 5 if {x} × K 2

n is not (θ − 4)-IS.
Then ⋃

{{x} × K 2
n : ξ∞(x) = 0} ⊂ ω∞.
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Domination from above

The domination in the other direction is similar, except that we
have to allow help from nearest neighbors, which introduces
small correlations into the initial state.
Roughly, 1s perform bootstrap percolation with θ = 2 on 2’s,
after the obstacles 3s, 4s, and 5s are permanently removed
from Z2. This is poluted bootstrap percolation [G., McDonald,
1997]. Provided the following two densities are both small , the
transition between large and small final density of 0s occurs
when:

(P(ξ0 = 1))2 � P(ξ0 ≥ 3).

This is the result of [G., McDonald, 1997], but it does not quite
apply to our case, due to initial correlations. Instead, we use
the random surface approach of [G., Holroyd, Sivakoff, 2018].

26



Polluted bootstrap percolation

obst. dens.= 0.01,
occ. dens.= 0.045,
final state on
400× 400 square
with periodic
boundary
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Polluted bootstrap percolation

obst. dens.= 0.01,
occ. dens.= 0.045,
final state on
400× 400 square
with occupied
boundary
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Polluted bootstrap percolation

obst. dens.= 0.01,
occ. dens.= 0.02,
final state on
80× 80 square
with occupied
boundary
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Initial densities for θ = 2`+ 1

When p = a · 1
n1+1/` :

P(ξ0(x) = 0) � Pp({x} × K 2
n is θ-IS) � n−1/`

P(ξ0(x) = 1) ∼ Pp({x} × K 2
n is (θ − 1)-IS) ∼

(
1− e−a`/`!

)2

P(ξ0(x) ≥ 3) ∼ Pp({x} × K 2
n is not (θ − 2)-IS) ∼ exp

[
−2a`

`!

]
Recall: K 2

n is (2`− 1)-IS about when there is a line with `
occupied sites, and expected no. of such lines is about
2n n`p`/`!→ 2a`/`!; and K 2

n is (2`)-IS about when there are
both horizontal and vertical lines with ` occupied sites.

Start HBP ξt with states 0, 1, 2, 3, with the above asymptotic
probabilities. Essentially, ac = inf{a : P(ξ∞(0) = 0) > 0}. By
percolation arguments (as 0s are now rare, the origin only turns
to 0 if it is connected to a 0 by a long path of 1s), ac ∈ (0,∞).
By monotonicity in a, limn P(ω∞(v) = 1) = 0 for all a < ac .
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By monotonicity in a, limn P(ω∞(v) = 1) = 0 for all a < ac .

28



Initial densities for θ = 2`+ 2

When p = a · (log n)1/`

n1+1/` .

P(ξ0(x) = 0) � Pp({x} × K 2
n is θ-IS) � (log n)2+2/`

n2/`

P(ξ0(x) = 1) � Pp({x} × K 2
n is (θ − 1)-IS) � (log n)1+1/`

n1/`

P(ξ0(x) ≥ 3) ∼ Pp({x} × K 2
n is not (θ − 2)-IS) ∼ 2n−a`/`!

Expected no. of lines with `+ 1 occ. sites is � n n`+1p`+1.
Expected no. of horizontal lines with ` occ. sites is
∼ n n`p`/`! = (a`/`!) log n.

Phase transition occurs when P(ξ0(x) ≥ 3) ≈ P(ξ0(x) = 1)2,
giving

a`c
`!

=
2
`
.
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Supercritical regime for θ = 2`+ 2

Let a > ac and switch all initial 3s and 4s to 5s, so

P(ξ0(x) = 0) > 0
P(ξ0(x) = 1) = p
P(ξ0(x) = 5) = q
P(ξ0(x) = 2) = 1− P(ξ0(x) = 0)− P(ξ0(x) = 1)− P(ξ0(x) = 5),

where q ≤ p2+ε as (p,q)→ (0,0).

Let N = 2
p log(1/p). An N × N

box is: good if it has no 5s and
a 1 (or 0) on every row and
column;
and very good if it has only 0s.

P(box is not good) ≤ N2q + 2N(1− p)N

≤ 4pε(log(1/p))2 + 2p log(1/p)

A good box is likely to connect
to a very good box:

all 0s
1

1 1
1

1

1
1

1
1

1
1

1

no 5s
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Subcritical regime for θ = 2`+ 2

Let a < ac and switch all initial 4s and 5s to 3s and 1s to 0s, so

P(ξ0(x) = 0) = p
P(ξ0(x) = 3) = q
P(ξ0(x) = 2) = 1− p− q,

where q� p2.

We show that, with high probability, the origin is in a “protected
set,” which is never entered by 0s from the outside, and is small
enough that 0s inside quickly stop growing.
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Subcritical regime for θ = 2`+ 2

The boundary of the protected set consists of nice sites, which
are 3s with no 0 nearby (m large constant, N = δ/(mp)):

 

Ft

IF

IT

32



Subcritical regime for θ = 2`+ 2

Well-positioned nice sites prevent 0s from spreading.
 

3sz
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Subcritical regime for θ = 2`+ 2

Well-positioned nice sites prevent 0s from spreading.
 

i

m
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Shell of Good boxes

An N × N box is good if it contains a nice site.
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Protected set

Add “fortresses” of nice sites to protect the corners from
“leaking.”

35



Another long-range growth process: graph bootstrap
percolation

Add edges of the complete graph according to some monotone
rule. These dynamics were introduced by [Balogh, Bollobás,
Morris, 2012]. Subsequent work by [Kolesnik, 2018], [Andjel,
Kolesnik, 2018], [G., Kolesnik, 2019].
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Thank you!

More on my web page
https://www.math.ucdavis.edu/∼gravner/papers/
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