LECTURE 1:

Shapes in Deterministic and Random Rules

Janko Gravner (Univ. of California, Davis)



Local Monotone Growth CA.

The occupied set A; C Z? evolves in discrete time ¢t =
0,1,..., with Ag some (usually large enough finite) set. The

rule is determined by

e a finite neighborhood N, with 0 € NV,
e a set of probabilities 7(S) € [0,1], S C V.

Then, given A,

the updated set A;yq1 of occupied points is obtained
by adjoining, independently, every z € Z% with prob-
ability 7((A; —x) NN).

Common assumptions:

e 7(0) =0,
o 7 is symmetric: —N = N and 7(—S) = n(S5),
o 7 solidifies: 0 € S = 7(S) =1 (ie., At C Ary1),

e 7 is monotone (attractive): S; C Sy = n(S1) <
W(SQ).



Threshold Growth Model (TGM).

This is a totalistic monotone growth CA. There exist a

e a threshold 6 > 1, and

e update probabilities 0 < py < pgy1 < -+ < Pia|—1,

so that

(1) Ay C Agq,

(2) = ¢ A; belongs to Ay with probability pja,nz+a7))-

Often, p; = p.

For example, N could consist of the 4 nearest sites to
the origin (von Neumann neighborhood) or 8 nearest sites
(Moore neighborhood). Large neighborhoods N' = N, will
often be range p box neighborhoods, (2p+1) x (2p+ 1) boxes
centered at 0. More generally, N, = {z : ||z|| < p}, where

|| - || is some norm.



Deterministic dynamics.

Take a range p box TGM with pg = 1. There are only 2
possibilities (Bohman, 1999):
e cither A; stop growing: A;.1; = A; for some ¢,

e or Ay, = Z? and A;/t converges, as t — oo, to the

limiting shape L = Lj.

The convergence to limiting set L; is very fast. In fact,
there exists a constant C' = C'(N, Ap) so that A; differs from
tL by C' (Willson, 1978). This C is, for appropriate initial

sets, of order p.

In general, the above is not true, e.g., # = 3 and

T+ N =e o o

© 0o 0 3 0 0 @
°
°
°
2
|
[]
[]
[]



Deterministic threshold growth model with range 1 box
neighborhood, # = 3, started from the 3 black sites.



Characterization of the shape.

The shape L = L is determined by the Wulff transform.
Imagine that 7 acts exactly as 7 on subsets of R%. 7T trans-

lates any half-space
H; ={z e R%: (z,u) <0}
into
T(H;)=H, +w(u)-u, for some w(u) >0,
and T(B)NZ? = T(BNZ?). Set
Ky = U{0,1/w(u)] - u:ue S},
then L is a polygon given by
L=Kji,,={z¢€ R?: (z,u) < w(u) for every u € 4711,

The case when w > 0 is supercritical and is, for box TGM,
equivalent to 8 < p(2p + 1).



Smallest growing initial sets.

In the supercritical case, there exists a finite initial set Ay
for which Ao, = Z2. For various nucleation questions, the
size of smallest such set is of importance. For large p, and
6 ~ A\p?, this size is ~ yg(A\)p?. In fact, yg(\) = X when
A < ¢ for some . € (1.61,1.66) (G—Griffeath, 1997).

Initial set (dark blue) which proves that A\, > 1.61: this
set has size 6 = 36, 760 for TGM with p = 150.



Random TGM shapes.

Regularity of growth (Bohman-G, 1999): If x € A, is at
distance at least Cp* from Ay, then there is a set G within
distance O(p?) from z which is occupied and grows forever
by itself.

Therefore, the dynamics can be successfully restarted from
x, and the shape theorem follows by classic subadditive ar-

guments.

Theorem 1. If Ay grows forever, then Ay/t — L asn — oo.
Here, L = L, is a bounded convexr set with a non-empty

interior.



Proof in a special case.

Assume the double threshold condition, that every subset
of N with 20 sites generates the plane. This is satisfied for
box neighborhoods at least when 8 < p?, and otherwise for

small enough 0/p?.

For a set X, define its weight at time ¢

W= 3 l+N)N Al

yeX\ A,

Furthermore, for any z let T'(2) be the time ¢ at which z €
At \ At—l and let

A, =[(z+N)N(X\ Are))| — 1zexyl(z + N) N Ap) 1]

Wi =Wi_1 — > (y + N) N Ap_q|

yEXﬂ(At\At 1)

+ Z (y + N) N (A \ Ai—1)]

yeEX\ Ay

— Wt—l + Z Az
z€EA\A¢_1

and so
W, = Wy + Z A,
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For x € A,, such that By, (z,p?) N Ay =0 and r < p* — 2p,
let

X =X, = Boo(z,7) N Ay,
B =B, = (Bo(z,7+ p) \ Boo(x,7)) N A,.

Then Wy = W,, = 0 and so

0= ) A.=-> A, => A, <p2p+1)B].

zeXUB zeX zEB

Case 1: A, > 0 for some z € X. Then, for t = T(z),
|(Z+N)ﬂAt_1| Z (9, |(Z+N)H(X\At)| Z 6 and X\At C
Ap\ A1, 80 [(z+ N)NA,| > 26.

Case2: A, < —1 for every z € X. Then |Xy| =1 and

1
p(2p+1)

It follows that

| Xpil < [Bpil = | Xpil — [ Xpi—1)l-

1 1
1+—) < | X, <2077 +1,
( p(2p+1) g

a contradiction for i = p®/2.
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Random TGM from half—spaces.

Wulff characterization holds as well (G-Griffeath, 2002),
although it is not immediate that the half-space velocities

wp(u) exist.

Theorem 2. Assume that Ag = H, . There exists a deter-

ministic number wy,(w) such that
H, +t(wy(u) —€)-u C Ay C H, + t(wp(u) + €) - u,

inside the discrete ball of radius t?, with probability at least
1 —exp(—ct/log®t). (Here, ¢ = c(€) > 0 whenever € > 0.)

Wulff characterization easily follows: if K, = Ky, , then
L, =K.

Computational significance: w, is much easier to compute
than L,.
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Sketch of Proof.

For simplicity, assume that u = es, i.e., initially all sites

on or below the x-axis are occupied.

The process is constructed by generating i.i.d. Bernoulli

random variables £, ; for each z € Z2 and each t = 1,2, ...
Then let Fy = 0{&,.s: s < t,x € Z?}.

Let T,(7) be the first time time (i,n) becomes occupied,
T, = T,,(0) and T,, = T}, A Cn, for a large enough C so that
P(T,, =T,) < e ¢". The main step is the L> bound:

(*) |E(T, | Fst1) — E(Tn | Fs)| < Clogt,
for any s < Cn and some constant C' = C(p).

Let £,, comprise the space-time sites which influence T,,.
Then of course |£,,| < Cn? and we can assume that the filtra-
tion ignores all other sites. At time s < Cn, let 0A; consist
of all the sites outside A, which would become occupied if
the deterministic dynamics were applied to A,. Trivially,
|0As| < |L£,|. When events in Fs11 are revealed, we know

which sites in 0As become occupied.
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If 75 is the waiting time after time s at which all sites
in 0A, are occupied, then E(r,) < Clogn. (Here C =~
—1/log(1 — p).) The following inequalities follow from the

strong Markov property and monotonicity of the dynamics.

The lower bound follows by assuming the worst case: no

sites in 0A; get occupied:
E(Tn | f3_|_1) < E(Tn | fs) + 1.

For the upper bound, assume that F,,; reveals that all sites
in 0A; get occupied. Before we know F,sy1, we can only
assume this happens after time 74, and so the dynamics with
the additional information is dominated by the one restarted
at time s+ 7. By running this restarted dynamics for t—s—1

time units, we obtain
E(T, | Fs) < E(T, | Fsy1) + E(1).

Hence (*) is proved. Let a, = E(T,), a, = E(T,). By

Azuma’s inequality,
(**) P(|T,, — a,| > s) < Zexp(—cs2/(n log2 n)).

and, since |a,, — a,| < C, (**) holds if bars are removed.
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Now let T be the first time all sites {(¢,n) : i < Cn}
are occupied, and 7,/ the time when all the sites {(7,4) : ¢ <
Cn,n — C < j < n} are occupied. By regularity, E(T) —
T!) < Clogn. Moreover,

P(T, — T > s) < Cnexp(—cs?/(tlog®t))

and so

E(T, —T.) < Cy/nlog”n + C’/ P(T, — T, > s)ds,
Cy/nlog?n

so it follows that E(T,, — T") < Cv/nlog’ n.

By the usual restarting at time n > m,
Uman < Qm + an + E(T) —T},) + C,

By the deBruijn-Erdds subadditive theorem, a,,/n converges

to a finite number a and so does T, /n, a.s.

Let X; be the furthest occupied point on the y—axis. From
the regularity theorem, at time ¢ + et, a ball of radius cet
around (0, X;) is covered with probability exponentially close
to 1. The standard compactness argument now shows that
the dynamics a.s. eventually occupies all the sites above
[—t2,t%] and below the line y = (1/a — ¢€)t, for any e.
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Two open problems.

1. General monotone CA. Generalize the regularity theorem

to this case.

2. Shape theorem in a non—-monotone case. Consider the
forest fire CA, with state space {0, 1, 2}22, and the rules

1= 2,
2 = 2,
0—1, w.p. p, if > 6 1’s in the nbhd.,

0— 0, otherwise.

Can a shape theorem be proved? (Cox—Durrett, 1988, prove
it in the # = 1 case.)
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Forest fire for range 2 box, # = 3, p = 0.65 (top) and
p = 0.52 (bottom).



