$\label{eq:Lecture 1:}$ Shapes in Deterministic and Random Rules

Janko Gravner (Univ. of California, Davis)

Local Monotone Growth CA.

The occupied set $A_t \subset \mathbf{Z}^2$ evolves in discrete time $t = 0, 1, \ldots$, with A_0 some (usually large enough *finite*) set. The rule is determined by

- a finite neighborhood \mathcal{N} , with $0 \in \mathcal{N}$,
- a set of probabilities $\pi(S) \in [0,1], S \subset \mathcal{N}$.

Then, given A_t ,

the updated set A_{t+1} of occupied points is obtained by adjoining, independently, every $x \in \mathbf{Z}^d$ with probability $\pi((A_t - x) \cap \mathcal{N})$.

Common assumptions:

- $\bullet \ \pi(\emptyset) = 0,$
- π is symmetric: $-\mathcal{N} = \mathcal{N}$ and $\pi(-S) = \pi(S)$,
- π solidifies: $0 \in S \implies \pi(S) = 1$ (i.e., $A_t \subset A_{t+1}$),
- π is monotone (attractive): $S_1 \subset S_2 \implies \pi(S_1) \leq \pi(S_2)$.

Threshold Growth Model (TGM).

This is a totalistic monotone growth CA. There exist a

- a threshold $\theta \geq 1$, and
- update probabilities $0 < p_{\theta} \le p_{\theta+1} \le \cdots \le p_{|\mathcal{N}|-1}$,

so that

- $(1) A_t \subset A_{t+1},$
- (2) $x \notin A_t$ belongs to A_{t+1} with probability $p_{|A_t \cap (x+\mathcal{N})|}$.

Often, $p_i \equiv p$.

For example, \mathcal{N} could consist of the 4 nearest sites to the origin (von Neumann neighborhood) or 8 nearest sites (Moore neighborhood). Large neighborhoods $\mathcal{N} = \mathcal{N}_{\rho}$ will often be range ρ box neighborhoods, $(2\rho+1)\times(2\rho+1)$ boxes centered at 0. More generally, $\mathcal{N}_{\rho} = \{x : ||x|| \leq \rho\}$, where $||\cdot||$ is some norm.

Deterministic dynamics.

Take a range ρ box TGM with $p_{\theta} = 1$. There are only 2 possibilities (Bohman, 1999):

- either A_t stop growing: $A_{t+1} = A_t$ for some t,
- or $A_{\infty} = \mathbf{Z}^2$ and A_t/t converges, as $t \to \infty$, to the limiting shape $L = L_1$.

The convergence to limiting set L_1 is very fast. In fact, there exists a constant $C = C(\mathcal{N}, A_0)$ so that A_t differs from tL by C (Willson, 1978). This C is, for appropriate initial sets, of order ρ .

In general, the above is not true, e.g., $\theta = 3$ and

$$x + \mathcal{N} = \bullet \quad \bullet \quad x \quad \bullet \quad A_0 = \square \quad \square$$

Deterministic threshold growth model with range 1 box neighborhood, $\theta=3$, started from the 3 black sites.

Characterization of the shape.

The shape $L = L_1$ is determined by the Wulff transform. Imagine that $\bar{\mathcal{T}}$ acts exactly as \mathcal{T} on subsets of \mathbf{R}^2 . $\bar{\mathcal{T}}$ translates any half-space

$$H_u^- = \{ x \in \mathbf{R}^d : \langle x, u \rangle \le 0 \}$$

into

$$\bar{\mathcal{T}}(H_u^-) = H_u^- + w(u) \cdot u$$
, for some $w(u) \ge 0$,

and $\bar{\mathcal{T}}(B) \cap \mathbf{Z}^2 = \mathcal{T}(B \cap \mathbf{Z}^2)$. Set

$$K_{1/w} = \bigcup \{ [0, 1/w(u)] \cdot u : u \in S^{d-1} \},$$

then L is a polygon given by

$$L = K_{1/w}^* = \{ x \in \mathbf{R}^d : \langle x, u \rangle \le w(u) \text{ for every } u \in S^{d-1} \}.$$

The case when w > 0 is *supercritical* and is, for box TGM, equivalent to $\theta \leq \rho(2\rho + 1)$.

Smallest growing initial sets.

In the supercritical case, there exists a finite initial set A_0 for which $A_{\infty} = \mathbf{Z}^2$. For various nucleation questions, the size of smallest such set is of importance. For large ρ , and $\theta \sim \lambda \rho^2$, this size is $\sim \gamma_E(\lambda)\rho^2$. In fact, $\gamma_E(\lambda) = \lambda$ when $\lambda < \lambda_c$ for some $\lambda_c \in (1.61, 1.66)$ (G-Griffeath, 1997).

Initial set (dark blue) which proves that $\lambda_c > 1.61$: this set has size $\theta = 36,760$ for TGM with $\rho = 150$.

Random TGM shapes.

Regularity of growth (Bohman-G, 1999): If $x \in A_t$ is at distance at least $C\rho^4$ from A_0 , then there is a set G within distance $\mathcal{O}(\rho^4)$ from x which is occupied and grows forever by itself.

Therefore, the dynamics can be successfully restarted from x, and the shape theorem follows by classic subadditive arguments.

Theorem 1. If A_0 grows forever, then $A_t/t \to L$ as $n \to \infty$. Here, $L = L_p$ is a bounded convex set with a non-empty interior.

Proof in a special case.

Assume the double threshold condition, that every subset of \mathcal{N} with 2θ sites generates the plane. This is satisfied for box neighborhoods at least when $\theta \leq \rho^2$, and otherwise for small enough θ/ρ^2 .

For a set X, define its weight at time t

$$W_t = \sum_{y \in X \setminus A_t} |(y + \mathcal{N}) \cap A_t|.$$

Furthermore, for any z let T(z) be the time t at which $z \in A_t \setminus A_{t-1}$ and let

$$\Delta_z = |(z + \mathcal{N}) \cap (X \setminus A_{T(z)})| - 1_{\{z \in X\}} |(z + \mathcal{N}) \cap A_{T(z)-1}|.$$

$$W_{t} = W_{t-1} - \sum_{y \in X \cap (A_{t} \setminus A_{t-1})} |(y + \mathcal{N}) \cap A_{t-1}|$$

$$+ \sum_{y \in X \setminus A_{t}} |(y + \mathcal{N}) \cap (A_{t} \setminus A_{t-1})|$$

$$= W_{t-1} + \sum_{z \in A_{t} \setminus A_{t-1}} \Delta_{z}$$

and so

$$W_n = W_0 + \sum_{z \in A_n \setminus A_0} \Delta_z.$$

For $x \in A_n$ such that $B_{\infty}(x, \rho^4) \cap A_0 = \emptyset$ and $r < \rho^4 - 2\rho$, let

$$X = X_r = B_{\infty}(x, r) \cap A_n,$$

$$B = B_r = (B_{\infty}(x, r + \rho) \setminus B_{\infty}(x, r)) \cap A_n.$$

Then $W_0 = W_n = 0$ and so

$$0 = \sum_{z \in X \cup B} \Delta_z \Rightarrow -\sum_{z \in X} \Delta_z = \sum_{z \in B} \Delta_z \le \rho (2\rho + 1)|B|.$$

Case 1: $\Delta_z \geq 0$ for some $z \in X$. Then, for t = T(z), $|(z + \mathcal{N}) \cap A_{t-1}| \geq \theta$, $|(z + \mathcal{N}) \cap (X \setminus A_t)| \geq \theta$ and $X \setminus A_t \subset A_n \setminus A_{t-1}$, so $|(z + \mathcal{N}) \cap A_n| \geq 2\theta$.

Case2: $\Delta_z \leq -1$ for every $z \in X$. Then $|X_0| = 1$ and

$$\frac{1}{\rho(2\rho+1)}|X_{\rho i}| \le |B_{\rho i}| = |X_{\rho i}| - |X_{\rho(i-1)}|.$$

It follows that

$$\left(1 + \frac{1}{\rho(2\rho + 1)}\right)^{i} \le |X_{\rho i}| \le 2\rho^{2}i^{2} + 1,$$

a contradiction for $i = \rho^{5/2}$.

Random TGM from half-spaces.

Wulff characterization holds as well (G-Griffeath, 2002), although it is not immediate that the half-space velocities $w_p(u)$ exist.

Theorem 2. Assume that $A_0 = H_u^-$. There exists a deterministic number $w_p(u)$ such that

$$H_u^- + t(w_p(u) - \epsilon) \cdot u \subset A_t \subset H_u^- + t(w_p(u) + \epsilon) \cdot u,$$

inside the discrete ball of radius t^2 , with probability at least $1 - \exp(-ct/\log^2 t)$. (Here, $c = c(\epsilon) > 0$ whenever $\epsilon > 0$.)

Wulff characterization easily follows: if $K_p = K_{1/w_p}$, then $L_p = K_p^*$.

Computational significance: w_p is much easier to compute than L_p .

Sketch of Proof.

For simplicity, assume that $u = e_2$, i.e., initially all sites on or below the x-axis are occupied.

The process is constructed by generating i.i.d. Bernoulli random variables $\xi_{x,t}$ for each $x \in \mathbf{Z}^2$ and each t = 1, 2, ...Then let $\mathcal{F}_t = \sigma\{\xi_{x,s} : s \leq t, x \in \mathbf{Z}^2\}$.

Let $T_n(i)$ be the first time time (i, n) becomes occupied, $T_n = T_n(0)$ and $\bar{T}_n = T_n \wedge Cn$, for a large enough C so that $P(T_n = \bar{T}_n) \leq e^{-cn}$. The main step is the L^{∞} bound:

$$(*) |E(\bar{T}_n | \mathcal{F}_{s+1}) - E(\bar{T}_n | \mathcal{F}_s)| \le C \log t,$$

for any $s \leq Cn$ and some constant C = C(p).

Let \mathcal{L}_n comprise the space-time sites which influence \overline{T}_n . Then of course $|\mathcal{L}_n| \leq Cn^3$ and we can assume that the filtration ignores all other sites. At time $s \leq Cn$, let ∂A_s consist of all the sites outside A_s which would become occupied if the deterministic dynamics were applied to A_s . Trivially, $|\partial A_s| \leq |\mathcal{L}_n|$. When events in \mathcal{F}_{s+1} are revealed, we know which sites in ∂A_s become occupied. If τ_s is the waiting time after time s at which all sites in ∂A_s are occupied, then $E(\tau_s) \leq C \log n$. (Here $C \approx -1/\log(1-p)$.) The following inequalities follow from the strong Markov property and monotonicity of the dynamics.

The lower bound follows by assuming the worst case: no sites in ∂A_s get occupied:

$$E(\bar{T}_n \mid \mathcal{F}_{s+1}) \le E(\bar{T}_n \mid \mathcal{F}_s) + 1.$$

For the upper bound, assume that \mathcal{F}_{s+1} reveals that all sites in ∂A_s get occupied. Before we know \mathcal{F}_{s+1} , we can only assume this happens after time τ_s , and so the dynamics with the additional information is dominated by the one restarted at time $s+\tau_s$. By running this restarted dynamics for t-s-1 time units, we obtain

$$E(\bar{T}_n \mid \mathcal{F}_s) \le E(\bar{T}_n \mid \mathcal{F}_{s+1}) + E(\tau_s).$$

Hence (*) is proved. Let $a_n = E(T_n)$, $\bar{a}_n = E(\bar{T}_n)$. By Azuma's inequality,

(**)
$$P(|\bar{T}_n - \bar{a}_n| > s) \le 2 \exp(-cs^2/(n\log^2 n)).$$

and, since $|a_n - \bar{a}_n| \leq C$, (**) holds if bars are removed.

Now let T'_n be the first time all sites $\{(i,n): i \leq Cn\}$ are occupied, and T''_n the time when all the sites $\{(i,j): i \leq Cn, n-C \leq j \leq n\}$ are occupied. By regularity, $E(T''_n - T'_n) \leq C \log n$. Moreover,

$$P(T_n - T_n' \ge s) \le Cn \exp(-cs^2/(t \log^2 t))$$

and so

$$E(T_n - T'_n) \le C\sqrt{n}\log^2 n + C\int_{C\sqrt{n}\log^2 n}^{\infty} P(T_n - T'_n \ge s) ds,$$

so it follows that $E(T_n - T'_n) \le C\sqrt{n}\log^2 n$.

By the usual restarting at time $n \geq m$,

$$a_{m+n} \le a_m + a_n + E(T_n'' - T_n) + C,$$

By the deBruijn-Erdös subadditive theorem, a_n/n converges to a finite number a and so does T_n/n , a.s.

Let X_t be the furthest occupied point on the y-axis. From the regularity theorem, at time $t + \epsilon t$, a ball of radius $c\epsilon t$ around $(0, X_t)$ is covered with probability exponentially close to 1. The standard compactness argument now shows that the dynamics a.s. eventually occupies all the sites above $[-t^2, t^2]$ and below the line $y = (1/a - \epsilon)t$, for any ϵ .

Two open problems.

- 1. General monotone CA. Generalize the regularity theorem to this case.
- 2. Shape theorem in a non-monotone case. Consider the forest fire CA, with state space $\{0,1,2\}^{\mathbb{Z}^2}$, and the rules

$$1 \rightarrow 2$$

$$2 \rightarrow 2$$

$$0 \to 1$$
, w.p. p , if $\geq \theta$ 1's in the nbhd.,

 $0 \to 0$, otherwise.

Can a shape theorem be proved? (Cox–Durrett, 1988, prove it in the $\theta=1$ case.)

Forest fire for range 2 box, $\theta=3,\ p=0.65$ (top) and p=0.52 (bottom).