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Toom’s method.

Take a deterministic CA & € {0, 1}Z2, 1’s=occupied sites,
0’s=empty sites. Assume that & = 1 implies & = 1. The

simplest assumption is the following;:

(T1) There exists a fixed line £ C R? so that &(0) = 0
implies that there exist z;, s € Z? strictly separated
by ¢ so that .Et_l(xl) = ft_l(:m) = 0.

Introduce random errors into this rule: after & is com-
puted according to the deterministic rule, each site x is in-
dependently turned to 0 with probability 1 — p. We say that

(x,t) is an error site.

Toom’s Theorem. Assume (T1) holds. If &(x) = 0, then
there exists a graph G = G(x,t), whose vertex set is included
in {(z,8) : s < t,z € Z*}, and which satisfies the following

properties, uniformly in (x,t):

(1) Number of possible graphs G with m edges is bounded
by C™,

(2) For a graph G with m edges, at least m/C vertices

are error sites.



The classic application.

Consider the threshold growth model with von-Neumann
neighborhood, started from all 1’s with error probability 1—p.

Is the initial state stable in the sense that
P(&(z) =1) = 1, as p — 1,
uniformly in ¢7?

If & = 1, this is the oriented percolation dynamics. If
&:(x) = 0, then either (x,t) is an error site or else all neigh-
bors of x are 0 at time t—1. So the standard Peierls argument
on (a one-dimensional slice of) spacex time proves stability.
The same is true for any supercritical growth model. (This
is the case when w > 0 or, equivalently, when a finite set can

grow.)

If § = 3, then a 2 x 2 block of 0’s will never be destroyed

and so
lim P(&(x) =1)=0

t—o00

and stability does not hold. This is the property of subcritical

growth models, when w = 0 and a finite hole cannot be filled.



Neither of these two techniques applies to the 8 = 2 case.
This is a critical rule, in which no finite set of 1’s can grow
(because w(u) = for some u) but any finite hole can be filled
(because w(4u) > 0 for some u — recall that we assume in
general that the rule is symmetric). However, in the de-
terministic (error—free) case, £;(0) = 0 implies that there is
a 0 on either side of some line /, in this example given by
¢ ={(z,y) : y = x}. Thus stability follows.



Perturbation of deterministic shapes.

Now consider a random TGM, with parameters A/ and
6, in which A; is a randomly growing set (A; C A;+1) and
T §é At jOiIlS At_|_1 with probability p- 1{|(:1:—|—N)0At|29}'

Let 4
. t *
Lp = tlggo T T wp

be the asymptotic shape started from a large enough finite

set. What are the properties of L, for p close to 17

A classic result (Durrett—Liggett, 1981) states that, for the
additive (that is, # = 1) nearest neighbor TGM,

(1) L, — L1 as p — 1 and has a flat edge in the diagonal

direction as soon as p is close enough to 1.

(2) However, L, is for p < 1 not equal to L; due to the

fact that its extent in coordinate direction is below 1.



5)

The reason for (1) is that the growth at the boundary of
tL, does exactly 1d oriented percolation, which survives for
large enough p. This part can be generalized to arbitrary
supercritical TGM, by rescaling: from a single copy of the
invariant shape 7L (7 fixed), will produce 27L after time
T with large probability. It follows that a supercritical 1-
dependent oriented percolation can be embedded into the
edge dynamics. For p close enough to 1, then, L, retains a

portion of every flat edge of L;.

Is it possible that L, = L;7 We call such property ezact
stability.



Exact stability.

This holds if the TGM is as far from additive as possible
(G- Griffeath, 2002). Note that for additive TGM K/, =
N* is convex. Rules other than additive have convex Kj /,,;
this property simplifies many interactions. Accordingly, such

rules are called quasi—additive. An example: Moore neigh-
borhood with 6 = 2.

Let OK' = 0(K /) NO(COK /).

Theorem. Consider a supercritical TGM. There are three

possibilities:

Case 1. OK' consists of isolated points, no three of which are

on the same line.

Then, for p close enough to 1, L, = L1. Moreover, con-
vergence to Ly s tight: for any € > 0, there exists an M
so that any boundary point of tLy is within M of A; with
probability 1 — €, uniformly in t. Finally, with prob. 1,
(t — Clogt)L1 NZ? C A; eventually, for large enough C.
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Case 2. OK' consists of isolated points, three of which lie on

some line.

The deterministic shape Ly is still strictly stable, the a.s.
deviations are still logarithmic. However, tightness no longer
holds: a corner of tLq is at distance at least clogt from Ay,

a.s.
Case 8. OK' includes a line segment.

Then L, # Ly for every p < 1.

Moore neighborhood TGM:
Case 1: 6 = 3.
Case 3: 6 =1,2.

Range 2 TGM:

Case 1: 6 =4,6.
Case 2: 6 =17,9,10.
Case 3: §=1,2,3,5,8.



Moore neighborhood, § = 2. Top figure: perturbation of
the invariant set in the deterministic TGM. Bottom figure:
random TGM with p = 0.9.



Moore neighborhood, # = 3. Top figure: perturbation of
the invariant set in the deterministic TGM. Bottom figure:
random TGM with p = 0.9.
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Ky, for range 2 TGM, 0§ =1,2,...,10.
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A comparison of two range 2 random TGM, with p = 0.95,
at time 200. Top figure: 8 = 8. Bottom figure: 6 = 7.
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Reasons for exact stability.

In Case 1, the deterministic TGM is able to fix (or “erode”)
any finite perturbation. Therefore, the random dynamics on
infinite wedges determined by corners of L can be favorably

compared to a Toom rule.

The corners can be patched together by an oriented per-

colation comparison in the middle of the edges.

In Case 2, the mistake—fixing property still holds, but for
wider wedges than in Case 1. So, the corners must be rounded

off before a Toom comparison can work.

In Case 3, a corner must lag behind the deterministic

growth, because an appropriate half-space does so.



Ky, and L, forp=1,...,0.4.

13



14

Preponderance of exact stability.

For large neighborhoods N,, we have p(2p+ 1) shapes (as
this is the largest supercritical #). How many are exactly
stable?

It turns out that exact stability holds with asymptotic pro-
portion 1, in fact, the number of cases which are not exactly
stable is O(p?/log® p), for a small ¢ ~ 0.18. At the heart of
this is a result of Erdos, which states that the cardinality of
{ab:1 < a,b < p}, is of the above order.
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., 21.

K/, for range 3 TGM, 6 =1,2,..
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., 55.

K/, for range 5 TGM, 6 =1,2,..
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Open problems.

1. Consider a growth model with imposed interface coher-
ence. Assume Ag are the sites on or below the x—axis. First,
every occupied site at time ¢ (i.e., a member of A;) with a
vacant nearest neighbor becomes vacant independently with
probability p. Second, to maintain coherence, remove any oc-
cupied sites with a vacant site anywhere directly below them.
The third step fills in any site with 2 or more occupied neigh-

bors.

Is the asymptotic speed of this interface exactly 0 for p
close to 17 Note that this is not a local rule, so Toom’s
theorem does not apply, but a modification due to Bramson

and Gray might.

2. Does arbitrary TGM have convex K /,,, when p is small?
As of now, there is no technique for demonstrating convexity

of Ky,,, in any non-additive case.



