LECTURE 3:

An exactly solvable growth model

Janko Gravner (Univ. of California, Davis)



Approximations for small update probabilities.

Consider range 1 box threshold 3 TGM, with p; = p, ¢ > 3.
What happens with the shape L, as p — 07 It turns out
that p~'L, converges to the shape of the continuous time

dynamics, about which little is known.

So instead we take pg = p, and ps = 1. The exact stability
near p = 1 obviously still holds. What is now the geometry
for p — 07 (A similar problem was introduced by Kesten—
Schonmann, 1995.)

Coordinate and diagonal directions u are the only ones for
which w,(u) — 0. Those are, therefore, the only ones likely
to be “seen” in the limit. In fact, the following precise result

can be proved.

Theorem. Asp — 0, p~1/2L, — {x € R?,||z||: < V2}.



TGM from the previous page, with pg = 0.01, started from
100 x 100 square, run until time 1050.



Why can the limiting set be precisely identified? Consider
Ag = H,. We wish to determine the height h; = h:(0)
above the origin. As this rule generates a coherent interface,
the advance above a site x from time ¢ to ¢ + 1 may happen
deterministically (as p4 = 1) or based on the outcome of a
Bernoulli (p) r.v. €;:. Then call any space-time site (z,t)
with €;+ = 1 marked. Only marked sites inside the triangle
with vertices (0,¢ — 1), (+(t — 1),0) influence h;(0). If ¢t =
7/,/P and the triangle is rescaled by ,/p, then the position
of the marked sites converges to the Poisson point location
P with intensity 1. In the limiting dynamics, a point above
z € R advances by 1 at times ¢ such that (x,t) € P, creating
a thin stalk which expands in both directions at speed 1.

This is a version of the Hammersley’s process.



Under this rule, hs(0) is given exactly by the length of
the longest path, i.e., the piecewise linear path which con-
nects (0,¢) and the xz—axis, on which all line segments have
absolute slopes at least 1, and connect the most points in
P. The longest such path which connects (0,¢) and (0, 0) is,
conditioned on the number of points in P inside the square
being m, exactly the length of the longest increasing subse-
quence in a random permutation of 1, ..., m. This length has
a.s. asymptotics 24/m (Logan—Shepp, Vershik—Kerov, 1977;
Aldous—Diaconis, 1995). It follows that hs(0) ~ 24/t2/2 =

V2t.

Consequently, wy,(ez) ~ \/5\/]_9 as p — 0 and a similar ar-

gument computes the asymptotics in the diagonal direction.

Also, note that Ky, is non—convex for small p, thus the
shape L, must have at least one corner for small p. (A flat
edge for small p is very unlikely, but not ruled out at this

point.)



An exactly solvable TGM
Consider the TGM with
z+N="

0 =1, p1 = p, and po = 1. This TGM is called oriented
digital boiling (ODB).

This model (Seppaldinen 1998; Johansson, 1999; G-Tracy—
Widom, 2000) is exactly solvable when Ag = {(z,y) € Z? :
x>0,y <—x}.

As before, let hi(xz) be the height above = so that A; =
{y < h(x)}. Also, toss the p—coins in advance to get inde-
pendent Bernoulli random variables €, ¢, * > 0,7 > 0 and

mark the points (z,t) for which e, = 1. Then

hi(x) = max{hi_1(z — 1), ht—1(2) + €z t—1}-



Path description.

For a space—time point (x,t),z < t, its backwards light-

cone is
L(z,t)={(2",t):0<2' <z’ <t'<a'+t—2x}
and H is the longest sequence (z1,t1), ..., (zk, tr) which

(1) consists of marked points,
(2) xi—1 <z, and

3) i —xim1 +1 <t —t;_1.

Alternatively, let m =t—x andn = z+1, and A arandom
m X n matrix with independent Bernoulli (p) entries. Label
columns as usual, but rows started at the bottom. Then
H = H(m,n) is the largest sequence of 1’s in A, with

(1) column index non—decreasing,

(2) row index strictly increasing.

Lemma. Forx <t, hy(x) = H(m,n).



ODB, with p = 0.5, started from the wedge.



Shape and fluctuations.

Let A; be given by {y < h¢(x)}. There are four asymptotic

regimes.

(1) Square—root regime. Keep x fixed and let t — co. Then

a functional of the n = £ + 1 dimensional Brownian motion

(B(), “en ,Bm)l

Mm = maX{Bo(to) + Bl(tl) — Bl(to) + -+ Bw(tw) — Bw(taz—l) .
0<ty<t; <---<t,=1}

Its distribution is given by
P(Ma: < 3) = 6771/ A(y)ze_%HyHg dy,
y€(—o0,s|™

where

cn = 1120, . n!(20)Y2,  A(z) = H (x; — ;).



(2) Universal regime. Assume v = z/t <1 — p and let

c1 =2(1—7)p—p+2vVpy(1 —p)(1 —7),
ca = (71 -7))" (p(1 - p))"/

(1+\/1— )yp~ (1 — )" )2/3

(x/(l -7t =Vl —p)! )2/3 -

Then

P ( hi(w) — et s) s Fy(s),

c2t1/3

Fa(s) =exp (— [ (o~ s)ata)? d )

and ¢ solves

where

q" =sq+2¢°, q~ Ai(s) as s — oo.
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(3) Critical regime. If z/t = (1 — p) + o(t—1/2), then hy(z) —

(t — x) converges in distribution: for any fixed k € Z,,
P(hi(x) - (t — =) < —k)

converges to a k X k determinant. The interface is tight in

this direction.

(4) Deterministic regime. If v = x/t > 1 —p then P(hs(x) =

t — ) converges to 1 exponentially fast.

This is simply because the leftmost point of the -45 degree
edge does a random walk: it moves up with prob. p and to
the right with prob. 1 — p.
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Main steps in proving the theorem.

Step 1. Combinatorics and algebra. The dual RSK algo-
rithm, Gessel’s theorem (1990) and Borodin—Okounkov iden-
tity (1999) establishes a connection between 01-matrices and

determinants of operators, the final result being
P(hi(x) < h) =det(I — Kp),

where K, : £2 — ¢? is the product of two matrices, given by

(7, k)—entries

1 .
+ _ n m .—m-+h+7+k

1 .
() = 5 / (14 72)~"(z — 1)~mpm—h—i—k=2 g
The contours for both integrals go around the origin once
counterclockwise; in the second integral 1 is inside and —1/r

is outside.
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Step 2. Analysis. In the universal regime, we take h = cm +

smt/3 j =ml/3z, k =m!/3y. Then, e.g.,

1 1/3
+ _ o ym P (z+y+s)
ajk(h) =5 /w(z)( 2) ¥79) dz.

The asymptotics of the integrals are computed by the steep-
est descent method. To get a nontrivial limit, we need to
choose ¢ = c¢; so that the d%log ¥(z) has a double 0, the
third derivative of log(z) then determines cy. The limit
is another Fredholm determinant, of an operator on L?[0, 1]
with the Airy kernel.

The main technical effort is in establishing trace—class con-

vergence of the approximations.
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Connections with random matrices.

The Gaussian Unitary Ensemble (GUE) is a random n X n
Hermitian matrix where entries are i.i.d. normal, real and
complex part of the entries above the diagonal have variance
1, and diagonal entries have variance 2. Such random ma-
trices form a unique measure on Hermitian matrices invari-
ant under unitary transformations. (Introduced by Wigner,
1950s). It turns out that:

(1) There exists an explicit formula for the distribution of the
largest eigenvalue Apax Of such matrix: it equals the dis-
tribution of M,!

(2) The largest eigenvalue Apax Obeys the limit law
P((Amax — 2v/n) - n'/8 < s) — Fy(s),

as s — Q.

There does not seem to be any intuitive connection be-
tween largest eigenvalues and increasing paths — the formu-
las just turn out the same. The convergence theorems and
explicit formulas are results of Tracy—Widom, established

through many papers in 1990s.
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Shape of ODB from finite sets.
Assume (without loss of generality) that Ay = {0}.

Then the shape L, is simply given as the intersection of
L;, and L; reflected over the line y = z. Properties of L,

inside the the first quadrant:

0L, has a flat edge, but no corners, when p > 1/2,

0L, is smooth and strictly convex when p = 1/2,

0L, has a corner (in the diagonal direction), but no
flat edge when p < 1/2,

° p_1/2Lp —
{(z,y) € R? : 2% < 4y(1 —y),y? < 4z(1 — )}
as p — 0.

The fluctuations in any direction v = x/t can be com-
pletely described, except in the diagonal direction when p <
1/2.



ODB shapes for p = 0.6,0.5,0.3,0.1.
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Open problems.

1. Describe the fluctuations on the boundary of A; in the
diagonal direction. Such fluctuations are not known for any
local growth model in a direction where the asymptotic shape
has a kink.

2. Can the asymptotic shapes be explicitly computed for any

non—oriented growth model, such as our first one?



