LECTURE 4:

Critical growth in random environment

Janko Gravner (Univ. of California, Davis)



Definition.

A set of occupied points is a subset of two—dimensional
lattice Z2. Points in this set, which increases over time, will
be labeled as 1’s. Obstacles, labeled as 2’s, form another

subset of Z2. The remaining empty sites are labeled as 0’s.

Set—up: 1’s grow according to some local cellular automa-
ton (CA) rule, but only on 0’s. Once a point is occupied, it

remains so forever. The set of obstacles never changes.

For concreteness, we assume that the CA rule is a nearest
neighbor TGM. The state of this process will be denoted by
& € {0,1, 2}22. The rule:

o If £t($) > O, then £t+1($) = €t(£l?)
o If {i(x) = 0, and |{& = 1} N (x + N)| > 6, then
§e1(2) = 1.

e Otherwise, &11(z) = 0.

The initial state &y is a product measure with small p =
P(&y(z) = 1) and g = P(&y(x) = 2). The final state, defined

pointwise, is &.



The main question.

What are the relative sizes of p and ¢ if most sites become
1 with high probability as p,q — 0?7 Presumably, ¢ would

have to decrease sufficiently fast, compared to p.

If # = 1, then, if ¢ is small, 0’s and 1’s together form an
infinite connected (through nearest neighbor paths) cluster.

Even a single 1 in this cluster will eventually paint it all 1.
Thus
lim P(€eo(z) =1) =1,

qg—0

as long as p = p(q) > 0, so there is no scaling between p and

g. This is true for all supercritical growth CA.

If 8 = 3, no 2 x 2 block without a 1 can be changed and

so, even if ¢ = 0,

11)% P({o(z) =1) = 0.



Bootstrap percolation (BP).

If & = 2, no finite set of 1’s can grow, but we know that in

the absence of 2’s any hole in a sea of 1’s can be filled.

First question: for ¢ = 0 and p > 0 small, do 1’s grow
substantially? The configuration below (centered, say, at x)

fills the circumscribed 7 x 7 square.

1
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1 1
1 1 1 1
1 1 1
1

1

Call any configuration centered at x, such that there is a 1 in
every face of every ring, a nucleus at . A nucleus anywhere
fills Z2 with 1’s. The probability that this happens at a fixed

p-pt-(1—(1=p°)*-(1—-(1=p))*--->0,

therefore P(£,, = 1) > 0 and by the ergodic theorem P (£, =
1) =1 (van Enter, 1988).
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Bootstrap percolation without obstacles, on 200 x 200 box

with periodic boundary and p = 0.04.



Finite boxes.

Consider the BP CA on an L x L box with free (i.e., 0)
boundary, started with density p of 1’s. This box is internally

spanned if every site eventually becomes occupied, i.e. £ =
1.

A celebrated result be Aizenman and Lebowitz (1988) is

that there exist constants 0 < ¢; < ¢y < 00 so that

If L > e®/P, then P({o =1) = 1 as p — 0.

If L < e®/P, then, for every z, P(és(x) = 1) — 0 as
p — 0.

Sketch of the proof:

— —2kp
11_% p - log P(z is a nucleus) hm 4p Z log(1 )
00 7T2
= lim 4/ log(1 — e ?*)dx = ——
p—0 0 3

After a rescaling argument, this demonstrates that cs can
be taken to be (anything larger than) 7%/3 ~ 3.3.



If a rectangle R of size a X b, a < b, is internally spanned,
then for every b’ < b there is an internally spanned sub-

rectangle with longest side between b’ and 2b’.

To show this, start with a collection of occupied sites.
Given a collection of rectangles, find two which are separated
by less than 2 sites, and combine them into a new rectangle.
This way, the longest side in the collection is < 2x (previous
longest side)+1.

P (z) = 1)

< P(at least one 1 in By (z,10))

+ P(at least one i.s. rectangle with b € [5,10] in Boo(z,2/p))
+ P(at least one i.s. rectangle with b € [1/p, 2/p])

< Cp+ Cp~?P(at least 3 1’s in at most 100 places)
+Op LA (1~ (1~ p)Ir)H o),

and this shows that ¢; can be chosen to be (anything smaller
than) —log(1 —e™2)/2 ~ 0.073.

A remarkable argument by Holroyd (2002), demonstrates
that ¢; = co = m2/18 ~ 0.55.



Bootstrap percolation with obstacles.

Example:
1 1 1 1 1
1 N 1 1 1 1
2 1 2 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

whereas without the 2 the rectangle would be filled.

Theorem. There exists finite positive constants c1 and ca
so that

(1) If g < c1p?, then P(éxo(2)
(2) If ¢ > cap?, then P(€oo()

1) > 1asp—0,

1) =0 asp — 0.

The proof (G-McDonald, 1997) relies on the existence of
blocking loops, which 1’s cannot penetrate from outside. Such

loops must have a 2 at every left turn.



Bootstrap percolation with 1 (red) boundary condition.
For this picture, the density g of 2's (blue) is 0.01, while the
density of 1’s is p = 0.02.



Proof of a weaker statement than (1).
(Due to R. Schonmann.)

Let ¢ < p>*¢ for some € > 0. Let N = 1/p'*¢/3. Divide
the plane into N x N squares. Call any such square good if

it contains no 2, but each of its rows and columns contains a
1. Then

P(a fixed square is not good) < N%q+ 2N (1 —p)N =0,

so that the probability that the square that contains z is
good, and is connected to infinitely many good squares, con-
verges to 1. However, a.s. one of such infinitely many good
squares is initially filled with 1’s, and so eventually all sites

connected to it are filled with 1’s.
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Sketch of the proof of (2).

Essentially, the problem reduces to showing that, when
g > cop?, a infinite path with the following properties is
likely to exist:

e The path starts at the origin, and it only moves up

or to the right by one site,
e There are no 1’s on the path,

e There is a 2 on the path at every right turn.

A blocking loop can then be created which cannot be pene-
trated from the outside. If the loop is short enough (of length
1/p"), nothing much will happen inside either (by the “finite
box” results). Therefore, the vast majority of sites will not

turn into 1’s.
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Let N = a/p and divide the lattice into N x N squares,
one of which has the lower left corner at the origin. Fix one
such square S, and assume that the origin is connected to a
site x on its left edge by a path as specified above. If first «
is chosen small, then cs is chosen very large, the probability
that the path can be extended to the left side of the adjacent
square to the right, and the diagonally adjacent Northeast

square can be made arbitrarily close to 1.

To see this, first note that a horizontal crossing of S from
x without a 1 happens with probability 1 — €¢/4. From each
site of this crossing, make a vertical connection through S
and continued through its adjacent square S’ to the north.
With probability 1 — €/4, at least 1/2 of these connections
contain no 1. These combine for a?/(2p?) sites in S’. If ¢y is
large enough, one of these sites is a 2 with probability 1—e/4.
Then there is a horizontal connection from the first such 2 to

the square adjacent to the right of S’ with probability 1—e/4.
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Open problems.

1. Are the two constants in the random environment theorem

equal? Characterize their value(s).

2. Find the exact scaling for the modified bootstrap perco-
lation in the random environment. In this CA, 0 turns into
a 1 only in the presence of two diagonally adjacent nearest

neighbor 1’s.

3. Start bootstrap percolation with errors from all 1’s, minus
a density g of 2’s. The rule is the same as before, except that
any 1 changes to 0 with probability p. In a rectangle without
1’s and with 2’s in its corners, no site can ever become a 1.
Therefore every site eventually fixes in a 0 or a 2. Let T
be the last time the origin is 1. Conditioned on the origin

starting at 1, compute the asymptotics of T" as p,q — 0.
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The dynamics described in problem 3. Here 1’s are red,
2’s are blue, p = 0.2 and ¢ = 0.1. The (extremely slow) con-
vergence to the final state on a 200 x 200 system is illustrated
at time t = 3212.



