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Motivated by their important role in smooth dynamical systems,
Lyapunov exponents have been conceived decades ago as a means
to study the stability of cellular automata (CAs). More precisely,
they quantify their sensitive dependence on initial conditions. As
a next step towards the establishment of a dynamical systems the-
ory of CAs that is inspired by its analogue for smooth dynamical
systems, we introduce the concept of Lyapunov profiles of CAs.
These constructs may be considered analogous to the Lyapunov
spectra of higher-dimensional smooth dynamical systems. Doing
so, we unify the competing approaches to Lyapunov exponents
of CAs, as Lyapunov profiles capture both the spreading proper-
ties of a set of defects and the exponential accumulation rates of
defects within this set.
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1 INTRODUCTION

In spite of their intrinsic simplicity, cellular automata (CAs) [24] have been
proven to be capable of evolving intriguing spatio-temporal dynamics [12, 14,
26]. Moreover, they are increasingly appreciated as full-fledged models for
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mimicking complex biological and physical processes [19, 20], and one may
expect that their importance will increase in the near future as GPU architec-
tures are especially suited to run CA-based models [13]. For these reasons,
it is important to have a full understanding of CA behaviour, and how it is
affected by design parameters such as the update rule, the synchronism, the
underlying topology, or the neighbourhood structure. For the sake of repro-
ducibility and objectivity, quantitative tools are especially useful because they
allow to express how the behaviour of a CA is affected by changes of its de-
sign parameters. Throughout the past two decades many measures have been
proposed to grasp the dynamical properties of CAs, such as the Langton pa-
rameter [17], Lyapunov exponents [5, 8, 21] entropies and dimensions [16]
and others [27]; another tool are mean-field approximations [10]. A com-
prehensive overview of approaches to the classification of CAs can be found
in [18].

Inspired by the established formalism in the case of smooth dynamical sys-
tems, the Lyapunov exponents of CAs have received considerable attention,
through two distinct viewpoints. The first one identifies Lyapunov exponents
of one-dimensional CAs with the rates by which the damage front moves to
the right and to the left starting from an initial perturbation, and has been
adopted by several authors [8, 11, 22], after their formalization by Shere-
shevsky [21]. According to this viewpoint, every one-dimensional CA and
every finite initial perturbation generate two exponents, one for each direc-
tion, whose equality implies that the rate of damage spread is symmetric. An
alternative viewpoint was put forward by Bagnoli et al. [5] and involves a
single Lyapunov exponent for every CA. This quantity is the exponential rate
by which defects accumulate if the CA is evolved for a long time from an
initial configuration on a finite set with a single defect [4, 5]. Consequently, it
fails to capture the spatial aspect of damage propagation. Therefore, the two
approaches to Lyapunov exponents seemingly have little in common.

Since Lyapunov exponents in the viewpoint of Bagnoli et al. [5] quan-
tify the accumulation of defects, they give insight into the intensity of the
defect propagation, whereas the constructs formalized by Shereshevsky [21]
indicate how fast the damage front widens as the CA evolves. An approach
which would integrate both aspects in a unifying concept would introduce a
new perspective on stability of CAs.

This paper proposes a unification of the two competing viewpoints through
the so-called Lyapunov profile, which may be understood informally as the
counterpart of the Lyapunov spectrum of smooth dynamical systems. These
profiles capture the spreading properties of a set of defects, as well as the
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exponential accumulation rates of defects within this set. In this paper we
present an intuitive and mostly informal introduction to Lyapunov profiles.
For a more detailed rigorous and computational approach, we refer the reader
to [3]. After introducing the rationale behind these profiles together with
their definition in Section 2, we will present a comprehensive study of the
Lyapunov profiles of elementary CAs (ECAs) in Section 3, and investigate to
what extent these can be rhymed with existing CA classifications.

2 LYAPUNOV PROFILES OF CELLULAR AUTOMATA

2.1 Rationale
The easiest way to conceptualize Lyapunov profiles is to start from the notion
of Lyapunov exponents of CAs proposed by Bagnoli et al. [5]. These authors
introduce the accumulation of defects, which we now informally describe (see
(2) for a formal definition). Any defect present at a site y at time t generates
a defect at a neighboring site x at time t+ 1 if flipping the CA state at time t
at y results in a different state at x than assigned by the CA dynamics at time
t+1. We emphasize that the defect dynamics interacts with the CA evolution
but does not affect it, so the values assigned by the CA are unchanged. A
site may contain any nonnegative number of defects, and each defect acts
independently of others. By default, we begin by a single defect at the origin
at time 0. Subsequently, we track the total number of defects as the Boolean
CA evolves, and the resulting Lyapunov exponent in the sense of Bagnoli et
al. [5] is the time-averaged exponential rate by which the number of defects
grows. More formally, we have:

λ = lim
t→∞

1

t
log

(
εt
ε0

)
, (1)

where εt denotes the total number of defects at the t-th step. We refer to [1]
for an algorithm to track εt, as it suffices for our purpose to point out the fact
that both the position and multiplicity of defects need to be recorded as the
CA evolves over time. Yet, it is clear from (1) that this information is lost
when computing the Lyapunov exponent in the sense of Bagnoli et al. [5].
This information can, however, be accessed by introducing the vector ∆t

whose i-th element is the number of defects in cell ci at a given step. In
this way, we track both the multiplicity and position of defects. It should
be mentioned at this point that Bagnoli et al. [5] refer to the quantity given
by (1) as the maximum Lyapunov exponent (MLE) of a CA. This terminology
is very ambiguous since it is used in the case of smooth dynamical systems
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to identify the largest exponent in the Lyapunov spectrum, whereas Bagnoli
et al. [5] define a single quantity, the sum of defects across all dimensions in
phase space.

By explicitly tracking the vector ∆t, we envision a CA consisting of n
cells as an n-dimensional system, where every cell of a one-dimensional array
makes up one dimension. Continuing along this line of reasoning, it becomes
obvious that tracking the vector ∆t allows us to assess how perturbations are
amplified along any direction in the phase space of a CA. More precisely, the
i-th element in this vector gives information on how fast defects propagate
along the i-th dimension of a CA’s phase space, i.e. in its i-th cell. Loosely
speaking, properly normalized, ∆t may be understood as the Lyapunov pro-
file of a CA for large t. In the remainder of this section, a more formal
definition will be given of this construct.

2.2 Formalizing Lyapunov profiles
Throughout the remainder of this paper we consider binary CAs on a 1-
dimensional integer lattice Z with state space {0, 1}. Assuming that the
neighborhoodN ⊂ Z is [−r, r], their dynamics is governed by a local update
function of 2 r+ 1 variables: φ : {0, 1}2 r+1 → {0, 1}. The neighborhood of
a point x ∈ Z is the translation Nx = x+N = [x− r, x+ r]. Globally, an
update function Φ : {0, 1}Z → {0, 1}Z governs the dynamics as follows:

Φ(η)(x) = φ(η(x− r), η(x− r+ 1), . . . , η(x), . . . , η(x+ r− 1), η(x+ r)) ,

where η ∈ {0, 1}Z, and x ∈ Z are arbitrary. A trajectory of the CA starting
from a fixed (deterministic or random) initial configuration ξ0 is denoted as
ξt(x) = ξ(x, t) for x ∈ Z and t ∈ Z+.

All the CAs covered in the experimental part of this paper (Section 3)
belong to the family of so-called ECAs. They are one-dimensional binary
CAs for which N = [−1, 1], i.e. the state at a given point x is determined
by the current state at x and its nearest two neighbors. Given the size of
their state space and neighborhood, one can list 256 different update functions
for ECAs. These are commonly referred to using the enumeration scheme
proposed in [25]. Some noteworthy examples are ECA rules 22, 90 and 150,
whose update functions are given by

Φ(η)(x) = η(x− 1) + η(x) + η(x+ 1) + η(x− 1) η(x) η(x+ 1) mod 2 ,

Φ(η)(x) = η(x− 1) + η(x+ 1) mod 2 ,

and
Φ(η)(x) = η(x− 1) + η(x) + η(x+ 1) mod 2 ,
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respectively. The last two rules are linear (they commute with addition mod-
ulo 2), while the first one is not.

The defect propagation properties of a CA do not change if we switch the
roles of 0’s and 1’s or if we make a mirror reflection of the rule. This leaves
us with 88 ECA equivalence classes, and we pick a representative one with
the smallest Wolfram number from each equivalence class to obtain the 88
minimal ECAs [23].

In order to arrive at a formal definition of the Lyapunov profile of a CA,
let us first of all introduce the defect configuration ∆t(x) = ∆(x, t) ∈ Z+

that describes the distribution of defects. The defect configuration at the time
step t+ 1 is given by:

∆t+1(x) =
∑
y∈Nx

changet(y, x)∆t(y) , (2)

where changet collects the information about effects of perturbations at
time t:

changet(y, x) =

{
1 , if Φ(ξ

(y)
t )(x) 6= ξt+1(x) ,

0 , else ,

with ξ(y)t the perturbed counterpart of ξt at y, which is obtained by flipping
the state at y in ξt. The initial defect configuration ∆0 is fixed and assumed
to consist of zeros everywhere, except at a single site.

Informally, (2) should be understood as follows. For every x ∈ Z, y ∈ Nx,
and every defect counted into ∆t(y), ∆t+1(x) is increased by 1 if applying
the CA rule on the configuration ξt that is perturbed at y results in perturbation
at x.

Definition 1. The Lyapunov profile of a binary, one-dimensional CA is the
function L : R→ {−∞} ∪ [0,∞) given for α ∈ R by

L(α) = lim
ε↓0

lim sup
t→∞

1

t
log

 ∑
x:|x/t−α|<ε

∆(x, t)

 . (3)

It can be verified easily that the limit in (3) exists as either a nonnegative
finite number or −∞, and that one may replace the sum with maximum.

To understand the above formula, fix a real number α and a small ε > 0.
As time t increases, the number of defects in the neighborhood [(α−ε)t, (α+

ε)t] around αt increases at some exponential rate, that is, this number is about
exp(L(α, ε)t). The rate L clearly depends on both α and ε; to remove the
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latter dependence, we send ε → 0, which corresponds to a very small linear
expansion of the interval around αt. We use lim sup so that the definition
applies to the cases when the limit in t fails to exist (even if we are not aware
of any such example). The limit in ε always exists due to monotonicity.

Given Definition 1, and drawing parallels with the established terminology
in works on smooth dynamical systems, we now define the maximal Lya-
punov exponent (MLE) as

λ = max
α

L(α). (4)

The space-time direction for which the maximum in (4) is achieved, is called
the MLE direction, and constitutes the direction with the fastest growing num-
ber of defects. This gives a more intuitive definition of the MLE than the one
given by Bagnoli et al. [5], though it can be verified empirically that our no-
tion of the MLE is close to the one in [5], if the initial state is the uniform
product measure.

The notion of Lyapunov profiles is closely related to the large deviations
theory [9], especially as it relates to the spatial accumulation of branching
random walks and related dynamics [6, 7, 28]. For additive rules such as
ECA rules 90 and 150, the connection is indeed very close. We present the
computation for ECA rule 90, which presents the simplest illustration of this
correspondence.

Assume the initial defect is at the origin. As every defect spreads onto
its two neighbors, the number of defects at x = αt is exactly the number of
nearest-neighbor paths from the initial defect to x. This number is 2t times
the probability that the simple random walk St, started at the origin, ends at
x. The large deviation theory [9] implies that, for α ∈ [−1, 1],

1

t
logP(St = αt) ∼ inf

y∈R

(
−yα+ log( 1

2 (ey + e−y))
)
,

as t → ∞. To explain the origin of this formula, we provide a computation
that gives the upper bound. For α > 0, and any y > 0,

P(St = αt) ≈ P(St ≥ αt) = P(exp(y(St − αt) ≥ 1)

≤ E(exp(y(St − yαt)) = e−yαt
(

1

2
ey +

1

2
e−y
)t
.

Now we take logarithms and divide by t, then optimize over y > 0, which
agrees with optimization over y ∈ R. After a short computation, we get:

L(α) = log 2− 1
2 (1 + α) log(1 + α)− 1

2 (1− α) log(1− α) .
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Note that this expression equals log 2 at α = 0. By a similar calculation, the
profile for ECA rule 150 equals

L(α) = log

(
1 + α0 +

1

α0

)
− α logα0, where α0 =

α+
√

4− 3α2

2(1− α)
.

So, the MLE of rule 150 is λ = log 3 and its corresponding MLE direction is
0.

For non-additive CAs, the random walks evolve in an environment deter-
mined by the CA trajectory. When the initial state is random, the Lyapunov
profile is analogous to the quenched large deviation rates [28]. However, in
our case the environment is highly correlated; as a result, there is no rigorous
theory to date and a computational approach is in many cases the only one
available.

3 LYAPUNOV PROFILES OF ELEMENTARY CELLULAR AUTO-
MATA

3.1 Experimental setup
In the remainder of this paper we will focus our attention on the 88 mini-
mal elementary CAs as defined in [23]. For each of them, the propagation
of defects emerging from a single defect was tracked for 5000 time steps in a
one-dimensional system consisting of 10001 cells, unless specified otherwise.
In this way, we mimicked a system of infinite size. All this was done for an
ensemble E = {eξ0 | e = 1, . . . , 50} of 50 different random initial configu-
rations in order to account for the effects of the initial configuration on the
defect propagation.

3.2 Defect shapes and density profiles
If one is only interested in the position of defects, one may confine the anal-
ysis to the so-called defect shape W . For that purpose, we introduce an aux-
iliary quantity δ(x, t), given by δ(x, t) = 1 if ∆(x, t) > 0 and δ(x, t) = 0

otherwise, for every integer point x and time t ≥ 0. We sometimes refer to
the process δt as the percolation dynamics, as it tracks how defects spread
through space. Using this notion, the defect shape W can now be defined as
the closed subset R obtained by the following limit in the Hausdorff sense:

W = lim
t→∞

1

t
{x : δ(t, x) = 1} (5)

provided the limit exists. If δt = ∅ for some t, then we let W = ∅. We
recall that as, the defect counts ∆(x, t) are integers, L(α) is either −∞ or
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nonnegative for every α. In fact, it is easy to show that

W = {α : L(α) ≥ 0} ,

if W exists.
To capture information on the density of defects at a given site, we also

introduce the defect density profile ρ = ρ(α) of a binary, one-dimensional
CA that gives the proportion of defect sites in the direction α ∈ R, that is, on
the rays x = αt:

ρ(α) = lim
t→∞

1

t
#{(x, t) : t ≥ 0, x = bαtc, δ(x, t) = 1}, (6)

provided that the limit exists.
It should be pointed out that the empirical Lyapunov profiles, defect shapes

and defect density profiles constitute approximations of the ones defined in
(3), (5) and (6), respectively, as the limit t→∞ in these equations is replaced
by the evaluation of the expression at some large t. Still, for the sake of clarity
and because the meaning will be clear from the context, we do not introduce
a dichotomous notation to distinguish between the empirical constructs and
the ‘true’ ones.

Figure 1 depicts the defect shapes and density profiles for ECA rules 22,
30, 106 and 150 that were obtained after 250 time steps for a system of 501
cells. Inspecting the defect shapes depicted in Figure 1, it is clear that these
can be asymmetric and contain gaps. The former indicates that the directions
of defect propagation are restricted and these restrictions are not symmetric,
while the latter shows that some regions in space-time might block the prop-
agation of defects. The defect density profiles shown at the right-hand side of
Figure 1 give a better understanding of the spatially heterogeneous nature of
defect spreading. Indeed, even within the regions of space-time where defects
can propagate, this propagation strongly depends on the direction. Especially
in the case of ECA rules 30 and 106, it is clear that the defect propagation
can intensify less or more abruptly when moving into the region where de-
fect propagation is possible towards the center of the defect cone. Moreover,
as illustrated by the defect density profile of ECA rule 22, defects may ‘die’
even inside the defect cone, leading to a non-trivial defect density profile.
The other rules in Figure 1 have a trivial density profile of 1 inside their de-
fect shapes (though convergence can be quite slow). The asymptotic rate of
spread of the damage front [8, 11, 22] for the ECA rule 22 has been estimated
by Grassberger [15] to be about 0.77 (the rates are the same in both direc-
tions as this rule is symmetric). Figure 1 suggests that the asymptotic rate of
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spread of defects for this rule is also around the same number and therefore
that the two might agree. More extensive computations, however, provide
considerable empirical evidence that the two are not asymptotically equal.

3.3 Statistics on Lyapunov profiles
Table 1 lists the following statistics for the for the 88 minimal ECAs: min-
imum (mine #W ), average (#W ) and maximum (mine #W ) cardinality
of the defect shape W , and the average (L), minimum (minL) and max-
imum (maxL) exponents in the empirical Lyapunov profile, together with
the average relative center of mass of the empirical Lyapunov profile (γ).
The values of the four latter statistics were obtained by computing them
separately from every of the Lyapunov profiles obtained for an ensemble
E = {eξ0 | e = 1, . . . , 50} of 50 different random initial configurations, af-
ter which these values were averaged over the members of the ensemble E.
The relative center of mass of the Lyapunov profile was computed as the sum
of the cell indices times the corresponding number of defects, divided by the
total number of defects times 5000.

Concerning the support of the defect cone, which is reflected by the min-
imum (mine #W ), average (#W ) and maximum (mine #W ) cardinality
of W , it is clear that the initial configuration plays an important role as
mine #W and maxe #W differ substantially for an important share of the
investigated ECA rules, such as ECA rules 18, 22, 25 and 26. It means that
some ECAs cannot evolve to their most stable state from certain initial con-
figurations, as pointed out already in [5]. Essentially, the empirical results
reported in Table 1 indicate that these rules are characterized by at least two
attractors, a stable one implying a zero support of the defect shape and an
unstable one giving rise to a non-zero support. Leaving aside the ECA rules
for which #W is always 0, irrespective of the initial configuration, reversible
ECAs (15 and 51) and essentially additive ECAs (60, 90, 105, 150, 170, 204)
are the only ones for which the defect dynamics is not affected by the initial
configuration. Either the initially introduced defect stays in the cell where it
was introduced as the ECA evolves, which is distinctive for reversible ECAs
and leads to #W = 1 and λ = 0, or defects do spread – not necessarily
symmetrically – in a way that is not affected by the initial configuration.

Listing the ECA rules for which the minimum, maximum and average
support over the ensemble of initial configuration lie close to one another,
i.e. ECA rules 30, 41, 45, 54, 56, 57, 60, 90, 105, 106, 110, 146 and 150, it
becomes clear that there is only a handful of rules for which the support of
the defect shape, and hence the width of the defect cone, does not strongly
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(a) Rule 22
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(c) Rule 30
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(d) Rule 30

(e) Rule 106
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(g) Rule 150
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FIGURE 1
Defect shapes (a, c, e, g) and density profiles (b, d, f, h) of ECA rules 22 (a, b), 30 (c,
d), 106 (e, f) and 150 (g, h) that were obtained after 250 time steps for a system of 501
cells.
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depend on the initial configuration. In light of Wolfram’s classification, this
list contains all Class 4 ECA rules, though the majority belong to Class 3,
and two of them (ECA rules 56 and 57) are Class 2. This indicates that the
Wolfram classification is not a good predictor for Lyapunov profiles.

Considering the exponents in the Lyapunov profiles, Table 1 confirms that
ECA rules 105 and 150 are the most unstable as their average MLEs are
1.1 ≈ log(3). Given the fact that the defect shape of these rules is fully
symmetric with respect to the initially perturbed cell (γ = 0), it also follows
that its corresponding MLE direction is 0, which confirms the analytical re-
sult presented in Section 2.2. Further, it can be observed that for the ECA
rules for which mine #W and maxe #W differ more than 10 %, so whose
defect propagation strongly depends on the initial configuration, and espe-
cially those whose maximum support does not span more than a few hundred
cells, L is lower than 0.2 (e.g. ECA rules 5, 14, 19 and 23). This indicates
that defect propagation is typically still very limited if such rules are evolved
from an initial condition that hinders them to reach their most stable state.
Yet, there are a few rules for which mine #W = 0 and maxe #W ≤ 30

(ECA rules 13, 28, 33, 72, 104, 156) that give rise to an average exponent
L that is larger or equal than 0.41 ≈ log( 3

2 ), which means that the number
of defects grows by at least about 50% at every time step even though the
defect shape spans only a very narrow region in space-time. Here, ECA rule
72 stands out with maxe #W = 3, L = 0.62 and λ = 0.69 ≈ log(2), so it
allows the number of defects almost to double if evolved from outside of the
basin of attraction of a stable state with no defects. Concerning now those
ECA rules involving a stable and unstable attractor for which the latter may
imply a defect shape with a support that spans more than half of the light cone
(ECA rules 6, 18, 22, 25, 26, 38, 122, 126, 134, 154), Table 1 indicates that
these ECA rules lead to an average exponent L that is at least 0.22. Notably,
the average exponent for some of these ECA rules (6, 25, 26, 38, 134, 154)
is lower than or equal to the average exponent reached by those rules whose
defect shape spans at most a few cells. This demonstrates that a wider defect
shape does not necessarily imply a more intense defect propagation.

Inspecting the values of the average relative center of mass of the Lya-
punov profiles in the right-most column of Table 1, it is clear that ECA rule
60 is the only one among the reversible and essentially additive ECA rules
(15, 51, 90, 105, 150, 170, 204) that gives rise to an asymmetric profile.
Apart from this, however, there seems to be no link between the symmetry
of the Lyapunov profile, on the one hand, and the defect shape’s support or
the magnitude of the exponents in the profile, on the other hand. This is also
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true for the four ECA rules in Wolfram’s Class 4, two of which give rise to a
profile that is skewed to the left (ECA rules 106 and 110), one to a profile that
is skewed to the right (ECA rule 41) and one to a symmetric profile (ECA
rule 54). Also in terms of any of the other statistics reported in Table 1 these
four ECA rules do not stand out. This again indicates that the Wolfram clas-
sification is not a good predictor of Lyapunov shapes as it is merely based on
the CA behavior in configuration space.

TABLE 1: Minimum (mine #W ), average (#W ) and maximum
(mine #W ) cardinality of W , and average (L), minimum (minL) and
maximum (maxL) empirical Lyapunov exponent, averaged over an en-
semble E = {eξ0 | e = 1, . . . , 50} of 50 different random initial con-
figurations, together with the average relative center of mass of the Lya-
punov profile (γ).

Rule mine #W #W maxe #W L minL maxL γ

0 0 0 0 – – – –
1 0 0.62 3 0.12 0.12 0.12 0
2 0 0.56 2 0 0 0 -1
3 0 0.78 2 0.11 0.11 0.11 0.5
4 0 0.8 2 0 0 0 0
5 0 0.64 2 0.07 0.07 0.07 0
6 0 4966.98 5584 0.41 0 0.55 -0.29
7 0 0.74 3 0.01 0.01 0.01 0.5
8 0 0 0 – – – –
9 0 90.52 241 0.02 0 0.03 0.97
10 0 0.76 2 0 0 0 -1
11 0 2.8 11 0 0 0 1
12 0 0.88 2 0 0 0 0
13 0 0.54 3 0.48 0.48 0.48 0
14 0 3.82 191 0.05 0 0.09 -0.92
15 1 1 1 0 0 0 1
18 0 3715.8 5035 0.5 0 0.69 0
19 0 0.7 2 0.05 0.05 0.05 0
22 0 6082.28 6490 0.72 0.37 0.87 0
23 0 0.86 2 0.04 0.04 0.04 0
24 0 0.8 3 0 0 0 1
25 0 4825.78 5416 0.41 0.02 0.52 -0.18

Continued on next page
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TABLE 1: (Continued)

Rule mine #W #W maxe #W L minL maxL γ

26 0 4381.48 6011 0.26 0 0.33 -0.45
27 0 2.44 9 0 0 0 0.5
28 1 3.94 13 0.44 0.44 0.44 0
29 1 2.58 6 0.06 0.06 0.06 0
30 6976 7059.06 7122 0.5 0 0.66 0.31
32 0 0 0 – – – –
33 1 9.54 30 0.41 0.36 0.43 0
34 0 0.88 2 0 0 0 -1
35 0 8.6 60 0 0 0.01 0.5
36 0 1.78 4 0 0 0 0
37 2 19.62 46 0.34 0.3 0.35 0
38 0 4155 5497 0.4 0 0.54 -0.41
40 0 0 0 – – – –
41 7864 7913.76 8017 0.63 0 0.86 0.02
42 0 0.9 2 0 0 0 -1
43 0 8.5 337 0.09 0 0.17 0.91
44 0 2.42 6 0.04 0.03 0.05 0
45 7327 7422.06 7501 0.56 0 0.72 0.21
46 0 3.42 16 0 0 0 -1
50 0 0.7 2 0.07 0.07 0.07 0
51 1 1 1 0 0 0 0
54 8239 8334.94 8447 0.54 0.13 0.74 0
56 285 419.92 526 0.09 0.04 0.1 0.87
57 7442 7496.66 7574 0.57 0.17 0.7 0
58 0 15.86 135 0.01 0 0.01 -0.99
60 5001 5001 5001 0.5 0 0.69 0.5
62 452 2479.36 2674 0.4 0.07 0.43 0.09
72 0 0.56 3 0.62 0.46 0.69 0
73 2 14.88 39 0.79 0.78 0.79 0
74 0 65.6 177 0.12 0.11 0.12 -0.82
76 0 1.16 2 0 0 0 0
77 0 0.7 2 0.1 0.1 0.1 0
78 0 1.66 6 0.18 0.15 0.23 0
90 5001 5001 5001 0.5 0 0.69 0
94 0 5.62 18 0.15 0.08 0.24 0

Continued on next page
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TABLE 1: (Continued)

Rule mine #W #W maxe #W L minL maxL γ

104 0 0.82 3 0.48 0.05 0.69 0
105 10001 10001 10001 0.8 0 1.1 0
106 3800 4359.6 4926 0.55 0 0.71 -0.28
108 1 3.42 9 0.2 0.11 0.24 0
110 7204 7437.08 7519 0.48 0.05 0.65 -0.26
122 0 8600.52 9832 0.46 0.03 0.65 0
126 0 8400.9 9841 0.5 0.04 0.71 -0.01
128 0 0 0 – – – –
130 0 1.1 5 0 0 0 -1
132 1 1.26 3 0 0 0 0
134 1 5548.6 5711 0.37 0 0.5 -0.23
136 0 0 0 – – – –
138 0 1.22 9 0 0 0 -1
140 0 0.94 2 0 0 0 0
142 0 3.8 190 0.09 0 0.16 -0.92
146 5002 5021.92 5044 0.5 0 0.69 0
150 10001 10001 10001 0.8 0 1.1 0
152 0 2.16 12 0 0 0 1
154 1 3303.28 5580 0.22 0 0.29 -0.65
156 1 3.86 7 0.58 0.56 0.59 0
160 0 0 0 – – – –
162 0 1.02 6 0 0 0 -1
164 1 2.86 10 0 0 0 0
168 0 0 0 – – – –
170 1 1 1 0 0 0 -1
172 0 2.14 17 0.07 0.07 0.07 0
178 0 0.7 2 0.1 0.1 0.1 0
184 1 2.42 26 0.01 0.01 0.01 0
200 0 0.78 3 0.15 0.15 0.15 0
204 1 1 1 0 0 0 0
232 0 0.86 2 0.04 0.04 0.04 0

Figure 2 visualizes the Lyapunov profiles of the 23 ECA rules (6, 18, 22,
25, 26, 30, 38, 41, 45, 54, 57, 60, 62, 90, 105, 106, 110, 122, 126, 134, 146,
150 and 154) whose defect shapes, conditioned on the defect growth, consist
of an interval of nonzero length. In agreement with the analytical result on
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the Lyapunov profile of ECA rule 150 presented in Section 2.2 and the statis-
tics listed in Table 1, the Lyapunov profile of this rule is positive everywhere
and reaches its maximum where the defect was initially introduced. Figure 2
demonstrates that the skewedness of ECA rule 106 to the left, as could al-
ready be inferred from its γ = −0.28 in Table 1, is so extreme that all of its
real-valued exponents lie to the left-hand side of the initially perturbed cell.
This implies that cells to the right of this cell remain unaffected, and hence
they evolve as they would in absence of any defect. A similar reasoning holds
for ECA rules 60 and 62, which give rise to a peculiar Lyapunov profile. ECA
rules 6, 25, 26, 30, , 38, 41, 45, 62, 100, 134 and 154 are also characterized
by a skewed Lyapunov profile, though the support of the defect shape now
extends to the left and right of the initially perturbed cell. The Lyapunov
profile of ECA rule 22 is symmetric, as could be expected on the basis of its
defect shape and density profile shown in Figure 1, but defects do not succeed
in propagating on average one cell per time step at either side of the initially
perturbed cell. More specifically, the average asymptotic rate of defect propa-
gation is about 0.74, as the right-most cell with a positive Lyapunov exponent
has index 3753 (cfr. Fig. 2), which is lower than the asymptotic rate of spread
of the damage front as reported by Grassberger [15].

When comparing the magnitudes of the exponents in the Lyapunov pro-
files depicted in Figure 2, and recalling that the Lyapunov profile of ECA rule
150 represents the upper bound on defect propagation in ECAs, it can be seen
that the defect propagation is the most intense in the case of symmetric Lya-
punov profiles. We also point out that ECA rule 106 has a particularly notable
defect dynamics, as already suggested by Figure 1. A closer inspection (see
Figure 2) reveals that its empirical Lyapunov profile converges very slowly,
and exhibits significant fluctuations; for example there are several local min-
ima where the propagation of defects is less intense.
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Figure 2: Lyapunov profiles after 5000 time steps for a system of 10001
cells of the 23 ECA rules whose defect shapes, conditioned on the defect
growth, consist of an interval of nonzero length.
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Figure 2: continued
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Figure 2: continued
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4 SUMMARY AND CONCLUSIONS

In this paper we introduced a tool by which the spatial variation of pertur-
bations of CA trajectories may be studied. Our approach is based on that of
Bagnoli et al. [5], with one crucial change in perspective: we consider the CA
evolution on the entire infinite lattice Z. The resulting defect dynamics starts
from a localized seed of a single defect, and subsequently propagates defects
which are able to perturb the CA trajectory. As time increases, the resulting
set of defects shows a considerable spatial variation, even at the exponential
level, and the resulting exponential rates on the space-time rays are gathered
into the Lyapunov profile. In particular, the maximum of this profile recovers
the MLE introduced by Bagnoli et al. [5], and its location defines the principal
direction of spread of defects. Finally, the defect shape — the set on which
the profile is finite — measures the extent of perturbation effects. The sites
that contain at least one defect may occupy only a proportion of the defect
shape, leading to a nontrivial defect density profile.

We conducted an extensive, mostly empirical, analysis of this object for
the ECA, for which the evolution is started from a random initial state gener-
ated by independent fair coin flips. We briefly summarize our main conclu-
sions below.

• The defect dynamics are the simplest for additive (and closely related)
CA, where they are independent of the initial state and Lyapunov pro-
files can be computed exactly using theory of large deviations. These
could be used as upper bounds for non-additive CA.

• For essentially non-additive rules, the defect dynamics depend on the
initial state. For a few rules, the Lyapunov profile (which is a limiting
object) is however independent of the initial state; this includes chaotic
rules such as 30 or 106. For most rules, the profile is dependent on the
initial state (i.e., is random).

• There are simple rules, such as 8, for which the defects always die out,
leading to an empty defect shape.

• For many other rules (e.g., rule 22), defects may still die out by chance
at the beginning. Assuming defect survival, the defect shape varies
widely across the rules, consisting sometimes of a single point (e.g.,
0.5 for rule 3), sometimes more than half of the light cone (e.g., rules 6
and 22).
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• Asymmetry in the CA rule gives rise to the dramatic asymmetry of its
Lyapunov profile; perhaps the best example is rule 106.
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