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If � = 1, then we have an instance of additive dynamics, as D(A [ B) = D(A) [D(B). If � > 1, this fails to be the case, and thus nucleation and interaction questionsbecome interesting ([GG2], [GG3]). Of even more basic importance are issues ofregularity of persistent growth, which we now introduce. Let D1(A) = [1i=0Di(A)be the �nal droplet. A set A � Z2 is said to generate persistent growth if Di+1(A) 6=Di(A) for all i. Moreover, A generates the plane if D1(A) = Z2. We call thedynamics supercritical if there exists a �nite set A that generates the plane. The �rstresult states that a set that generates the plane must do so in a very orderly fashion,namely, the iterates have a unique asymptotic shape. For a proof, see [W], or [GG1]and [GG2].Theorem 1. Let N and � be �xed and let I = B1(0; 1=2) be the 1�1 square centeredat the origin. There exists a set L � R2 such that if A is �nite and generates theplane then (Dn(A) + I)=n ! L. Furthermore, the asymptotic shape L is a boundedconvex polygon that can be explicitly computed given N and �.The easiest way to de�ne convergence in Theorem 1 is via Hausdor� metric.However, a slightly stronger notion is preferable here: if Sn � R2 are closed andS � R2 is closed and convex, then Sn ! S will mean that for every � > 0,(1� �)S � Sn � (1 + �)S for a large enough n.Theorem 1 holds for a very general class of neighborhoods and the limiting shapeis independent of the initial droplet so long as the initial droplet generates the plane.However, for a �xed neighborhood and threshold there could be di�erent nontriviallimiting shapes resulting from initial droplets that generate persistent growth butdo not generate the plane. Certain neighborhoods allow this possibility, as our nextexample shows.Example 1. SupposeN = f(x; y) 2 Z2 : jxj; jyj � 3 and either x = 0 or y = 0gand � = 3. If A = fz 2 Z2 : kzk1 � 1g thenDn(A) = f(x; y) 2 Z2 : jxj; jyj � n + 1 and either x = 0 or y = 0gand therefore (in Hausdor� metric only, since the limit set is not convex)Dn(A)=n! f(x; y) 2 R2 : jxj; jyj � 1 and either x = 0 or y = 0g:On the other hand, any �nite set that generates the plane has octagonal asymptoticshape with vertices (�1; 0), (0;�1) and (�3=4;�3=4) (to see how these are computed,consult [GG2]). 2



Deterministic threshold growth dynamics for which every set that generates persis-tent growth also generates the plane are called omnivorous dynamics. By Theorem 1,deterministic omnivorous dynamics have a unique nontrivial limiting shape (by \non-trivial" we mean not equal to f0g).The aim of this paper is to prove a shape theorem for a version of random thresholdgrowth dynamics. To describe the discrete time version, on which we will focus, letN = jN n f0gj be the number of true neighbors and �x N +1 probabilities p0; : : : ; pNsatisfying 0 = p0 = � � � = p��1 < p� � p�+1 � � � � � pN :The state of the dynamics at time t is a random set At � Z2. Once At is known,At+1 � At is determined as follows: if x =2 At, then, independently of other sites andother times, x 2 At+1 with probability pjAt\(x+N )j. The starting point will be somedeterministic initial droplet A0 � Z2.We should mention that all of the methods in this paper work for the continuoustime analogue (in which the non-zero rates �� � ��+1 � � � � � �N are given insteadof the probabilities), with only trivial modi�cations. Other generalizations are alsopossible, with more general monotone rules and waiting times (see [CD], [K]), butthese would lead us astray from the combinatorial issues that are the central point ofthis paper.At �rst glance, the dynamics described above do not di�er appreciably from thosein [S] and [CD]. Indeed, if � = 1, then the standard subadditive arguments work: themain observation is that, for any time t0, one can get a lower bound on the originaloccupied set at any time t � t0 by picking an occupied point at time t0, throwing theother occupied points away, and re{starting the dynamics. If � > 1 this argumentneeds a substantial extra step, as the dynamics can only be successfully re{startedfrom a fairly large set. As is the case in Example 1, it is possible that an x 2 At isnowhere near, say, a large fully occupied square; this renders the usual shape theorem(of [S] and [CD]) false.On the other hand, whatever A0 is, the �nal droplet in the random growth is thesame as in the deterministic one: A1 = [t�0At = D1(A0). If A0 generates the plane,then At eventually occupies every point as well, eliminating cases like the troublesomeExample 1. Must a unique asymptotic shape exist under this assumption? We suspectthat the answer is yes, although we are unable to prove this in full generality. Ourmain result is valid only for box neighborhoods N� = fz 2 Z2 : jjzjj1 � �g. Thesedynamics are supercritical i� � 2 [1; �(2� + 1)] ([GG2]).Theorem 2. Assume that N = N� for some � � 1 and that the dynamics aresupercritical. Then there exists a convex compact neighborhood of the origin S (that3



depends on N , � and the probabilities pi) such that(At + I)=t! S as t!1almost surely for any A0 that generates the plane.Theorem 2 only provides existence of the limiting shape; it has been long knownthat properties of this set are not easy to discern. Here are some questions one mightask. Does L have a di�erentiable boundary? Is L strictly convex? (This question wasstudied for the additive case in [DL].) Could L ever be an isotropic disc? Some of theseissues will be addressed in a forthcoming paper ([BGG]). Another interesting classof questions concerns the speed of convergence to the limiting shape and the relatedroughness of the boundary of At. This issue has generated much interest in the caseof �rst{passage percolation, a related additive dynamics. Kesten ([K]) and Alexander([A]) have shown that, with probability 1, (t�Cpt log t)S � At+I � (t+Cpt log t)Sfor a large enough t. (Here, and throughout the paper, C is a \generic constant,"whose value is of no importance.) It is in fact not clear if pt could be replaced bya lower power, for experimental studies suggest that At + I di�ers by t1=3 from adeterministic set. To get a 
avor of physical arguments in favor of such power law,the reader can consult [KS], while [NP] has a rigorous lower bound on described
uctuations. It seems to be a challenge to adapt these methods from [K, A, NP] tothe case when � > 1, although it is intuitively clear that increased � should diminishboundary 
uctuations, as tentacles are less likely to form. Further evidence for thisis provided in Figure 1, which shows simulations of discrete{time threshold growthdynamics with range 1 box neighborhood, � = 1; 2; 3 and p� = � � � = p8 = 0:1 at thetime t when the radius of At reaches about 100. In all cases, A0 is a 3� 3 square.

Figure 1. Range 1 dynamics with thresholds (from left to right) 1, 2, and 3.We now proceed to discuss the main ideas in the proof of Theorem 2. As alreadypointed out, it is necessary to show that, with high probability, every site in At has alarge fully occupied set nearby. It turns out that this property holds deterministically4



in box neighborhood cases.Theorem 3. If N = N�, x 2 At and B1(x; 1000�3(log � + 1)) \ A0 = ; then thereexists a set G � At \B1(x; 1000�3(log �+ 1)) that generates the plane.Of course, the 1000�3(log �+1) term should be viewed as constant in t, so a set thatgenerates the plane is indeed very near x. It remains an open problem to estimatethe smallest necessary size R(�; �) of this term, but it is illustrative to check thatR(1; 2) = 1 and R(1; 3) = 2. The methods used to prove Theorem 3 were �rst usedin [B] to proveTheorem 4. Deterministic growth dynamics are omnivorous for box neighborhoods.This connection between Theorem 3 and Theorem 4 exempli�es how understandingdeterministic dynamics can lead to progress in studying their random perturbations.The di�culty in generalizing either of these Theorems (and therefore Theorem 2) tomore general neighborhoods lies in understanding the sets that generate the planefor non{box neighborhoods. A grasp on such sets thorough enough to prove eitherTheorem 3 or Theorem 4 would likely su�ce to prove both. This impression issupported by our next result. We say that the threshold growth dynamics satisfy thedouble threshold condition if all sets G � N with jGj � 2� generate the plane.Theorem 5. Assume that �N = N and N � N�. If the dynamics satisfy the doublethreshold condition, then the following hold:1. Deterministic threshold growth dynamics are omnivorous.2. If x 2 At and B1(x; 150�3(log � + 1)) \ A0 = ; then there exists a set G �At \ B1(x; 150�3(log �+ 1)) that generates the plane.Part 1 of Theorem 5 is given in Section 2 of [B], while Part 2 will be proven below.As a consequence of Theorem 5, we have the following random shape result.Theorem 6. Assume that �N = N and the double threshold condition holds. Thenthere exists a convex compact neighborhood of the origin S such that(At + I)=t! S as t!1almost surely for any A0 that generates the plane.The rest of this paper is organized as follows. Section 2 addresses the validityof the double threshold condition for a general class of neighborhoods. The proofof Theorem 3 is divided into Sections 3 and 4. This division is necessary becauseproperties of sets that generate the plane di�er for small and large �. For N = N�and � � �2 the double threshold condition is satis�ed ([B]) and Theorem 3 follows5



from Part 2 of Theorem 5, the proof of which is given in Section 3. On the otherhand, for �2 < � � �(2� + 1) the double threshold condition does not necessarilyhold. In this case the proof of Theorem 3 uses much more machinery from [B] andis given in Section 4. We note that it is not at all clear how to generalize this `largethreshold' proof to other neighborhoods; the special machinery from [B] is speci�cto box neighborhoods and it is not clear what the corresponding general machinerywould be (or even if such machinery exists). Finally, in Section 5 we show howTheorems 2 and 6 follow from Theorems 3 and 5, respectively.2 The Double Threshold ConditionTheorems 5 and 6 lead to the obvious question: when does the double thresholdcondition hold? For example, one can check by hand that the double thresholdcondition is always satis�ed for range 1 box neighborhoods (that is, for � = 1; 2; 3),and is satis�ed for range 2 box neighborhoods when � � 8 (for � = 9 the neighborhoodwithout the four corner points does not grow, while for � = 10 the full neighborhooddoes not grow after the �rst time step). We now give a simple su�cient condition,which is far from optimal, but says that the double threshold condition holds whenN is well behaved and � is less than a constant multiple of jN j. We assume thatN = conv(N ) \ Z2, where conv(N ) is the Euclidean convex hull of N and that Nis invariant with respect to transposition of the two coordinates and switching signof either of them. Let � be the largest integer such that (�; 0) 2 N and � be thelargest integer such that (�; �) 2 N . In other words, � and � are chosen so that N� isthe smallest box neighborhood containing N and N� is the largest box neighborhoodcontained in N .Theorem 7. If � � �2=2 then the double threshold condition holds.We conjecture that if � � (jN j� 4�� 1)=4 (this is the number of elements of N inthe �rst quadrant that do not lie on either axis) then the double threshold conditionholds. This conjecture holds in the box neighborhood case: a version of the argumentbelow tailored speci�cally to the box neighborhood N� ([B]) shows that in this casethe double threshold condition holds when � � �2. On the other hand, a computercomputation (along the lines of [GG3]) shows that in the box neighborhood case N�does not grow if � � 1:7�2 for � su�ciently large, demonstrating that the doublethreshold condition fails to hold for a wide range of supercritical dynamics, that is,at least when � is large and 1:7�2 � � � �(2� + 1).An alternative to the argument given below shows that the double threshold con-dition holds when � is su�ciently large and � < ��2=16. In some cases this bound isbetter than the one given by Theorem 7. The alternative argument is continuous in6



nature (i.e. cardinalities of subsets of the lattice are given as areas with appropriateerror terms), and is omitted for the sake of brevity.Finally we note that for general neighborhoods the double threshold condition isnot monotone in � (although we suspect that it is for the neighborhoods consideredabove). Consider the neighborhood N = N� [ f(�(2�+ 1);�(2�+ 1))g. The doublethreshold condition does not hold when � = 2 as D1(A) = D(A) for A = f(�(2� +1);�(2�+ 1))g. On the other hand, the arguments given below can be used to showthat the double threshold condition holds for 4(�+ 1) � � � �2=2.Proof of Theorem 7. Let G � N with jGj � 2�. Clearly, if Dn(G) contains a � � �square for some n then G generates the plane. We show that such a square emergesby showing that, as n increases, a concentration of Dn(G) develops around the origin;in particular, after noting that the origin is in D(G), we show that, for z = (x; y) 2B1(0; b�=2c)nf0g,jxj 6= jyj and x 6= 0 and y 6= 0) z or � z 2 D2kzk1�1(G) (1)jxj = jyj or x = 0; or y = 0) z or � z 2 D2kzk1(G): (2)Since B1(0; b�=2c) � z +N for all z 2 B1(0; b�=2c), it then follows thatB1(0; b�=2c) � D2b�=2c+1(G)and G generates the plane.Consider z = (x; y) 2 B1(0; b�=2c). Our main observation is thatb := jNn ((z +N ) [ (�z +N ))j � 2(x2 � jxj � jyj+ y2): (3)Suppose (3) holds, and assume without loss of generality that 0 � y � x. We prove(1) and (2) by induction on kzk1; for �xed kzk1 we �rst prove (1) and then use (1)to prove (2) (note that (1) is vacuous for kzk1 = 1). If 0 < y < x then it followsfrom our inductive assumption thata : = ��D2x�2(G) \ ((z +N ) \ (�z +N ))��� jD2x�2(G) \B1(0; x� 1)j� djB1(0; x� 1)j=2e= 2x2 � 2x+ 1:It then follows that the larger of j(z +N )\D2x�2(G)j and j(�z +N )\D2x�2(G)j isat least 12 �jD2x�2(G) \ Nj � a� b�+ a � 12 jGj+ a2 � b2 � � � 12 :7



Thus, either z or �z is in D2x�1(G). If y = x or y = 0 then the inductive assumptiongivesa := ��D2x�1(G) \ ((z +N ) \ (�z +N ))�� � �12 �(2x+ 1)2 � 8�� = 2x2 + 2x� 3;which implies that the larger of j(z +N ) \ D2x�1(G)j and j(�z +N ) \ D2x�1(G)j isat least � � 1=2, and it follows that either z or �z is in D2x(G).It remains to prove (3). Assume without loss of generality that 0 � y � x. Forv = (r; s) 2 Z2, let Ov be the octagon (or diamond or square) in Z2 with cornersf(�r;�s); (�s;�r)g. It follows from the symmetry and convexity of N that v 2 Nimplies Ov � N .Let B be the part of Nn((z +N ) [ (�z +N )) on or above the x{axis.Claim 8. (r; s) 2 B ) s > b�=2c.Proof. Consider v := (r; s) 2 N . If �� � r � � and 0 � s � b�=2c then eitherv + z 2 B1(0; �) � N or v � z 2 B1(0; �) � N . If jrj > � and 0 � s � b�=2c theneither v + z 2 Ov � N or v � z 2 Ov � N .Claim 9. z1 = (x1; y1); z2 = (x2; y2) 2 B ) jx1 � x2j < x.Proof. Assume for the sake of contradiction that x1+x � x2. We consider two cases.If z1+z lies below the line through z1 and z2 then consider the triangle T with verticesz1, z2 and (x1 + x; 0). By the convexity of N , T \ Z2 � N . Thus z1 + z 2 N andz1 2 �z+N , which is a contradiction. On the other hand, if z1+z lies above the linethrough z1 and z2 then z2�z lies below this line. Furthermore, the second coordinateof z2 � z is positive by Claim 8. If T is now the triangle with vertices z1, z2 and(x2 � x; 0), then z2 � z 2 T \ Z2 � N and so z2 2 z +N , a contradiction.If B is nonempty then let u = (�p; q) be an element of B having the largest secondcomponent (i.e. q = maxfs : 9(r; s) 2 Bg). We can assume p � 0 as (0; �) 62 �z +N(this follows from the assumptionB 6= ;) and (0; �) 2 z+N implies thatN intersectedwith the �rst quadrant is contained in z + N (this follows from the symmetry andconvexity of N ).Claim 10. If q < � then jBj � xy.Proof. Suppose q < �. If v 2 B and v + e2 2 N then, by Claim 8 and the convexityand symmetry of N , v + e2 2 B. Therefore, (r; s) 2 B implies r < ��.Now, suppose there exists v := (r; s) 2 B with s � q � y. It follows from Claim 9that �p < r + x < �� + b�=2c < 0. Thus, v + z is contained in the rectangle withcorners at u and the origin, which is contained in N . This is a contradiction; a point(r; s) 2 B must have r > q � y. By Claim 9, then, jBj � xy.8



We can therefore assume q � �. We now divide B into two parts. Let B0 =f(r; s) 2 B : s > q � yg and B00 = BnB0. It follows from Claim 9 thatjB0j � xy:To bound jB00j we note that it follows from Claim 9 that B00 lies between �z+N andz + N . Thus, (r; s) 2 B00 is contained in the region bounded by the line s = q � y,z + Ou and �z + Ou. We now show that neither the `vertical part' of the octagonz +Ou nor the `vertical part' of �z +Ou intersects the boundary of this region.Claim 11. (r; s) 2 B00 ) s > p+ yProof. We divide the argument into two cases. If s < p � y then r + x > q whiler � x < �q. This implies q � x < x � q and x > q � �, which is a contradiction.If p � y � s � p + y then r � x < �q and r + x > p + q � s � y. This then givesx�q > q�x+p�s�y, which in turn gives x+y > q � �, again a contradiction.We can thus conclude that all sites (r; s) 2 B00 are contained in the triangular regiongiven by s � q � y;r + s > (p+ q)� (x + y)and r � s < (�p� q) + (x� y):Therefore, B00 = ; if x � y + p andjB00j � (x� y � p)2 � (x� y)2otherwise. This establishes (3) and thus concludes the proof of Theorem 7.3 A Weight Function ArgumentWe prove both Theorem 3 and Part 2 of Theorem 5 by applying a weight functionargument to the growth of the droplet around x (for other examples of weight functionarguments in combinatorics see [BCG, pages 715-717],[ES]). The weight function wenow de�ne was introduced in [B] for the proof of Theorem 4. Let Z0 � Z1 � : : : � Z2be an arbitrary growing droplet (not necessarily given by any version of thresholdgrowth). Our weight function considers a point z in the lattice `heavy' or in a `high9



energy state' if the neighborhood of z has a large intersection with the droplet but zis not yet in the droplet. To be precise, we setwt(z) = ( j(z +N ) \ Ztj z 62 Zt0 z 2 Zt: (4)We will observe the evolution over time of the total weight of some carefully chosenset X; that is, we will consider the functionWt =Wt(X) :=Xz2X wt(z) (5)where X � Z2 will be determined.Now, for each z 2 ZtnZt�1 there are two possible contributions to the change inthe total wieght (i.e. Wt�Wt�1) when z joins the droplet: the weight of z itself goesto zero while the weight of each element of (z +N )nZt increases by one. Thus, if�z := �1X(z)j(z +N ) \ Zt�1j+ j(z +N ) \ (XnZt)j; (6)where 1X is the characteristic function of X, then we haveWt =Wt�1 + Xz2ZtnZt�1 �z: (7)In words �z is the change in the total weight, or energy, that is caused by z joining thedroplet. The central point in the proofs that follow is that when a droplet generatedby random threshold growth exhibits continuing growth �z is often (or on average)nonnegative. In other words, if every point (or the average point) causes a loss ofenergy then growth will eventually stop. The combinatorial consequence of this factis that the droplet eventually becomes dense around most elements of the droplet.This density property can then be used to show that a subset of the droplet thatgenerates the plane lies near all elements of the droplet.Proof of Part 2 of Theorem 5. Let R = R(�) = 150�3(log � + 1). We are assumingthat N = �N , N � N� and the double threshold condition holds. We further assumex 2 An and B1(x;R) \ A0 = ;; in words, x 2 Z2 joins the droplet at time n (i.e.n = n(x;A0) is the hitting time of x) and is far from the initial seed. Given theseassumptions, we need only �ndz 2 B1(x;R� �) such that j(z +N ) \ Anj � 2�: (8)We use the weight function given in (4) and (5) where Z0 � Z1 � : : : is simply takento be the droplet generated by random threshold growth dynamics, A0 � A1 � : : :.The set over which we consider the total weight (the set X in equation (5)) isXr := fz 2 An : kz � xk1 � rg10



where the radius r is to be determined but will satisfy r � R � �. Since we areassuming A0 \B1(x;R) = ; we have W0 = 0: (9)Furthermore, Wn = 0 (10)because Xr � An (i.e. wn(z) = 0 for all z 2 Xr).We begin by analyzing �z for z 2 AtnAt�1 where 1 � t � n. First note that onlythose elements of AtnAt�1 in or near Xr in
uence the total weight when they join thedroplet. To be precise, lettingBr := fz 2 An : r < kz � xk1 � r + �git follows from (6) that z 62 Xr [ Br implies �z = 0. It also follows from (6) that forz 2 Br �z � j(z +N ) \Xrj � �(2�+ 1) (11)and for z 2 Xr �z � �j(z +N ) \ At�1j+ j(z +N ) \ (AnnAt)j� �� + j(z +N ) \ (AnnAt)j:So, if �z � 0 for z 2 Xr then j(z +N ) \ (AnnAt)j � �and j(z +N ) \ Anj = j(z +N ) \ At�1j+ j(z +N ) \ (AtnAt�1)j+ j(z +N ) \ (AnnAt)j� j(z +N ) \ At�1j+ j(z +N ) \ (AnnAt)j� 2�:Thus, if there exists z 2 Xr such that �z � 0 then we have (8) and we are done.Now, we consider the evolution of Wt as t goes from 0 to n. It follows from (7)that W0 + Xz2Br �z + Xz2Xr�z =Wn:By (9) and (10) this implies Xz2Br�z = �Xz2Xr�z:11



Now, if �z � �1 for all z 2 Xr, then by (11) we have�(2� + 1)jBrj � jXrj: (12)In other words, if (12) does not hold then there exists z 2 Xr such that �z � 0 whichimplies (8) and the proof is complete.Assume for the sake of contradiction that (12) holds for 0 < r < R � �. Weconsider the sequence of radii r0; r1; : : : where ri = �i. Clearly,jXrij = jXri�1 j+ jBri�1 jand jXr0j = 1:Since (12) holds for all ri we havejXrij � �1 + 1�(2� + 1)� jXri�1 j� �1 + 1�(2� + 1)�i jXr0j� exp� i2�(2�+ 1)� :But, we also have the obvious bound jXrij � (2ri + 1)2 = (2�i + 1)2. This leaves uswith (2�i+ 1)2 � exp� i2�(2�+ 1)�which is clearly a contradiction for i � 150�2(log � + 1)� 1.4 Proof of Theorem 3Throughout this section we assume our neighborhood is N�, our threshold satis�es�2 < � � �(2�+1), x 2 An andB1(x;R)\A0 = ; where R = R(�) = 1000�3(log �+1).We are looking for G � B1(x;R)\An that generates the plane. We argue indirectly;we assume no such G exists (i.e. we assume B1(x;R) \ An does not generate theplane). This assumption implies a strong condition on the structure of An near x. Weuse this structural condition and the weight function given in (4) and (5) to arrive ata contradiction.We begin with some preliminary de�nitions and results taken from [B]. For z 2 Z2let Sz be the � � � square whose lower left hand corner is z: Sz = fz + ie1 + je2 :0 � i; j < �g (here e1 = (1; 0) and e2 = (0; 1)). For an arbitrary A � Z2 let12



V = fSz : Sz � Ag. We form a graph G on vertex set V by joining vertices Sz andSy with an edge if and only if jSz \ Syj = �(� � 1). In other words, Sz and Sy arejoined by an edge if z 2 fy � e1; y � e2g. For each U � V that de�nes a maximalconnected component of G, the set B := [Sz2U Szis called a jagged block of A.Note that the de�nition of jagged blocks given here di�ers from the de�nition givenin [B]. In [B] jagged blocks are de�ned only for A = D1(A) for some �nite set A {a notion that is of no use in the present context. This di�erence in de�nitions yieldsan important distinction: the jagged blocks de�ned in [B] always satisfydxy = kx� yk1; (13)where, for vertices Sx and Sy in the graph de�ned above, dxy is the length of a shortestpath from Sx to Sy in G. A jagged block B as de�ned here may not satisfy (13), butif it does not satisfy (13), then D(B) 6= B (the proof of this fact is the same as theproof of equation (4) in [B]). In applying results about jagged blocks from [B], we cantherefore assume that the jagged blocks in question satisfy (13) ; otherwise, D(B) 6= Band the desired property is either established immediately or upon repeated iterationof the growth rule.A large part of the proof of Theorem 4 given in [B] is in showing that deterministicthreshold growth dynamics cannot build a `large' jagged block without simultaneouslybuilding something that generates the plane. The same is true for random thresholdgrowth dynamics, and this is the central point of the argument in this section. This isnot to say that the jagged blocks we consider generate the plane; in fact, they usuallydo not.We now make precise the notion of a `large' jagged block. Let� = max�j�2 + 1k ;� �2�+ 1�� :For an arbitrary z 2 Z2 letCz = B1(z; �)nfz � �e1 � �e2g:This is a (2� + 1)� (2�+ 1) square with its corners removed. We say that a jaggedblock B has a center CB if there exists z such that CB := Cz � B. Think of a jaggedblock as being `large' if it has a center.Now we state some facts concerning jagged blocks. For �nite A � Z2 the diameterof A, denoted diam(A), is given by diam(A) = maxfkz � yk1 : z; y 2 Ag. Fornonempty A;A0 � Z2 the distance between A and A0 is de�ned to be d(A;A0) =minfkz � yk1 : z 2 A; y 2 A0g. 13



Lemma 12. If B is a jagged block with diam(B) > 2�3 then B generates the plane.The authors suspect that the bound given in Lemma 12 (which follows from Lemma 4in [B]) is not the best possible, as results in [GG3] suggest that any jagged block withdiameter larger than C�2 generates the plane. However, the bound given in Lemma 12su�ces for the argument we give here.Lemma 13. Suppose A0 � A1 � � � � � An � Z2 is generated via the random thresh-old growth rule. If B is a jagged block of An that both has a center and satis�esd(B; A0) > � then there exists z 2 D(An)nAn such that d(fzg;B) � �.Lemma 13 follows from the Low Density Lemma in [B] and is the central fact concern-ing jagged blocks. Intuitively, the site z in Lemma 13 is found near the �rst elementof B to join the droplet. It follows from Lemmas 12 and 13 that if B is a jagged blockof An with center such that d(B; A0) > 2�3 then A1 = Z2 (by Lemma 13, B growsuntil it is a distance less than � from A0. Lemma 12 then implies that this largejagged block generates the plane).In the course of the argument we make use of the following function. Let Abe an arbitrary subset of Z2 and H = Z2nA (the set of holes relative to A). LetH = fh1; h2; : : : g be an arbitrary ordering of the holes. We de�ne 'A : A! H to bethe map by which z 2 A is mapped to the nearest hole in `1 distance where the �rsttie breaker is `1 distance and the second tie breaker is the ordering on H.Lemma 14. Let h 2 H where H is the set of holes relative to some A � Z2. Ifj(h+N ) \Aj < � and '�1A (h) � Ch then either A \B1(h; 2�) generates the plane orXz2'�1A (h) j(z +N ) \ Aj � j'�1A (h)j2�:Lemma 14, which follows from the Local Averaging Claim in [B], provides a linkbetween our knowledge concerning jagged blocks and the weight function we use inthe proof.With these preliminary de�nitions and results in hand we can discuss the `struc-tural implications' of our initial assumptions. We construct a sequence that containsinformation about both the random droplet's approach to x and the properties thisapproach to x deterministically has. LetCi = 8<:Ai \ B1(x;R) 0 � i � nD(Ci�1) \B1(x;R) n < i � mwhere m is the `�nal time' in the sense that D(Cm) \ B1(x;R) = Cm. Since anyset of eligible points (i.e. points whose neighborhoods contain at least a thresholdnumber of already occupied points) can join the droplet at each time step in random14



threshold growth, we can think of C0; C1; : : : ; Cm as being generated by the randomthreshold growth rule if we think of adjoining the set B1(x;R+�)nB1(x;R) to eachCi.Note that if Cm = B1(x;R) then, by Lemma 12, G := An \ B1(x;R) generatesthe plane. Since this contradicts our initial assumption, Cm 6= B1(x;R).Consider an arbitrary jagged block B of Cm with center. Suppose B � B1(x;R��). Since the `1 distance between B and our `adjoined initial droplet' is greater than� we can apply Lemma 13. Thus, there exists z 2 Z2 such that z 2 D(Cm)nCm andz 2 B1(x;R). This contradicts Cm = D(Cm) \ B1(x;R). We have shownB is a jagged block of Cmwith center) B 6� B1(x;R � �):Furthermore, Lemma 12 implies that the diameter of B is less than 2�3. Thus,B is a jagged block of Cm with center) B \B1(x;R� 3�3) = ;:Since, for any z 2 Z2, Cz itself is a jagged block with center, we now havez 2 B1(x;R � 3�3)) Cz 6� Cm: (14)This fact is the `structural implication' of the assumption that no G � Cm \B1(x;R) generates the plane mentioned in the �rst paragraph of this section. Wenow forget about jagged blocks and use (14) and the weight function given in (4)and (5) to achieve a contradiction. In this application of (4) and (5) the sequenceZ1; Z2; : : : is taken to be C0 � C1 � : : : � Cm � Cm � : : :, and the set over which weconsider the total weight (the set X in (5)) isXr := B1(x; r) \ Cmwhere r < R� 3�3 is to be determined.What happens to Wt as t goes from 0 to m? We clearly haveW0 = Wm = 0 (15)For z in Br := (B1(x; r + �)nB1(x; r)) \ Cm;�z � �(2�+ 1). For z 62 Xr [Br, �z = 0. These facts together with (15) giveXz2Xr�z � �(2�+ 1)�jBrj: (16)We now analyze �z for z 2 Xr. This analysis di�ers from that of Section 3.Instead of considering �z for each z 2 Xr individually, we consider sums of �z's oversubsets of Xr. Before doing so we note that for z 2 Xr \ (CtnCt�1)�z � �j(z +N ) \ Ct�1j+ j(z +N ) \ (CmnCt)j15



Thusj(z +N ) \ Cmj = j(z +N ) \ Ct�1j+ j(z +N ) \ (CtnCt�1)j+ j(z +N ) \ (CmnCt)j� j(z +N ) \ Ct�1j+ 1 + j(z +N ) \ Ct�1j+�z� 2� + 1 +�zand �z � j(z +N ) \ Cmj � (2� + 1): (17)Inequalities (16) and (17) yieldXz2Xr j(z +N ) \ Cmj � (2� + 1)jXrj � �(2� + 1)�jBrj: (18)We use the function 'Cm to partition Xr into subsets. In particular, we divideXr into sets of the form '�1Cm(h) where '�1Cm(h) � B1(x; r). Since, for an arbitraryz 2 Xr, '�1Cm('Cm(z)) is not necessarily contained inXr, this division does not accountfor all of Xr. Therefore, we need a set of `leftovers' to complete the partition. LetHr = fh 2 CmnZ2 : '�1Cm(h) � Xrg:and B0r = fz 2 Xr : 'Cm(z) =2 Hrg(B0r is the set of `leftovers'). We clearly haveXz2Xr j(z +N ) \ Cmj = Xh2Hr Xz2'�1Cm (h) j(z +N ) \ Cmj+ Xz2B0r j(z +N ) \ Cmj: (19)Consider z 2 B1(x;R � 3�3). It follows from (14) that'Cm(z) 2 Cz: (20)By symmetry, this gives '�1Cm(h) � Chfor all h 2 B1(x;R� 3�3)nCm. So we can apply Lemma 14 to '�1Cm(h) for all h 2 Hr.When we do so (19) becomesXz2Xr j(z +N ) \ Cmj � Xh2Hr 2�j'�1Cm(h)j+ Xz2B0r j(z +N ) \ Cmj:It also follows from (20) thatB0r � B00r := Cm \ (B1(x; r)nB1(x; r � 2�)):16



For z 2 B0r we use the trivial bound j(z +N ) \ Cmj � jN j � 9�2. This givesXz2Xr j(z +N ) \ Cmj � Xh2Hr 2�j'�1Cm(h)j+ 9�2jB0rj� 2�jXrj+ 9�2jB00r j: (21)From (21) and (18) we get2�jXrj+ 9�2jB00r j � (2� + 1)jXrj � �3�2jBrjwhich simpli�es to jXrj � 9�2(jBrj+ jB00r j): (22)To �nish the proof we consider the sequence of radii r0; r1; : : : where ri = �i.Clearly, jXr0j = 1and jXr3ij = jXr3(i�1) j+ jBr3i�1 j+ jB00r3i�1 j:It follows from (22) thatjXr3(i�1) j � jXr3i�1j � 9�2(jBr3i�1 j+ jB00r3i�1 j):Thus jXr3ij � jXr3(i�1)j�1 + 19�2�� jXr0j�1 + 19�2�i> exp� i18�2� :But, we also have the trivialjXr3i j � jB1(x; r3i)j = (2r3i + 1)2 = (6�i+ 1)2:This leaves us with (6�i+ 1)2 � exp� i18�2�which is a contradiction for i � 330�2(log �+ 1).
17



5 Convergence to the asymptotic shapeWe prove only Theorem 2 as Theorem 6 is proved in exactly the same way (exceptthat Theorem 5 is used in place of Theorem 3).As usual, we start by introducing a coupling of the random dynamics startedfrom all initial sets. This will be done by choosing independent random vectors(Y x;t0 ; : : : ; Y x;tN ), x 2 Z2, t = 0; 1; : : : , such that Y x;t0 � � � � � Y x;tN and P (Y x;tk = 1) =pk = 1� P (Y x;tk = 0). We will drop the superscripts when we are only interested inthe distributions, e.g., Y x;tk = Yk. Then we can de�ne simplyAt+1 = At [ fx 2 Z2 : Y x;tjAt\(x+N )j = 1g:Note that this coupling is monotone: enlargement of the initial set enlarges the grow-ing droplet at all times.Proof of Theorem 2. We will shorten p = p� and let � stand for a generic geometricrandom variable with parameter p (that is, P (� = k) = p(1� p)k�1 for k = 1; 2; : : : ).Fix an r large enough so that B1(0; r) generates the plane. We will assume thatA0 = B1(0; r). This entails no loss of generality, as the following simple argumentdemonstrates. Let A0t be the random threshold growth starting from an arbitrary setA0 that generates the plane. Then there exists a (random) �nite time T0 such thatA0 � A0T0 and A00 � AT0 . HenceAt�T0 � A0t � At+T0 for t � T0:Now de�ne T (x) = infft : x 2 AtgT 0(x) = infft : B1(x; r) � Atg;T 0(x; y) = infft : B1(y; r) � At+T 0(x)(B1(x; r); T 0(x))g:Here, At+s(B; s) is the notation for the state of the dynamics at time t + s if it isre-started with the set B at time s. Let A0t = fx : B1(x; r) � Atg. Our �rst step isto prove that At is not too far ahead of A0t.Theorem 3 implies that every x 2 At has a set that generates the plane includedin B1(x; 2R) (recall R = 1000�3(log � + 1)). For every set G � B1(x; 2R) thatgenerates the plane, de�neT dG(x) = inffn : B1(x; r) � Dn(G)g;TG(x) = infft : B1(x; r) � At+T (x)(G; T (x))g:At time T dG(x), the deterministic dynamics occupies at most (2(2R + �T dG(x)) + 1)2sites, and this number is bounded above by a constant M =M(�), independent of x18



and G. Therefore, TG(x) is bounded above by the sum of M independent copies of� . The following crude bounds then hold for any s � 0,P (T 0(x)� T (x) � s) �M � P (� � s=M)�M � e�ps=M : (23)Of course, At � Dt(A0) and so At includes at most (2(r + t�) + 1)2 sites. Therefore,for a constant C = C(�; p),P (T 0(x)� T (x) > C log t for at least one x 2 At) � Ct�2and hence there exists a random T0 such that T 0(x)�T (x) � C log t for every x 2 Atas soon as t � T0. It follows thatA0t � At � A0t+C log t for t � T0: (24)The last step is to use subadditivity to show that A0t has a limiting shape. By mono-tonicity, T 0(y) � T 0(x)+T 0(x; y); in addition, the two summands are independendentand T 0(x; y) d= T 0(x� y). Moreover, if e1 = (1; 0), then the same arguments as thoseleading to (24) show that there is a constant M = M(�) > 30 such that, for everys � 0, P (T 0(e1) > s) �M � exp(�ps=M). In particular, it follows that E(T 0(x)) <1for every x. Moreover, if � = �(p; �) = p=(12M log(2M)), and T1; T2; : : : are i.i.d.versions of T 0(e1), thenP (B1(0; �t) 6� A0t) � (2�t+ 1)2P  2�tXi=1 Ti � t!= (2�t+ 1)2P  exp p2M 2�tXi=1 Ti � p2M t! � 1!� (2�t+ 1)2 exp �� p2M t� � E �exp � p2MT 0(e1)��2�t� e4�t exp�� p2M t� � (2M)2�t� exp (�pt=(4M));
(25)

so that, with probability 1, A0t + I eventually includes B1(0; �t).From now on, completely standard arguments take over (Chapter 1 of [D] and[CD]). Namely, if one extends T 0(x) to x 2 R2 by T 0(x) = infft : x 2 A0t + Ig, then,by the Subadditive Ergodic Theorem, for every x 2 R2T 0(nx)=n! �(x) a.s. as n!1; (26)where �(x) is a deterministic constant. This function is a norm on R2; the a.s.convergence (26) for all x in an appropriate �nite set and the lower bound (25) implythat the unit ball S = fx : �(x) � 1g is the limiting shape: (A0t + I)=t ! S. Thisfact, together with (24), ends the proof. 19



References[A] K. S. Alexander, Approximation of subadditive functions and convergencerates in limiting shape results. Ann. Probab. 25 (1997), 30{55.[B] T. Bohman, Discrete threshold growth dynamics are omnivorous for box neigh-borhoods. Transactions of the AMS, to appear.[BGG] T. Bohman, J. Gravner, D. Gri�eath, Shapes in random threshold growthmodels. In preparation.[BCG] E. Berlekamp, J. Conway, R. Guy, Winning Ways for your MathematicalPlays. Academic Press, 1982.[CD] J. T. Cox, R. Durrett, Some limit theorems for percolation processes withnecessary and su�cient conditions. Ann. Probab. 9 (1981), 583{603.[D] R. Durrett, Lecture Notes on Particle Systems and Percolation. Wadsworth &Brooks/Cole, 1988.[DL] R. Durrett, T. Liggett, The shape of the limit set in Richardson growth model.Ann. Probab. 9 (1981), 186{193.[ES] P. Erd}os and J. Selfridge, On a combinatorial game. J. Comb. Theory A 14(1973), 298-301.[GG1] J. Gravner, D. Gri�eath, Threshold growth dynamics. Transactions of theAMS 340 (1993), 837-869.[GG2] J. Gravner, D. Gri�eath, First passage times for threshold growth dynamicson Z2. Ann. Probab. 24(1996), 1752-1778.[GG3] J. Gravner, D. Gri�eath, Nucleation parameters for discrete threshold growth.Experimental Mathematics 6(1997), 207-220.[K] H. Kesten, On the speed of convergence in �rst-passage percolation.Ann. Appl.Prob. 4 (1994), 76{107.[KS] J. Krug, H. Spohn, Kinetic roughening of growing surfaces. Pages 478{582 ofSolids Far From Equilibrium (G. Godr�eche, ed.), Cambridge Univ. Press, 1991.[NP] C. M. Newman, M. S. T. Piza, Divergence of shape 
uctuations in two dimen-sions. Ann. Probab. 23 (1995), 977-1005.[S] K. Sch�urger, On the asymptotic geometrical behavior of a class of contact in-teraction processes with a monotone infection rate. Z. Wahrsch. Verw. Gebiete48 (1979), 35{48. 20



[W] S. J. Willson, On convergence of con�gurations. Discrete Mathematics 23(1978), 279{300.

21


