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Abstract

A site in Z? becomes occupied with a certain probability as soon as it sees at least a
threshold number of already occupied sites in its neighborhood. Such randomly growing
sets have the following regularity property: a large fully occupied set exists within a fixed
distance (which does not increase with time) of every occupied point. This property

suffices to prove convergence to an asymptotic shape.

1 Introduction

Deterministic threshold growth dynamics on Z? are generated by one of simplest
models for a growing droplet in the plane. This model has two parameters: a finite
neighborhood of the origin A' C Z2, which defines the neighborhood of an arbitrary
point z as z + N, and a positive integer threshold . Given the initial droplet A,
the extent of growth at time i is given by the *" iterate, D(A), of the following
transformation on subsets of Z2:

D(A)=AU{z€Z*:|(z+N)NA| >0}.

In words, a site z joins the occupied set at time ¢ if it sees at least a threshold number
of occupied points in its neighborhood at time 7 — 1.

We stress immediately that our considerations are restricted to two dimensions,
although some of our methods can be extended beyond the planar case. In fact, an
analogue of Theorem 6 holds in any dimension. However, combinatorial methods that

lead to our main result, Theorem 2, become much trickier even for dynamics in Z3.
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If # = 1, then we have an instance of additive dynamics, as D(AU B) = D(A) U
D(B). If 6 > 1, this fails to be the case, and thus nucleation and interaction questions
become interesting ([GG2], [GG3]). Of even more basic importance are issues of
regularity of persistent growth, which we now introduce. Let D*®(A) = UX,D'(A)
be the final droplet. A set A C Z? is said to generate persistent growth if D'T1(A) #
Di(A) for all i. Moreover, A generates the plane if D®(A) = Z>. We call the
dynamics supercritical if there exists a finite set A that generates the plane. The first
result states that a set that generates the plane must do so in a very orderly fashion,

namely, the iterates have a unique asymptotic shape. For a proof, see [W], or [GG1]

and [GG2].

Theorem 1. Let N and 6 be fized and let I = By (0,1/2) be the 1 X1 square centered
at the origin. There exists a set L C R? such that if A is finite and generates the
plane then (D"(A) + I)/n — L. Furthermore, the asymptotic shape L is a bounded

convez polygon that can be explicitly computed given N and 6.

The easiest way to define convergence in Theorem 1 is via Hausdorff metric.
However, a slightly stronger notion is preferable here: if S, C R? are closed and
S C R? is closed and convex, then S, — S will mean that for every ¢ > 0,
(1—-¢€)S C S, C(1+¢€)S for alarge enough n.

Theorem 1 holds for a very general class of neighborhoods and the limiting shape
is independent of the initial droplet so long as the initial droplet generates the plane.
However, for a fixed neighborhood and threshold there could be different nontrivial
limiting shapes resulting from initial droplets that generate persistent growth but
do not generate the plane. Certain neighborhoods allow this possibility, as our next

example shows.

Example 1. Suppose
N ={(z,y) € Z* : |z|,|y| < 3 and either z = 0 or y = 0}
and § =3. If A={z€Z*: |z]) <1} then
D"(A) = {(r,y) € Z* : |z|, |yl < n +1 and either x = 0 or y = 0}
and therefore (in Hausdorff metric only, since the limit set is not convex)
D"(A)/n — {(z,y) € R*: |z|,|y| < 1 and either x = 0 or y = 0}.

On the other hand, any finite set that generates the plane has octagonal asymptotic
shape with vertices (£1,0), (0, +1) and (£3/4, +3/4) (to see how these are computed,
consult [GG2]).



Deterministic threshold growth dynamics for which every set that generates persis-
tent growth also generates the plane are called omnivorous dynamics. By Theorem 1,
deterministic omnivorous dynamics have a unique nontrivial limiting shape (by “non-
trivial” we mean not equal to {0}).

The aim of this paper is to prove a shape theorem for a version of random threshold
growth dynamics. To describe the discrete time version, on which we will focus, let
N = |N\ {0} be the number of true neighbors and fix N + 1 probabilities py, . .., py
satisfying

O=po=--=pg-1 <po <pps1 < - < pn.

The state of the dynamics at time ¢ is a random set A, C Z2. Once A, is known,
A1 D Ay is determined as follows: if x ¢ A;, then, independently of other sites and
other times, x € A, with probability pj4,nw+a). The starting point will be some
deterministic initial droplet 4, C Z2.

We should mention that all of the methods in this paper work for the continuous
time analogue (in which the non-zero rates Ay < A\g11 < --- < Ay are given instead
of the probabilities), with only trivial modifications. Other generalizations are also
possible, with more general monotone rules and waiting times (see [CD], [K]), but
these would lead us astray from the combinatorial issues that are the central point of
this paper.

At first glance, the dynamics described above do not differ appreciably from those
in [S] and [CD]. Indeed, if § = 1, then the standard subadditive arguments work: the
main observation is that, for any time %y, one can get a lower bound on the original
occupied set at any time ¢ > ¢, by picking an occupied point at time ¢y, throwing the
other occupied points away, and re-starting the dynamics. If § > 1 this argument
needs a substantial extra step, as the dynamics can only be successfully re started
from a fairly large set. As is the case in Example 1, it is possible that an € A, is
nowhere near, say, a large fully occupied square; this renders the usual shape theorem
(of [S] and [CD]) false.

On the other hand, whatever A is, the final droplet in the random growth is the
same as in the deterministic one: Ay = Ui>0A; = D™(Ay). If Ay generates the plane,
then A; eventually occupies every point as well, eliminating cases like the troublesome
Example 1. Must a unique asymptotic shape exist under this assumption? We suspect
that the answer is yes, although we are unable to prove this in full generality. Our
main result is valid only for boz neighborhoods N, = {z € Z? : ||z]|c < p}. These
dynamics are supercritical iff 8 € [1, p(2p + 1)] (|GG2]).

Theorem 2. Assume that N = N, for some p > 1 and that the dynamics are

supercritical. Then there ezists a convex compact neighborhood of the origin S (that



depends on N, 0 and the probabilities p;) such that
(Ay+ 1)/t — S as t — 0o

almost surely for any Ay that generates the plane.

Theorem 2 only provides existence of the limiting shape; it has been long known
that properties of this set are not easy to discern. Here are some questions one might
ask. Does L have a differentiable boundary? Is L strictly convex? (This question was
studied for the additive case in [DL].) Could L ever be an isotropic disc? Some of these
issues will be addressed in a forthcoming paper ([BGG]). Another interesting class
of questions concerns the speed of convergence to the limiting shape and the related
roughness of the boundary of A;. This issue has generated much interest in the case
of first—passage percolation, a related additive dynamics. Kesten ([K|) and Alexander
([A]) have shown that, with probability 1, (t—C+/tlogt)S C A;+1 C (t+C+/tlogt)S
for a large enough ¢. (Here, and throughout the paper, C' is a “generic constant,”
whose value is of no importance.) It is in fact not clear if v/t could be replaced by
a lower power, for experimental studies suggest that A, 4+ I differs by ¢'/? from a
deterministic set. To get a flavor of physical arguments in favor of such power law,
the reader can consult [KS|, while [NP] has a rigorous lower bound on described
fluctuations. It seems to be a challenge to adapt these methods from [K, A, NP]| to
the case when 6 > 1, although it is intuitively clear that increased € should diminish
boundary fluctuations, as tentacles are less likely to form. Further evidence for this
is provided in Figure 1, which shows simulations of discrete-time threshold growth
dynamics with range 1 box neighborhood, § = 1,2,3 and py = --- = pg = 0.1 at the
time ¢ when the radius of A; reaches about 100. In all cases, Ag is a 3 x 3 square.

Figure 1. Range 1 dynamics with thresholds (from left to right) 1, 2, and 3.

We now proceed to discuss the main ideas in the proof of Theorem 2. As already
pointed out, it is necessary to show that, with high probability, every site in A; has a

large fully occupied set nearby. It turns out that this property holds deterministically



in box neighborhood cases.

Theorem 3. If N = N,, z € A; and B (x,1000p*(logp + 1)) N Ay = O then there
exists a set G C A; N Boo(x, 10000 (log p + 1)) that generates the plane.

Of course, the 10000%(log p+1) term should be viewed as constant in ¢, so a set that
generates the plane is indeed very near x. It remains an open problem to estimate
the smallest necessary size R(p,f) of this term, but it is illustrative to check that
R(1,2) =1 and R(1,3) = 2. The methods used to prove Theorem 3 were first used

in [B] to prove
Theorem 4. Deterministic growth dynamics are omnivorous for box neighborhoods.

This connection between Theorem 3 and Theorem 4 exemplifies how understanding
deterministic dynamics can lead to progress in studying their random perturbations.
The difficulty in generalizing either of these Theorems (and therefore Theorem 2) to
more general neighborhoods lies in understanding the sets that generate the plane
for non—-box neighborhoods. A grasp on such sets thorough enough to prove either
Theorem 3 or Theorem 4 would likely suffice to prove both. This impression is
supported by our next result. We say that the threshold growth dynamics satisfy the
double threshold condition if all sets G C N with |G| > 26 generate the plane.

Theorem 5. Assume that —N =N and N C N,,. If the dynamics satisfy the double
threshold condition, then the following hold:

1. Deterministic threshold growth dynamics are ommnivorous.

2. If v € Ay and By (x,150p*(logp + 1)) N Ay = 0 then there exists a set G C
Ay N By (2,150p%(log p + 1)) that generates the plane.

Part 1 of Theorem 5 is given in Section 2 of [B], while Part 2 will be proven below.
As a consequence of Theorem 5, we have the following random shape result.

Theorem 6. Assume that —N = N and the double threshold condition holds. Then

there exists a convexr compact neighborhood of the origin S such that
(Ay+ 1)/t — S as t — 00

almost surely for any Ay that generates the plane.

The rest of this paper is organized as follows. Section 2 addresses the validity
of the double threshold condition for a general class of neighborhoods. The proof
of Theorem 3 is divided into Sections 3 and 4. This division is necessary because
properties of sets that generate the plane differ for small and large 6. For N' = N,
and 6 < p? the double threshold condition is satisfied ([B]) and Theorem 3 follows



from Part 2 of Theorem 5, the proof of which is given in Section 3. On the other
hand, for p> < 6 < p(2p + 1) the double threshold condition does not necessarily
hold. In this case the proof of Theorem 3 uses much more machinery from [B] and
is given in Section 4. We note that it is not at all clear how to generalize this ‘large
threshold’” proof to other neighborhoods; the special machinery from [B] is specific
to box neighborhoods and it is not clear what the corresponding general machinery
would be (or even if such machinery exists). Finally, in Section 5 we show how
Theorems 2 and 6 follow from Theorems 3 and 5, respectively.

2 The Double Threshold Condition

Theorems 5 and 6 lead to the obvious question: when does the double threshold
condition hold? For example, one can check by hand that the double threshold
condition is always satisfied for range 1 box neighborhoods (that is, for § = 1,2, 3),
and is satisfied for range 2 box neighborhoods when 6 < 8 (for § = 9 the neighborhood
without the four corner points does not grow, while for § = 10 the full neighborhood
does not grow after the first time step). We now give a simple sufficient condition,
which is far from optimal, but says that the double threshold condition holds when
N is well behaved and @ is less than a constant multiple of |[N|. We assume that
N = conv(N) N Z?, where conv(N) is the Euclidean convex hull of N and that A
is invariant with respect to transposition of the two coordinates and switching sign
of either of them. Let p be the largest integer such that (p,0) € N and o be the
largest integer such that (o,0) € M. In other words, p and o are chosen so that N, is
the smallest box neighborhood containing A" and N, is the largest box neighborhood
contained in N.

Theorem 7. If 6 < 0*/2 then the double threshold condition holds.

We conjecture that if § < (|N|—4p—1)/4 (this is the number of elements of A in
the first quadrant that do not lie on either axis) then the double threshold condition
holds. This conjecture holds in the box neighborhood case: a version of the argument
below tailored specifically to the box neighborhood N, ([B]) shows that in this case
the double threshold condition holds when § < p?. On the other hand, a computer
computation (along the lines of [GG3]) shows that in the box neighborhood case N,
does not grow if § > 1.7p% for p sufficiently large, demonstrating that the double
threshold condition fails to hold for a wide range of supercritical dynamics, that is,
at least when p is large and 1.7p? < 0 < p(2p + 1).

An alternative to the argument given below shows that the double threshold con-
dition holds when p is sufficiently large and 6 < mp?/16. In some cases this bound is
better than the one given by Theorem 7. The alternative argument is continuous in



nature (i.e. cardinalities of subsets of the lattice are given as areas with appropriate
error terms), and is omitted for the sake of brevity.

Finally we note that for general neighborhoods the double threshold condition is
not monotone in # (although we suspect that it is for the neighborhoods considered
above). Consider the neighborhood N =N, U {(£(2p+ 1), £(2p+1))}. The double
threshold condition does not hold when § = 2 as D*(A) = D(A) for A = {(£(2p +
1),£(2p+1))}. On the other hand, the arguments given below can be used to show
that the double threshold condition holds for 4(p+ 1) < 6 < p?/2.

Proof of Theorem 7. Let G C N with |G| > 26. Clearly, if D"(G) contains a 0 X o
square for some n then G generates the plane. We show that such a square emerges
by showing that, as n increases, a concentration of D"(G) develops around the origin;
in particular, after noting that the origin is in D(G), we show that, for z = (z,y) €

Boo (0, [0/2])\{0},
2| # |yl and x # 0 and y # 0 = z or — 2 € DAl="1(q) (1)
z|=Jylorz =0, ory=0=zor —ze DIl=(q). (2)

Since By (0, [0/2]) C 2+ N for all z € B, (0, |0/2]), it then follows that
Bwo(0, [0/2]) € D*I7/2H(G)

and G generates the plane.
Consider z = (z,y) € Bxo(0, |0/2]). Our main observation is that

b= M ((z+N)U (=2 +N))| < 2(2” = [z] - [yl +v). (3)

Suppose (3) holds, and assume without loss of generality that 0 < y < z. We prove
(1) and (2) by induction on ||z||s; for fixed ||z||» we first prove (1) and then use (1)
to prove (2) (note that (1) is vacuous for ||z]| = 1). If 0 < y < z then it follows

from our inductive assumption that

a:= ‘DQ%Q(G) N((z+N)N (*Z”‘N))‘
> | D* *(G) N By (0,2 — 1)
> [[Bu (0,2 — 1)|/2]
=22? — 2z + 1.

It then follows that the larger of |(z + N) N D* ?(G)| and |(—z + N) N D* *(GQ)| is
at least

a

1
(|D2‘”’2(G)ﬁ/\/\—a—b)+a2§\G|+ >0 —

N | —
[\

Do | o
N | —



Thus, either z or —z is in D**"}(G). If y = x or y = 0 then the inductive assumption

gives
a:=|D* HG)N((z+N)N(=z+N))| > B (22 +1)* - 8)-‘ = 227 + 21 — 3,

which implies that the larger of |(z + ) N D?** 1(GQ)| and |(—z + N) N D* 1(GQ)] is
at least § — 1/2, and it follows that either z or —z is in D*(G).

It remains to prove (3). Assume without loss of generality that 0 < y < x. For
v = (r,s) € Z% let O, be the octagon (or diamond or square) in Z? with corners
{(&r, +s), (+s,£r)}. Tt follows from the symmetry and convexity of N that v € N/
implies O, C N.

Let B be the part of M\((z + N) U (—z + N)) on or above the x axis.

Claim 8. (r,s) € B= s> |0/2].

Proof. Consider v := (r,s) € N. If —0 <r <o and 0 < s < |0/2] then either
v+ 2 € B(0,0) CN orv—2z€ By(0,0) CN.If |r| >0 and 0 < s < [0/2] then
eitherv+2€ O, c Norv—-2€ O, CN. d

Claim 9. z; = (z1,y1), 22 = (29, y2) € B = |17 — 29| < x.

Proof. Assume for the sake of contradiction that 1 4+ z < x5. We consider two cases.
If z; + 2z lies below the line through z; and 2, then consider the triangle T with vertices
21, 23 and (x; + x,0). By the convexity of N, TNZ* C N. Thus z; + 2z € N and
21 € —z+ N, which is a contradiction. On the other hand, if z; + z lies above the line
through z; and 25 then 2o — 2z lies below this line. Furthermore, the second coordinate
of zo — z is positive by Claim 8. If T is now the triangle with vertices z;, 2z, and
(x9 — 2,0), then 2o — 2 € TNZ* C N and so 2, € z + N, a contradiction. O

If B is nonempty then let u = (—p, ¢) be an element of B having the largest second
component (i.e. ¢ = max{s: 3(r,s) € B}). We can assume p > 0 as (0,p) € —z+ N
(this follows from the assumption B # () and (0, p) € z+A implies that N intersected
with the first quadrant is contained in z + A (this follows from the symmetry and
convexity of N).

Claim 10. If g < o then |B| < xy.

Proof. Suppose q < 0. If v € B and v + e, € N then, by Claim 8 and the convexity
and symmetry of A/, v + ey € B. Therefore, (r,s) € B implies r < —o.

Now, suppose there exists v := (r,s) € B with s < ¢ — y. It follows from Claim 9
that —p < r 4+ 2 < —o 4+ |0/2] < 0. Thus, v + z is contained in the rectangle with
corners at u and the origin, which is contained in N. This is a contradiction; a point
(r,s) € B must have r > ¢ —y. By Claim 9, then, |B| < zy. O



We can therefore assume ¢ > 0. We now divide B into two parts. Let B’ =
{(r,s) € B:s>q—uy}and B" = B\B'. It follows from Claim 9 that

|B'| < xy.

To bound |B"| we note that it follows from Claim 9 that B” lies between —z + A and
z+ N. Thus, (r,s) € B" is contained in the region bounded by the line s = g — v,
z+ O, and —z + O,. We now show that neither the ‘vertical part’ of the octagon
z + O, nor the ‘vertical part’ of —z + O, intersects the boundary of this region.

Claim 11. (r,s) e B" = s>p+y

Proof. We divide the argument into two cases. If s < p — y then r + 2z > ¢ while
r —x < —q. This implies ¢ —x < * — q and = > q > o, which is a contradiction.
fp—y<s<p+ythenr—ax < —qand r+x > p+q—s—y. This then gives
r—q>q—x+p—s—y, which in turn gives x+vy > ¢ > o0, again a contradiction. [

We can thus conclude that all sites (r, s) € B"” are contained in the triangular region
given by

s<q-—y,
r+s>({p+q) —(x+y)

and

r—s<(-p-q+(-y).
Therefore, B” = () if z < y + p and
|B"| < (2 —y —p)* < (v —y)°

otherwise. This establishes (3) and thus concludes the proof of Theorem 7.

3 A Weight Function Argument

We prove both Theorem 3 and Part 2 of Theorem 5 by applying a weight function
argument to the growth of the droplet around z (for other examples of weight function
arguments in combinatorics see [BCG, pages 715-717],[ES]). The weight function we
now define was introduced in [B] for the proof of Theorem 4. Let Zy C Z; C ... C Z?
be an arbitrary growing droplet (not necessarily given by any version of threshold

growth). Our weight function considers a point z in the lattice ‘heavy’ or in a ‘high



energy state’ if the neighborhood of z has a large intersection with the droplet but z
is not yet in the droplet. To be precise, we set
(z+N)NZ| 2 ¢ Z,
wy(2) =

4

We will observe the evolution over time of the total weight of some carefully chosen

set X; that is, we will consider the function

Wy = Wy(X) =) wi(2) (5)
zeX
where X C Z? will be determined.
Now, for each z € Z;\7Z; | there are two possible contributions to the change in
the total wieght (i.e. W, — W, ;) when z joins the droplet: the weight of z itself goes
to zero while the weight of each element of (2 + AN)\Z; increases by one. Thus, if

A, = -1x2)|z+N)NZ 4|+ |[(z+ N) N (X\Z)], (6)
where 1y is the characteristic function of X, then we have

Wy=Weai+ Y Al (7)
2€Zi\Zt—1

In words A, is the change in the total weight, or energy, that is caused by z joining the
droplet. The central point in the proofs that follow is that when a droplet generated
by random threshold growth exhibits continuing growth A, is often (or on average)
nonnegative. In other words, if every point (or the average point) causes a loss of
energy then growth will eventually stop. The combinatorial consequence of this fact
is that the droplet eventually becomes dense around most elements of the droplet.
This density property can then be used to show that a subset of the droplet that

generates the plane lies near all elements of the droplet.

Proof of Part 2 of Theorem 5. Let R = R(p) = 150p*(logp + 1). We are assuming
that ' = —N, N C N, and the double threshold condition holds. We further assume
x € A, and By (z,R) N Ay = 0; in words, x € Z? joins the droplet at time n (i.e.
n = n(x, Ag) is the hitting time of z) and is far from the initial seed. Given these
assumptions, we need only find

2 € Boo(x, R — p) such that [(z + N) N A4,] > 26. (8)

We use the weight function given in (4) and (5) where Zy C Z; C ... is simply taken
to be the droplet generated by random threshold growth dynamics, A C A; C ...
The set over which we consider the total weight (the set X in equation (5)) is

X, ={z€ A, ||z —z|loc <1}

10



where the radius r is to be determined but will satisfy r < R — p. Since we are

assuming Ay N By (2, R) = () we have

Wy = 0. 9)
Furthermore,

W, =0 (10)

because X, C A, (i.e. w,(z) =0 for all z € X,).

We begin by analyzing A, for z € A\ A; ; where 1 < ¢ < n. First note that only
those elements of A;\ A; 1 in or near X, influence the total weight when they join the
droplet. To be precise, letting

B, i={z€4,:r <21l <7 +p}

it follows from (6) that z ¢ X, U B, implies A, = 0. It also follows from (6) that for
z € B,

A, <|(z+N)NX, | <p(2p+1) (11)
and for z € X,

A,

IN

|+ N) A ] +[(z + N) N (A\A)
<=0+ (z+N)N (A\A)].

So, if A, > 0 for z € X, then
(2 4+ N) 0 (A0\A)] > 0

and
(+N)N A, =(z+N)NA ]+ [(z+N) N (ANA)]
+ (2 +N) N (An\Ay)|
> (z+ N) N A + (2 +N) 0 (A\A))|
> 26).
Thus, if there exists z € X, such that A, > 0 then we have (8) and we are done.

Now, we consider the evolution of W; as t goes from 0 to n. It follows from (7)
that

Wot D A+ D A=W,

z€By z2e€Xy

By (9) and (10) this implies

oA =D A

z€B, zeX,

11



Now, if A, < —1 for all z € X, then by (11) we have
o(20+ 1)|By| > X, (12

In other words, if (12) does not hold then there exists z € X, such that A, > 0 which
implies (8) and the proof is complete.
Assume for the sake of contradiction that (12) holds for 0 < r < R — p. We

consider the sequence of radii ro, 7y, ... where r; = pi. Clearly,
Xl = [Xoi o[+ |Bri |
and
X, =1

Since (12) holds for all r; we have

1
X,| > (1 ; —) X,
p(2p+1)

1 7
> (14 ) 1l
( p(2p+1)
i
> —_— ] .
= <2p(2p+ 1))

But, we also have the obvious bound | X,.| < (2r; +1)? = (2pi + 1). This leaves us
with

(2pi +1)* > exp <;>

20(2p + 1)

which is clearly a contradiction for 7 > 150p?(logp + 1) — 1. O]

4 Proof of Theorem 3

Throughout this section we assume our neighborhood is N, our threshold satisfies
p’ <0 < p(2p+1), x € A, and B (x, R)NAy = ) where R = R(p) = 1000p°(log p+1).
We are looking for G C By (z, R)N A, that generates the plane. We argue indirectly;
we assume no such G exists (i.e. we assume By (z, R) N A, does not generate the
plane). This assumption implies a strong condition on the structure of A, near z. We
use this structural condition and the weight function given in (4) and (5) to arrive at
a contradiction.

We begin with some preliminary definitions and results taken from [B]. For z € Z*
let S, be the p x p square whose lower left hand corner is z: S, = {z + ie; + jes :
0 < 4,5 < p} (here e; = (1,0) and e; = (0,1)). For an arbitrary A C Z? let

12



V ={S,:5, C A}. We form a graph G on vertex set V' by joining vertices S, and
S, with an edge if and only if |[S, N S,| = p(p — 1). In other words, S, and S, are
joined by an edge if z € {y £ e;,y £ es}. For each U C V that defines a maximal
connected component of (G, the set
B:={]S.
S.eu

is called a jagged block of A.

Note that the definition of jagged blocks given here differs from the definition given
in [B]. In [B] jagged blocks are defined only for A = D>*(A) for some finite set A —
a notion that is of no use in the present context. This difference in definitions yields

an important distinction: the jagged blocks defined in [B] always satisfy

oy = |12 = ylloe, (13)

where, for vertices S, and Sy in the graph defined above, d,, is the length of a shortest
path from S, to S, in G. A jagged block B as defined here may not satisfy (13), but
if it does not satisfy (13), then D(B) # B (the proof of this fact is the same as the
proof of equation (4) in [B]). In applying results about jagged blocks from [B], we can
therefore assume that the jagged blocks in question satisfy (13) ; otherwise, D(B) # B
and the desired property is either established immediately or upon repeated iteration
of the growth rule.

A large part of the proof of Theorem 4 given in [B] is in showing that deterministic
threshold growth dynamics cannot build a ‘large’ jagged block without simultaneously
building something that generates the plane. The same is true for random threshold
growth dynamics, and this is the central point of the argument in this section. This is
not to say that the jagged blocks we consider generate the plane; in fact, they usually
do not.

We now make precise the notion of a ‘large’ jagged block. Let

o=maxf |241), | 25 |

For an arbitrary z € Z? let

C. = Bwo(z,5)\{z £ ke1 £ Kes }.

This is a (2k + 1) x (2k + 1) square with its corners removed. We say that a jagged
block B has a center Cg if there exists z such that Cs := C, C B. Think of a jagged
block as being ‘large’ if it has a center.

Now we state some facts concerning jagged blocks. For finite A C Z? the diameter
of A, denoted diam(A), is given by diam(A) = max{[|z — y||« : 2,y € A}. For
nonempty A, A" C Z? the distance between A and A’ is defined to be d(A, A") =
min{||z — yllo : 2 € A,y € A'}.

13



Lemma 12. If B is a jagged block with diam(B) > 2p* then B generates the plane.

The authors suspect that the bound given in Lemma 12 (which follows from Lemma 4
in [B]) is not the best possible, as results in [GG3] suggest that any jagged block with
diameter larger than Cp? generates the plane. However, the bound given in Lemma 12

suffices for the argument we give here.

Lemma 13. Suppose Ay C A, C --- C A, C Z? is generated via the random thresh-
old growth rule. If B s a jagged block of A, that both has a center and satisfies
d(B, Ay) > p then there exists z € D(A,)\ A, such that d({z},B) < p.

Lemma 13 follows from the Low Density Lemma in [B] and is the central fact concern-
ing jagged blocks. Intuitively, the site z in Lemma 13 is found near the first element
of B to join the droplet. It follows from Lemmas 12 and 13 that if B is a jagged block
of A, with center such that d(B, Ag) > 2p* then A, = Z* (by Lemma 13, B grows
until it is a distance less than p from Ay. Lemma 12 then implies that this large
jagged block generates the plane).

In the course of the argument we make use of the following function. Let A
be an arbitrary subset of Z? and H = Z*\ A (the set of holes relative to A). Let
H = {hy,hy,...} be an arbitrary ordering of the holes. We define ¢4 : A — H to be
the map by which z € A is mapped to the nearest hole in /,, distance where the first
tie breaker is ¢; distance and the second tie breaker is the ordering on H.

Lemma 14. Let h € H where H is the set of holes relative to some A C Z2. If
(h+N)NA| <0 and ¢,"(h) C Ch then either AN By (h,2p) generates the plane or

ST+ NN A< Jp;(h)]26.

z€p4" (h)

Lemma 14, which follows from the Local Averaging Claim in [B], provides a link
between our knowledge concerning jagged blocks and the weight function we use in
the proof.

With these preliminary definitions and results in hand we can discuss the ‘struc-
tural implications’ of our initial assumptions. We construct a sequence that contains
information about both the random droplet’s approach to z and the properties this

approach to x deterministically has. Let

A; N By (2, R) 0<i<mn
D(C; 1)NBy(z,R) n<i<m

i =

where m is the ‘final time’ in the sense that D(C,,) N By (x, R) = C,,. Since any
set of eligible points (i.e. points whose neighborhoods contain at least a threshold

number of already occupied points) can join the droplet at each time step in random
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threshold growth, we can think of Cy, C, ..., (), as being generated by the random
threshold growth rule if we think of adjoining the set By (z, R+ p)\Bx (2, R) to each
Ci.

Note that if C,,, = By (x, R) then, by Lemma 12, G := A, N By (z, R) generates
the plane. Since this contradicts our initial assumption, C,, # B (7, R).

Consider an arbitrary jagged block B of C,, with center. Suppose B C B, (z, R —
p). Since the ¢, distance between B and our ‘adjoined initial droplet’ is greater than
p we can apply Lemma 13. Thus, there exists z € Z? such that z € D(C,,)\C,, and
2 € Boo(z, R). This contradicts C,,, = D(Cy,) N Boo(, R). We have shown

B is a jagged block of C,,with center = B ¢ B (z, R — p).
Furthermore, Lemma 12 implies that the diameter of B is less than 2p®. Thus,
B is a jagged block of C,, with center = BN By (z, R — 3p°) = (.
Since, for any z € Z?, C, itself is a jagged block with center, we now have
2 € Boo(z,R—3p") = C, ¢ Cp. (14)

This fact is the ‘structural implication’ of the assumption that no G C C,, N
By (z, R) generates the plane mentioned in the first paragraph of this section. We
now forget about jagged blocks and use (14) and the weight function given in (4)
and (5) to achieve a contradiction. In this application of (4) and (5) the sequence
Zy, Ly, ... is taken to be Cy C C), C ... C C,,, C C,, C ..., and the set over which we
consider the total weight (the set X in (5)) is

X, := By(z,r)NC,y,

where 7 < R — 3p? is to be determined.
What happens to W; as t goes from 0 to m? We clearly have

Wo=W,, =0 (15)
For z in
By = (Boo(w, 7 + p)\Boo (2, 7)) N O,
A, <p(2p+1). For z ¢ X, UB,, A, =0. These facts together with (15) give

D AL > (204 1)p| B, l. (16)
z€X,
We now analyze A, for z € X,. This analysis differs from that of Section 3.
Instead of considering A, for each z € X, individually, we consider sums of A,’s over
subsets of X,. Before doing so we note that for z € X, N (C,\C;_1)

A, < =[(z+N)NCral +[(z+N) N (C\CY)
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Thus
(z+N)NCul = [(z+N)NCra| + (2 + N) N (CACra)| + [(z + N) N (Cr\Cy)|
>|z4+N)NCi |+ 14+ [(z+N)NCa|+ A,
>20+1+A,

and
A, <|(z+N)NCpl — (20 +1). (17)
Inequalities (16) and (17) yield

>z +N) N Col = (20 + 1) X, > —(2p + 1)p| By (18)

zeX,

We use the function ¢¢, to partition X, into subsets. In particular, we divide
X, into sets of the form ¢! (h) where ¢! (h) C B(x,7). Since, for an arbitrary
z € X, ¢ (¢, (2)) is not necessarily contained in X,, this division does not account

for all of X,. Therefore, we need a set of ‘leftovers’ to complete the partition. Let
={heC,\Z: o' (h) C X, }.

and
Bl ={2€X, e, (2) ¢ H,)}

(B, is the set of ‘leftovers’). We clearly have

> E+N)NCul =) Z 2+ N)NCol + Y (2 4+ N)NCl. (19)

2€X; heHr 2ep5! (h) 2€B!
Consider z € By (z, R — 3p?). Tt follows from (14) that
ve, (2) € C,. (20)
By symmetry, this gives
wer (h) C Cy

for all h € By (2, R —3p*)\Cy,. So we can apply Lemma 14 to ¢! (h) for all h € H,.
When we do so (19) becomes

ST+ N)NCul <3 201051 () + Y |z + N) N Cinl.

z€Xs heH, 2€B!

It also follows from (20) that

B, C B :=Cy, N (Boo(x, 1)\ Boo (z,7 — 2p)).
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For 2z € B! we use the trivial bound |(z + M) N C,,| < |N| < 9p?. This gives

D AE+N)NCul < 2009,) (h)] +90°| By

2€X, heH, (21)
< 20]X,] + 97|

From (21) and (18) we get
20| X,| + 9p%|B)'| — (20 + 1)|X,| > —3p*| B, |

which simplifies to

X, | < 90%(|B,] + |BY]). (22)
To finish the proof we consider the sequence of radii rg,ry,... where r; = pi.
Clearly,
‘Xro| =1
and

|X = | T3(i— | + |Br'§z ‘ + |BT31 ‘

T3i

It follows from (22) that

Xy o] < Xy | € 90°(1Byy |+ |BL, L)

2 |XT3(;>1)‘ ( )
> 1%, 1 9—)
> exp (18 2)

|XT'3i| < |Boo(xa T3i)‘ = (2T3i + 1)2 = (6pl + 1)2

Thus

| X

T3i

But, we also have the trivial

This leaves us with

which is a contradiction for i > 330p?(log p + 1).
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5 Convergence to the asymptotic shape

We prove only Theorem 2 as Theorem 6 is proved in exactly the same way (except
that Theorem 5 is used in place of Theorem 3).

As usual, we start by introducing a coupling of the random dynamics started
from all initial sets. This will be done by choosing independent random vectors
(Yo' Y, o € Z2,t = 0,1,..., such that V' <--- < Yy'and P(Y"' = 1) =
P =1— P(Ykz’t = 0). We will drop the superscripts when we are only interested in
the distributions, e.g., ;"' = ;. Then we can define simply

z,t
A = A U{z € yAR Y\Am(a:JrN)\ =1}

Note that this coupling is monotone: enlargement of the initial set enlarges the grow-

ing droplet at all times.

Proof of Theorem 2. We will shorten p = py and let 7 stand for a generic geometric
random variable with parameter p (that is, P(t = k) =p(1 —p)* ' for k =1,2,...).

Fix an r large enough so that B..(0,r) generates the plane. We will assume that
Ag = By (0,7). This entails no loss of generality, as the following simple argument
demonstrates. Let A} be the random threshold growth starting from an arbitrary set
Ay that generates the plane. Then there exists a (random) finite time Ty such that
Ay C A7, and Aj C Ag,. Hence

Atho C A; C At—l—Tg for t Z T(].
Now define

T(x) =inf{t:x € A}
T'(z) = inf{t: By(z,r) C A},
"(,y) = inf{t : Boo(y,7) C Apsra)(Boo(, 1), T"(2)) }.

~

Here, A; (B, s) is the notation for the state of the dynamics at time ¢ + s if it is
re-started with the set B at time s. Let A} = {x : By(x,r) C A;}. Our first step is
to prove that A; is not too far ahead of Aj.

Theorem 3 implies that every x € A; has a set that generates the plane included
in Boo(z,2R) (recall R = 1000p*(logp + 1)). For every set G C Bu(x,2R) that
generates the plane, define

Ta(x) = inf{n : By (z,7) C D"(G)},
Tg(x) = inf{t : Boo(w,7) C Appr@) (G, T(x))}.

At time T¢(z), the deterministic dynamics occupies at most (2(2R + pT&(x)) + 1)2
sites, and this number is bounded above by a constant M = M(p), independent of x
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and G. Therefore, T (x) is bounded above by the sum of M independent copies of
7. The following crude bounds then hold for any s > 0,

P(T'(z) = T(z) >s) < M- P(r>s/M) 03
<M -ePIM (23)

Of course, A; C D'(Ap) and so A; includes at most (2(r + tp) + 1)? sites. Therefore,
for a constant C' = C(p, p),

P(T'(z) — T(x) > C'logt for at least one x € 4;) < Ct?

and hence there exists a random Ty such that T7"(x) — T'(z) < C'logt for every x € A,
as soon as t > Ty. It follows that

A, C At C At+ClOgt for ¢ Z T(). (24)

The last step is to use subadditivity to show that A} has a limiting shape. By mono-
tonicity, 7" ) < T'(xz)+T'(x,y); in addition, the two summands are independendent
leading to (24) show that there is a constant M = M(p) > 30 such that, for every
s >0, P(T'(e1) > s) < M -exp(—ps/M). In particular, it follows that E(T"(z)) < oo
for every x. Moreover, if § = §(p,p) = p/(12M log(2M)), and T}, Ty, ... are i.i.d.
versions of 7"(e;), then

P(Bx(0,0t) ¢ A}) < (20t +1 (Qf:T > t)

20t
p P
= (26t + 1)*P — T — 2 ¢+ >1

< (20t + 1)2 exp (-ﬁt) ‘B <8Xp (ﬁT/( )))25t

<e 46t exp (—%t) _(2M)25t

< exp (—pt/(4M)),
so that, with probability 1, A} + I eventually includes By, (0, 6t).
From now on, completely standard arguments take over (Chapter 1 of [D] and
[CD]). Namely, if one extends T"(z) to x € R? by T'(z) = inf{t : x € A} + I}, then,
by the Subadditive Ergodic Theorem, for every z € R?

(y

and T"(x,y) = T’(x — ). Moreover, if e; = (1,0), then the same arguments as those
(
!

(25)

T'(nz)/n — p(x) as. as n — oo, (26)

where p(x) is a deterministic constant. This function is a norm on R?; the a.s.
convergence (26) for all z in an appropriate finite set and the lower bound (25) imply
that the unit ball S = {x : u(z) < 1} is the limiting shape: (A) + )/t — S. This
fact, together with (24), ends the proof. O
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