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RECURRENT RING DYNAMICS IN TWO–DIMENSIONAL

EXCITABLE CELLULAR AUTOMATA

Janko Gravner

1. Introduction.

One of the simplest mathematical models for excitable media is the 3-color Greenberg-Hastings

model (GHM) γt. The state space of this cellular automaton is {0, 1, 2}Z2

, where 1 represents

the excited state, 0 the rested state, and 2 the refractory (or recovering) state. We assume that

the local neighborhood of a site x is given by Nx = x+N , where N is a finite set containing the

origin. Excitation by contact and the refractory period are thus incorporated into the update

rule:

(1.1) γt+1(x) =











2, if γt(x) = 1,

1, if γt(x) = 0 and 1 ∈ γt(Nx),

0, otherwise.

Since this model was introduced in [WR], and resurrected in [GH], it has been studied by a

number of researchers from various fields, and underwent many generalizations (see [DG], [DN],

[DS], [FGG1], [FGG2], [FK], [Gra1], [Gri2], [Ste], [WTW] and many further references contained

in these papers).

We will assume, throughout the paper, that N = B∞(0, 1) is the Moore neighborhood (we

use the standard notation for balls: Br(x,R) = {y : ||y − x||r ≤ R}). This is an assumption of

convenience; our results remain true, with minor modifications, for general symmetric irreducible

neighborhoods ([Gra1]). If the initial state of the GHM dynamics is given by a positive density

of 1’s on a background of 0’s, then the update rule (1.1) generates square rings of excitation,

with a transient percolation property. To make this more precise, fix a finite set D ⊂ Z2 and say

that a set G ⊂ Z2 D–percolates if there exists an infinite sequence x1, x2, . . . of distinct sites in

G such that xk+1−xk ∈ D for k = 1, 2, . . . . The usual ℓ∞–percolation is given by D = B∞(0, 1),

while the ℓ1–percolation is given by D = B1(0, 1). The following theorem is contained in [Gra1].

Theorem 1. Assume that γ0 is a product measure with P (γ0(x) = 1) = 1− P (γ0(x) = 0) = p

for every x. Each site x has a unique time t at which γt(x) = 1. Moreover, for each p there

exists a time T (p) such that the set {γt = 1} ℓ∞–percolates for t = T (p), but does not for

t /∈ [T (p), T (p) + 1]. Finally, T (p)
√
p converges to a positive constant λc as p → 0.

Loosely put, then, the GHM dynamics makes very short–lived connected rings. In this paper,

we propose two simple models which have recurrence properties absent in the basic GHM. These
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models are simple caricatures of a physical excitable medium which is externally or spontaneously

excited due to presence of catalysts, thermal or electrical stimuli, or impurities.

In the first rule, referred to as annihilating nested rings (ANR), we envision every site either

in one of the ordinary states 0,1,2 or in one of the externally excited states e0, e1, e2. The

externally excited states go through excitation cycle automatically, but they turn into ordinary

states with probability 1− pf every excitation period; the normal states behave as in (1.1). To

be more precise, we define the ANR process γ̃t as a discrete-time Markov chain with state space

{0, 1, 2, e0, e1, e2}Z
2

and the following transition rule at a site x:

(1.2)

1 → 2
2 → 0
e0 → e1
e2 → e0











automatically,

e1 → e2
e1 → 2
0 → 1
0 → 0

with probability pf ,
with probability 1− pf ,
if there is either a 1 or an e1 in Nx,
otherwise.

To understand the nature of these dynamics, start first with a single e1 surrounded by 0’s.

This e1 proceeds to generate a geometrically distributed number of concentric expanding square

rings before it finally turns into a 2. The created nested rings then keep expanding forever. If

we start with two e1’s, their rings annihilate upon collision, but only along their intersection.

We will assume throughout that the ANR is started from a fully excited state: γ̃0(x) = e1 for

every x (Theorems 2, 3 and 5 hence implicitly assume this).

In the applied literature, ring dynamics such as the one given by (1.2) are usually referred

to as target states. They have been long known to arise in a variety of biological and chemical

contexts (see, for example, the special issue of Physica D 49 (1991), titled Waves and patterns in

chemical and biological media). Early investigations of the Belousov–Zhabotinsky reaction, for

example, have demonstrated that target states are ubiquitous in the petri dish experiments and

explained their appearance by modeling with reaction–diffusion PDE’s ([RKM], [TF]). Often,

the centers which create expanding rings are spatial heterogeneities, such as catalytic particles

or energy sources. Here we study global properties of such systems in the case when the centers

are not permanent, but their energy gradually dissipates until it falls below the level necessary

to induce excitation, at which point they effectively vanish from the medium. In our view, the

ANR model (2.1), started from a translation invariant initial state, is the simplest probabilistic

model of this process, and our hope is that an investigation into its global behavior will shed

some light on the macroscopic properties of physical excitable media.

Originally, our interest in the ring dynamics arose from the threshold–range GHM dynamics

in the “ball” regime ([FGG1]). To explain this, consider a generalization of the rule (1.1) in



3

which an x changes its state from 0 to 1 iff the number of 1’s in the neighborhood exceed a given

threshold θ. In some parameter regimes, the only structures which emerge from a disordered

initial state with a chance of indefinite survival are expanding rings, which can be nested,

with arbitrary multiplicity. These are extraordinarily rare creatures, impossible to obtain by

simulations and cumbersome to study rigorously, thus a need for a simpler model in which

expanding nested rings are provably the dominant feature.

Our final motivation for studying ANR comes from some interesting phenomena which can be

rigorously established for these dynamics. Perhaps the most surprising fact is that, depending

on the regime, excited sites can stay permanently connected (in a sense) or their connectivity

may oscillate through time. We are not aware of any other interacting spatial process with

similar properties. We start, however, with a result which estimates the density of 1’s in γ̃t and

shows that the system experiences slow relaxation.

Theorem 2. There exists constants C1 = C1(pf ), C2 = C2(pf ) ∈ (0,∞) such that for t > 0

(1.3)
C1

t
≤ P (γ̃t(x) = 1) ≤ C2

t

Moreover, γ̃t dies out weakly, i.e. for every x ∈ Zd P (γ̃t(x) = 1 i.o.) = 1, but

(1.4) lim
t→∞

1

t

t
∑

s=0

1γ̃s(x) 6=0 = 0 a.s.

It is perhaps worth noting that the fluctuations in this model are strong enough so that

t · P (γ̃t(x) = 1) does not converge as t → ∞.

As already suggested, our main aim is to understand how connectivity properties of the set

of 1’s evolve through time. We use the following quantity as a measure of the extent to which

percolation at time t fails:

PercFail t = sup{a : {γ̃t = 1} does not B∞(0, a)–percolate}.

Due to the ergodic theorem, PercFail t is a deterministic quantity. The next theorem simply

says that 1’s in γ̃t sometimes ℓ∞–percolate and sometimes do not.

Theorem 3. The events {PercFail t = 0 i.o.} and {PercFail t > 0 i.o.} both happen a.s.

Our main result about the ANR establishes a phase transition in the asymptotic properties

of PercFail t, as pf changes from small to large: if pf is close to 0 then the set {γ̃t = 1} is

occasionally further and further away from percolation (linearly in t away, in fact), while if if
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pf is close to 1, the system stays close to percolation at all large times. Unfortunately, we are

not able to prove that the phase transition is sharp. To understand where the obstacle lies, and

to formulate the theorem, we need several definitions. The main point that we wish to make

here is that there exist some critical values λ′
lc, λ

′
uc ∈ (0,∞) which are conjectured equal and

used in the statement of Theorem 5. The peculiar fashion in which they are defined will become

important only in Section 3.

We will say that a subset of R2 percolates if it contains an unbounded connected set. Let P
be a Poisson point location with intensity λ in R2 and let W (λ, r) = P + B∞(0, r). Take two

independent such sets W1(λ, r) and W2(1, r) (by which we mean that the corresponding Poisson

point locations are independent) and define the following critical values:

λ′
lc = sup{λ : ∃ǫ > 0, ∀r > 0,W1(λ, r + ǫ) \W2(1, r − ǫ) does not percolate, while

(W1(λ, r + ǫ) \W2(1, r − ǫ))c percolates},
λ′
uc = inf{λ : ∃ǫ > 0, ∃r > 0,W1(λ, r − ǫ) \W2(1, r + ǫ) percolates, while

(W1(λ, r − ǫ) \W2(1, r + ǫ))c does not percolate},
λ′
c = sup{λ : W1(λ, r) \W2(1, r) percolates for no r ∈ (0,∞)}.

The next conjecture is quite natural, but the techniques necessary to turn it into a theorem

seem to be lacking (one can, however, obtain some bounds, see Lemma 3.1).

Conjecture 4. The equalities λ′
lc = λ′

c = λ′
uc hold.

We are now in the position to state our main theorem about the ANR. The reader is referred

to [Gra2] for a computer–generated illustration.

Theorem 5. If pf < 1/(1 + λ′
uc), then a.s.

(1.5) lim sup
t→∞

PercFail t
t

∈ (0,∞),

whereas, if pf > 1/(1 + λ′
lc) then a.s.

(1.6) lim sup
t→∞

PercFail t ∈ (0,∞).

We conclude our introductory discussion on ANR by mentioning two works where connections

between continuous and discrete percolation models also play a crucial role: the basic reference

[MR], and the paper [Pen] on the large–range threshold contact process.

Our second model, digital boiling (DB) is perhaps the simplest recurrent ring model one can

concoct. The state of this system is γ̃t ∈ {0, 1, 2}Z2

(we use the same notation γ̃t as for ANR,
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as there is no possibility for confusion) and the evolution is governed by

(1.7)

1 → 2
2 → 0

}

automatically,

0 → 1
0 → 0

automatically if a 1 is in Nx, with probability ps otherwise,
otherwise.

Assume also that the system is started from the quiescent state γ̃0 ≡ 0. Visual features of DB

dynamics (see Figure 2 of [Gra2] or Feb. 12, 1996 Recipe of [Gri2]) resemble bubble formation,

growth and annihilation in a boiling liquid, hence the name for this model.

The straightforward reason for our interest in DB dynamics is that it models an excitable

medium in the presence of persistent random spontaneous excitation (which can have external

causes, of course). Another motivation is the fact that this model represents contour (constant

height) lines for one of the simplest models for growing connected interface in three dimensions.

The precise definition of the interface model ξ̃t is in Section 4, here we only mention two similar

systems which have previously appeared in the literature. The first is a continuous–time relative

analyzed in [KS], where an “approximate shape” result was proved; we will have more to say on

this subject in Section 5. The second is the synchronization dynamics described in Section 9.6

of [TM], and discussed in [Gri1] and [EG]. In fact, the coupling method from [EG] can be used

to analyze the one–dimensional version of DB dynamics, whereas the corresponding coupling in

two dimensions is much more elusive ([Gra2]). Nevertheless, the connection between the DB

and the interface model can be utilized to prove the following result.

Theorem 6. Let Nt(0) =
∑t

i=0 1{γ̃i(0)=1} be the number of times the origin is excited in the

time interval [0, t].

(1) For every fixed ps,
Nt(0)

t a.s. converges to a constant ν(ps) ∈ (0, 1/3) as t → ∞.

(2) ν(ps)p
−1/3
s → ν∗ ∈ (0,∞) as ps → 0.

Since the origin gets excited about once per every 1/(ν∗p1/3s ) time steps, we would expect

that the system approaches a unique equilibrium measure with density of excited sites on the

order of p
1/3
s . This of course does not follow from Theorem 6, and the problem remains open

(see [Gra2] for a discussion on this issue).

We proceed with a few remarks on related and more general models. The fact that rings

are the dominant feature of the systems discussed here depends crucially on synchronicity; an

asynchronous GHM–type system would either die out or approach a spiral equilibrium ([DN],

[FGG2]). We expect that the same conclusion holds for externally stimulated threshold–range

synchronous systems, as failed nuclei will break the rings in this case ([FGG1]). Higher–

dimensional versions of our results seem more promising; in fact, the proof of Theorem 6 can be
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easily extended to handle any dimension d ≥ 1, the only difference in the statement being that

p
1/3
s needs to be replaced by p

1/(d+1)
s . Finally, we have not discussed percolation properties of

the DB model. A natural conjecture would be that PercFail t oscillates between 0 and about

p
−1/3
s , but it is far from clear to us how one would confirm this.

We present detailed proofs in the rest of the paper. Sections 2 and 3 deal with the ANR

dynamics: Section 2 proves Theorem 2, while Section 3 contains proofs to Theorems 3 and 5.

In Section 4, we turn to the DB dynamics and the proof of Theorem 6. In Section 5, we prove

a few large deviation estimates and obtain an approximate shape result for a three–dimensional

growth model related to bootstrap percolation.

2. Decay of density in the ANR dynamics.

We start by defining a cellular automaton ξt which has state space {0, 1, 2, . . . }Z2

and one of

the simplest rules we can think of:

ξt+1(x) = max{ξt(y), y ∈ Nx}.

We will assume that ξ0 is a product measure and denote pk = P (ξ0(x) = k) and rk =
∑∞

i=k pi,

k = 0, 1, 2, . . . For obvious reasons, we call this automaton expanding squares (ES); note that

{ξt = k} = ({ξ0 = k}+B∞(0, t))\({ξ0 ≥ k+1}+B∞(0, t)). The values taken by ξt will often be

referred to as colors. As we have already seen in Lemma 2.1 of [Gra1], the behavior of boundaries

between colors in the ES ξt can be connected to the behavior of the rings of 1’s in the ANR γ̃t.

To make this correspondence more precise, assume that γ̃t is a realization of the ANR dynamics

with γ̃0 ≡ e1 and, for every site x ∈ Z2, define Tx = inf{t : γ̃t(x) = 2} and ξ0(x) = (Tx + 2)/3.

This makes ξ0(x) a geometric random variable with p0 = 0 and pk = pk−1
f (1− pf ) for k > 0.

Lemma 2.1. Under the specified coupling we have, for all t ≥ 0,

(2.1) {x : γ̃t+1(x) = 1} =
⋃

s=0,1,...,t:
(t−s) mod 3=0

{x : ξs(x) ≤
t− s

3
< ξs+1(x)}.

It is important to note that, as ξt(x) is non-decreasing in t, the sets which form the union in

(2.1) are disjoint.

Proof. Denote the set on the right of (2.1) as St. Our first step is to prove St ∩ St−1 = ∅ and

St ∩ St−2 = ∅. Let x ∈ St ∩ St−1. Then there exist s1, s2 such that s1 6= s2 and ξs1(x) ≤
(t − 1 − s1)/3 < ξs1+1(x), ξs2(x) ≤ (t − s2)/3 < ξs2+1(x). If s1 < s2, then (t − 1 − s1)/3 <

ξs1+1(x) ≤ ξs2(x) ≤ (t − s2)/3. This implies that s1 ≥ s2, a contradiction. The assumption

s1 > s2 leads to a similar contradiction, and the proof that St ∩ St−2 = ∅ is just as simple.
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We now proceed to prove (2.1) by induction on t. To start, note that both S0 and {γ̃1 = 1}
are empty. Make now the induction hypothesis that Su = {γ̃u+1 = 1} for every u < t.

First, we prove that St ⊂ {γ̃t+1 = 1}. Assume that x ∈ St. The induction hypothesis and

x /∈ St−1 imply that γ̃t(x) ∈ {0, 2, ei}, and then induction hypothesis and x /∈ St−2 imply that

either γ̃t(x) = 0 or γ̃t−1(x) ∈ {ei}. The second case implies that ξ0(x) ≥ (t + 1)/3, hence

ξs(x) > t/3 for s ≥ 0, which contradicts x ∈ St. It therefore follows that γ̃t(x) = 0. Moreover,

find the s ∈ {0, 1, . . . , t} such that (t − s)mod 3 = 0 and ξs(x) ≤ (t − s)/3 < ξs+1(x). Then

there must exist a y ∈ Nx with ξs(y) > (t− s)/3. It must also be true that ξs−1(y) ≤ (t− s)/3

(otherwise ξs(x) > (t − s)/3). Hence y ∈ St−1 and, by the induction hypothesis, γ̃t(y) = 1.

Thus γ̃t+1(x) = 1.

Finally, we prove that {γ̃t+1 = 1} ⊂ St. If γ̃t+1(x) = 1, then γ̃t(x) = 0 and there is a y ∈ Nx

such that either γ̃t(y) = 1 or γ̃t(y) = e1.

We deal with the second case first. Note that it implies that tmod 3 = 0, and we claim that

x is in the s = 0 set of the union (2.1). For this, we have to check that ξ0(x) ≤ t/3 < ξ1(x).

However, since ξ0(y) ≥ t/3+1, ξ1(x) > t/3. Moreover, since ξ0(x) > t/3 would imply γ̃t(x) = e1,

ξ0(x) ≤ t/3. Therefore, x ∈ St.

Assume now that γ̃t(y) = 1. Hence y ∈ St−1, and there exists an s with ξs(y) ≤ (t−1−s)/3 <

ξs+1(y). We claim that s + 1 works to show that x ∈ St. Because ξs+1(y) > ((t − 1) − s)/3, it

follows that ξs+2(x) > (t − (s + 1))/3. If ξs+1(x) > (t − (s + 1))/3, then ξs(x) > (t − 1 − s)/3

(since x /∈ St−1) and then ξs−1(x) > ((t− 2)− (s− 1))/3 (since x /∈ St−2), in contradiction with

ξs(y) ≤ (t− s− 1)/3. Hence ξs+1(x) ≤ (t− (s+ 1))/3, and x ∈ St. �

Proof of (1.3). In this proof, and the ones to follow, we use the standard notation of C as a

“generic constant,” whose value may change from line to line. By Lemma 2.1,

(2.2)

P (γ̃t(x) = 1) =

⌊t/3⌋
∑

u=0

P (ξt−3u(x) ≤ u < ξt−3u+1(x))

=

⌊t/3⌋
∑

u=0

(1− ru+1)
(2t−6u+1)2(1− (1− ru+1)

8(t−3u+1))

≤
⌊t/3⌋
∑

u=0

e−ru+1(2t−6u+1)28(t− 3u+ 1)ru+1

≤ 8

t
· pf
1− pf

C log t
∑

u=0

e−ru+1t
2

t2(ru+1 − ru+2) + C · 1

t2
.

To prove the last line in (2.2), first note that ru+1 = puf < 1/t4 if u > C log t for a large constant

C. Hence we can restrict the summation to u’s smaller than C log t; for a large enough t and a
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u in this range, t−3u > t/2. The sum in the last line of (2.2) is smaller than
∫∞
0

e−t dt, proving

the upper bound in (1.3).

For the lower bound, choose

u =

⌊

log(t2)

log(1/pf )

⌋

and use this term as a lower bound for the sum in the second line of (2.2). Since 1 ≤ ru+1t
2 ≤

1/pf , 2(t− 3u) + 1 ≤ 2t, and tru+1 goes to 0 as t → ∞, it follows that:

P (γ̃t(x) = 1) ≥ e−2ru+1t
2 · tru+1 ≥ e−2/q · 1

t
,

for large t. This ends the proof. �

Assume for simplicity that p
−1/2
f is an integer and take tk = t0p

−k/2
f . Then

lim
k→∞

tkP (γ̃tk(x) = 1) = 8t20

∞
∑

n=−∞
pnf e

4t20p
n
f .

As this expression depends on t0, limt→∞ tP (γ̃t(x) = 1) can not exist.

Proof that γ̃t dies out weakly. If ξs(x) < ξs+1(x) and t = 3ξs(x) + s, then by Lemma 2.1,

γ̃t+1(x) = 1. Since ξt changes infinitely often, so does γ̃t(x).

To prove (1.4), we have to show that Xt = t−1
∑t

s=0 1γ̃s(x) 6=0 → 0 a.s. as t → ∞. By (1.3),

E(Xt) ≤ Ct−1 log t, therefore E(
∑∞

n=1 Xn2) < ∞ and Xn2 → 0 a.s. If t is any integer, take

n = n(t) such that n2 < t ≤ (n+ 1)2 and observe that Xt ≤
(

n+1
n

)2
X(n+1)2 → 0 a.s. �

3. Percolation properties of the ANR dynamics.

Again, our starting point is the comparison automaton ξt. Assume first that ξ0 contains only

3 colors and that the initial measure is a product measure with

P (ξ0(x) = 2) = p, P (ξ0(x) = 1) = q, P (ξ0(x) = 0) = 1− p− q,

for each x ∈ Z2.

Lemma 3.1. We have 1 ≤ λ′
lc ≤ λ′

uc < ∞. Moreover, if λ < λ′
lc, q ≤ λp, and p is small

enough, {ξt ∈ {0, 2}} ℓ∞–percolates for every t, while {ξt = 1} never ℓ∞–percolates. Finally, if

λ > λ′
uc and q ≥ λp, then there exist constants r > 0 and ǫ > 0, so that if p is small enough,

then at time t = ⌊r/√p⌋ the set {ξt = 1} ℓ∞–percolates, while {ξt = 1}+B∞(0, ǫ/
√
p) does not.
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Proof. We start by noting that λ′
lc ≤ λ′

uc by definitions. Next, we prove that 1 ≤ λ′
lc. Assume

that λ < 1. Then, by results in Chapter 4 of [MR], there exist ǫ > 0 and r0 > 0 so that both

W2(1, r0−ǫ) and W1(λ, r0+ǫ)c percolate, while neither W2(1, r0−ǫ)c nor W1(λ, r0+ǫ) percolate.

This clearly implies that λ ≤ λ′
lc.

Next, we prove that λ′
uc < ∞. Fix a positive real number b > 0 (to be specified later) and

declare a site x ∈ Z2 to be open if the following two conditions hold:

(1) B∞(2bx, b) is covered by W1(λ, b/2), and

(2) B∞(2bx, b) ∩W2(1, b) = ∅.

Then, since B∞(2bx, b) contains 16 squares of side b/2,

P (x is open) ≥
(

1− e−λb2/4
)16

· e−16b2 .

Now choose first a small b and then a large λ so that P (x is open) > 0.99. Since two sites

x, y with ||x − y||∞ ≥ 2 are open independently, a standard contour argument can be utilized

to show that the open sites ℓ1–percolate, while the non–open sites do not ℓ∞–percolate; thus

λ ≥ λ′
uc.

To prove the remaining statements, start by the following coupling between ξ0 and two

independent Poisson point locations: P1 with intensity λ and P2 with intensity 1. For x ∈ Z2,

let ξ0(x) = 2 if B∞(
√
px,

√
p/2) ∩ P2 6= ∅, let ξ0(x) = 1 if B∞(

√
px,

√
p/2) ∩ P2 = ∅ and

B∞(
√
px,

√
p/2) ∩ P1 6= ∅, and let ξ0(x) = 0 otherwise. Then ξ0 is a product measure with

P (ξ0(x) = 2) = 1− e−p ≈ p and P (ξ0(x) = 1) = e−p(1− e−λp) ≈ λp. Moreover,

(3.1)
W1(λ, (t− 1)

√
p) \W2(1, (t+ 1)

√
p) ⊂ √

p{ξt = 1}
⊂ W1(λ, (t+ 1)

√
p) \W2(1, (t− 1)

√
p).

Assume that λ > λ′
uc. Let r and ǫ be as in the definition of λ′

uc. Now, (3.1) implies that

if we choose t = ⌊r/√p⌋, and p is so small that 2
√
p < ǫ, then {ξt = 1} ℓ∞–percolates.

Moreover, (3.1) also implies that
√
p({ξt = 1}c +B∞(0, 0.2ǫ/

√
p) is for small enough p included

in (W1(λ, r − 0.2ǫ) \ W2(1, r + 0.2ǫ))c, which does not ℓ∞–percolate. A similar application of

(3.1) proves the remaining statement. �

Corollary 3.2. Assume that ξt contains infinitely many colors, and let again pk = P (ξ0(x) =

k), rk = P (ξ0(x) ≥ k). If lim supk→∞ pk/rk+1 > λ′
uc, then, almost surely, there are infinitely

many times at which a single color ℓ∞–percolates. On the other hand, if lim supk→∞ pk/rk+1 <

λ′
lc, then, almost surely, at sufficiently large times no single color percolates.

We now proceed to prove Theorems 3 and 5. We will use many of the techniques introduced in

[Gra1], especially those of Section 5 of that paper. For the readers’ convenience, we summarize
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some notation at this point. For set A ⊂ Zd, we define ∂∞A = {x ∈ A : there exists a y ∈ Ac

with ||x − y||∞ = 1} and ∂∞
o A = ∂∞(Ac). We make it a convention that a GHM γt is always

started from an initial product measure containing only 0’s and 1’s. Then, the entire evolution

of γt is specified by the set {γ0 = 1}. Assume for a moment that p = P (γ0(x) = 1). For

k = 0, 1, . . . , we define p
(k)
c (resp. p̃

(k)
c ) to be the critical density p for ℓ1–percolation (resp.

ℓ∞–percolation) of the set {γt = 1}+B∞(0, k).

Proof of Theorem 3. Fix an integer k ≥ 0. To the ANR γ̃t associate the GHM γt with {γ0 =

1} = {ξ0 ≥ k}. Let ξ′t be the two color ES model associated with γt (which simply means

ξ′0 = γ0). Thus {ξ′0 = 1} = {ξ0 ≥ k} and hence {ξ′t = 1} = {ξt ≥ k} for all t ≥ 0. Now it follows

from Lemma 2.1 and [Gra1, Lemma 2.1] that, for each t ≥ 0,

(3.2)

{x : γt+1(x) = 1} = {x : ξ′t(x) = 0, ξ′t+1(x) = 1}
= {x : ξt(x) ≤ k − 1 < ξt+1(x)}
⊂ {x : γ̃t+3(k−1)+1(x) = 1}.

Theorem 1 implies that, for every k, tk can be chosen so that {γtk+1 = 1} ℓ∞–percolates.

Therefore, {γ̃tk+3(k−1)+1 = 1} ℓ∞–percolates and thus PercFail t = 0 i.o.

Next, we claim that there exists a time t so that the set {γt = 0} does not ℓ∞–percolate, no

matter what the initial density p = P (γ0(x) = 1) is. This will imply, by virtue of (3.2), that for

every k there exists a tk such that {γ̃tk+3(k−1)+2 ∈ {2, 0}}c ⊂ {γ̃tk+3(k−1)+1 ∈ {1, 2}}c does not

ℓ∞–percolate, hence PercFail t > 0 i.o.

To demonstrate the claim, observe first that, by Theorem 1, γt+1(x) = 0 if and only if either

γs(x) = 0 for all s ≤ t + 1 or γs(x) = 1 for an s ≤ t − 1. Thus, by [Gra1, Lemma 2.1]

{γt+1 = 0} = {ξ′t+1 = 0} ∪ {ξ′t−1 = 1}. Not only is this a disjoint union, but the || · ||∞–

distance between the two sets is at least 3. Hence it is enough to show that for a suitably chosen

time neither of them ℓ∞–percolates. If t = T (p) (from Theorem 1) is the first time at which

{γt = 1} ℓ∞–percolates, then the proof of Theorem 2 in [Gra1] shows that {ξ′t−1 = 1} does not

ℓ∞–percolate, and the same is true for {ξ′t+1 = 0}. �

Proof of (1.6). We start by picking an integer k ≥ 1 and defining three auxiliary models: a

3-color ES model ξ′t (with colors 0, 1, and 2) and two GHM’s γt and γ′
t. The initial state of ξ′t

is given by P (ξ′0(x) = 1) = P (ξ0(x) = k) and P (ξ′0(x) = 2) = P (ξ0(x) > k), while γt and γ′
t are

given by {γ0 = 1} = {ξ′0 > 0}, and {γ′
0 = 1} = {ξ′0 = 2}. It follows from Lemma 3.1 that if

pf > 1/(1 + λ′
lc), and k is large enough, then {ξ′t ∈ {0, 2}} ℓ∞–percolates for every t.

Fix a time t and denote by Ht the event that {ξ′t = 2} does not ℓ1–percolate, that {ξ′t = 0}
does not ℓ∞–percolate, but that {ξ′t ∈ {1, 2}} does ℓ∞–percolate. Our first task is to prove that

Ht ⊂ {PercFail t+3k−2 ≤ 3}.
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To this end, assume that Ht happens. Let Ct be the infinite cluster of {ξ′t ∈ {1, 2}}. Let

v0, v1, . . . be an infinite self–avoiding ℓ∞–path which consists of sites in {ξ′t ∈ {0, 2}}. Then,

either both 0’s and 2’s have infinitely many representatives on the path, or else the path consists

of 2’s (after a finite segment is discarded). We deal with the first case first.

Let i1, i2, i3, . . . be such indices that vin , n = 1, 2, . . . are the successive sites in ∂∞
o Ct. (Such

indices must exist since the path goes into and out of Ct infinitely many times.) Pick an n and

assume that in+1 > in + 1. If vin and vin+1 are in the same ℓ∞–connected component of Cc
t ,

then by Lemma 5.1 in [Gra1], there exists an ℓ∞–path vin = w0, w1, . . . , wm = vin+1 such that

wi ∈ ∂∞
o Ct for i = 0, . . . ,m.

If vin and vin+1 are in separate ℓ∞–connected components of Cc
t , then ξ′t(vi) = 2 and vi ∈ Ct

for i = in +1, . . . , in+1 − 1. Let A be the (finite) ℓ1–connected component of {ξ′t = 2} including

vin+1. Let j > in + 1 be the smallest index such that vj ∈ ∂∞A. In this case, Lemma 5.1

of [Gra1] implies that we can find an ℓ∞–path included in ∂∞A that connects vin and vj .

Continuing in this fashion, we construct an ℓ∞–path which connects vin+1 and vin+1−1 and is

included in ∂∞{ξ′t = 2}.

The last paragraph in fact also shows how to deal with the case when ξ′t(vi) = 2 for every i.

In this case the ℓ∞–path can be deformed into a path contained entirely in ∂∞{ξ′t = 2}.

By combining these cases, we conclude that there exists a self-avoiding ℓ∞–path v′0, v
′
1, v

′
2, . . .

such that every i falls into two cases: either ξ′t(v
′
i) = 0 and ξ′t+1(v

′
i) > 0, or ξ′t−1(v

′
i) < 2 and

ξ′t(v
′
i) = 2. In the first case γt+1(v

′
i) = 1, while in the second case γ′

t(v
′
i) = 1. It follows from

(3.2) that in the first case γ̃t+3k−2(v
′
i) = 1, while in the second case γ̃t+3k(v

′
i) = 1. In either case,

each v′i is at ||·||∞-distance no larger than 2 from {γ̃t+3k−2 = 1}. Therefore, PercFail t+3k−2 ≤ 3.

Now fix an arbitrary time t. Let Ik = (pkf , p
k−1
f ) and I−k the closure of this interval. Note that

Ht happens (see Section 4 in [Gra1]) provided P (ξ0(x) ≥ k) > p
(t)
c and P (ξ0(x) ≥ k + 1) < p

(t)
c

or, equivalently, p
(t)
c ∈ Ik. Observe also that, if t is large enough, p

(t)
c ∈ I−k implies that p

(t+1)
c ∈

Ik∪Ik+1. (Otherwise p
(t)
c ≥ pkf and p

(t+1)
c ≤ pk+1

f for some k, which implies p
(t+1)
c /p

(t)
c ≤ pf < 1.

This is in contradiction with the fact that p
(t)
c t2 converges to a finite non-zero constant as t → ∞.)

Let us assume that p
(t)
c ∈ Ik. Then, as we have proved, Ht happens and, consequently,

PercFail t+3k−2 ≤ 3. There are three possibilities for the location of p
(t+1)
c . If p

(t+1)
c ∈ Ik, then

Ht+1 happens and PercFail t+3k−1 ≤ 3. If p
(t+1)
c ∈ Ik+1, then (replacing t by t+1 and k by k+1)

PercFail t+3k+2 ≤ 3. The final possibility is that p
(t+1)
c is the left endpoint of I−k . However, in

this case p
(t+2)
c ∈ Ik+1 and hence PercFail t+3k+3 ≤ 3.

By iterating this procedure, one proves that, if t is large enough, PercFails ≤ 3 for some
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s ∈ [t, t+4]. If st is the minimal time s ≥ t such that PercFails ≤ 3, then every site in {γ̃st = 1}
is at || · ||∞–distance no larger than 4 from {γ̃t = 1}. Since {γ̃st = 1} B∞(0, 3)–percolates,

{γ̃st = 1} B∞(0, 11)–percolates and PercFail t ≤ 10. Therefore, lim supPercFail t ≤ 10. �

Proof that lim supPercFail t/t < ∞ for all q. For each t, let

k =

⌊

2 log(t/(α
√
pf ))

log(1/pf )

⌋

+ 1.

If α is chosen small enough, then, for large t, p̃
(t)
c > P (ξ0(x) ≥ k). Let γt be the GHM determined

by {γ0 = 1} = {ξ0 ≥ k}. Then, let T = T (pk−1
f ) (from Theorem 1) be the first time at which 1’s

in γt ℓ
∞–percolate. For large t we have (by Theorem 1) t < T ≤ 2λcp

−(k−1)/2
f ≤ t · 2λc/(α

√
pf ).

Now, by (3.2), {γ̃T+3k−3 = 1} ℓ∞–percolates. Also, every site in {γ̃T+3k−3 = 1} is at || · ||∞–

distance at most T + 3k − 3 − t from {γ̃t = 1}. Therefore, PercFail t ≤ 2(T + 3k − 3 − t) and

lim supPercFail t/t ≤ 4λc/(α
√
pf )− 2. �

Proof of (1.5). Assume that pf < 1/(1+λ′
uc). Then, by Lemma 3.1 there exist constants r > 0,

and ǫ > 0 so that for k large enough and t = r/
√
pk, the set {ξt = k}c +B∞(0, ǫ/

√
pk) does not

ℓ∞–percolate.

Pick an x ∈ {ξt = k} \ ({ξt = k}c + B∞(0, 3k + 6)) (i.e. x has color k and is far away from

the boundaries). We claim that γ̃t+3k+4(x) 6= 1. Otherwise, Lemma 2.1 would imply existence

of an s ∈ {0, . . . , t+ 3k + 4} so that ξs(x) ≤ (t− s)/3 + k + 4/3 < ξs+1(x). Since ξs(x) = k for

t ≤ s ≤ t+3k+5, this would imply that s < t, but then ξs+1 > k, a contradiction. This implies

that

PercFail t+3k+4 ≥ ǫ√
pk

− 2(3k + 5),

and therefore
1

t+ 3k + 4
PercFail t+3k+4 ≥ ǫ− 2(3k + 5)

√
pk

r + (3k + 4)
√
pk

.

This last expression converges to ǫ/r as k → ∞, proving that lim supPercFail t/t ≥ ǫ/r. �

4. Excitation times in the DB dynamics.

We begin by introducing a model for randomly growing interface ξ̃t in three dimensions. The

state space of ξ̃t is {0, 1, . . . }Z
2

; here ξ̃t(x) = k means that the height of the interface above the

site x is k. The update rule is as follows:

(I1) If there is at least one y ∈ Nx with ξ̃t(y) > ξ̃t(x), then ξ̃t(x) advances automatically by 1.

(I2) Otherwise, if ξ̃t(x) = ξ̃t−1(x) = ξ̃t−2(x), then ξ̃t(x) advances by 1 with probability p.
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(I3) In other cases ξ̃t(x) stays the same.

We will assume throughout that ξ̃t ≡ 0 for t ≤ 0. The connection between ξ̃t and γ̃t will

be established in Lemma 4.1 below, but we point out immediately that the awkward condition

(I2) involving the previous two times stems from the fact that only 0’s can be externally excited

in the DB. In fact, the two models will be coupled using a space–time percolation structure on

sites of Z3: interpret Z2 × Z+ as space×time and make any site (x, t) ∈ Z2 × Z+ a nucleus

independently, with probability ps. The random set of nuclei will be denoted by Π = Π(ps).

Then, the DB γ̃t can be equivalently defined by declaring that, for t ≥ 0, γ̃t+1(x) = 1 iff γ̃t(x) = 0

and either x ∈ {γ̃t = 1}+N or (x, t) ∈ Π. The interface dynamics ξ̃t can also be be defined this

way: simply replace (I2) by

(I2’) Otherwise, if ξ̃t(x) = ξ̃t−1(x) = ξ̃t−2(x) and (x, t) ∈ Π(p), then ξ̃t+1(x) = ξ̃t(x) + 1.

The percolation structure is most useful because it allows us a last passage interpretation,

similar to the one described in [Gri1] for the synchronization dynamics and in [CGGK] for the

PERT networks. We introduce several definitions, some of which are directly linked to the DB,

while others are useful for approximation purposes. We denote by P the unit–intensity Poisson

point location in R3.

Fix a space–time point (x, t) ∈ Z2×Z+. A sequence of points (x1, t1), (x2, t2), . . . , (xn, tn) ∈ Π

is called a discrete path ending at (x, t) if 0 ≤ t1 < t2 < · · · < tn < t, ||xi − xi−1||∞ ≤ ti − ti−1

for i = 2, . . . , n, and ||x−xn||∞ ≤ t− tn. An admissible path π ending at (x, t) is a discrete path

as above such that ||xi − xi−1||∞ + 3 ≤ ti − ti−1 for i = 2, . . . n, and ||x− xn||∞ + 1 ≤ t− tn. A

continuous path differs from a discrete one in the requirement that all (xi, ti) ∈ P, i = 1, . . . , n.

In either case, the length a path π is Len(π) = n. Now define, for x ∈ Z2 and 0 ≤ s < t:

L̃((x, t), s) = max{Len(π) : π is an admissible path contained in Z2 × [s, t) ending at (x, t)}.
L((x, t), s) = max{Len(π) : π is a discrete path contained in Z2 × [s, t) ending at (x, t)}.
L((x, t), s) = max{Len(π) : π is a continuous path contained in R2 × [s, t) ending at (x, t)}.

The properties of the described coupling of γ̃t, ξ̃t and the last passage problem is contained

in our next lemma. We denote by Nt(x) the number of times x is excited in the time interval

[0, t].

Lemma 4.1. At any time t > 0, Nt(x) = ξ̃t(x) = L̃((x, t), 0).

Proof. We first establish the connection between the interface and the last passage problem.

We prove, by induction on t, that if x ∈ Z2 and t > 0 are such that t is the first time at

which ξ̃t(x) = k, then an admissible path π ending at (x, t) with Len(π) = k exists. This will
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show that ξ̃t(x) ≤ L̃((x, t), 0). Now, ξ̃t(x) may become k in two ways. One possibility is that

ξ̃t−1(x) = ξ̃t−2(x) = ξ̃t−3(x) = k − 1, and (x, t− 1) ∈ Π. In this case, add the nucleus (x, t− 1)

to the admissible path of length k − 1 which ends at (x, t − 3). The other possibility is that

ξ̃t−1(y) > k − 1 for some y ∈ Nx. Then there exists an admissible path of length k ending at

(y, t− 1), and just replace that final point by (x, t).

On the other hand, if there exists an admissible path π with Len(π) = k, then ξ̃t(x) ≥ k

by obvious monotonicity (ξ̃t can only be increased by adding more nuclei). This shows that

L̃((x, t), 0) ≤ ξ̃t(x) and ends the proof of the second identity.

If x − y ∈ N , then |L̃((x, t), 0) − L̃((y, t), 0)| ≤ 1, therefore we know at this point that

|ξ̃t(x)− ξ̃t(y)| ≤ 1.

To prove the first equality, it is easiest to once again identify 1’s in γ̃t with boundaries in ξ̃t.

This time, the connection is simply

(4.1) {x : γ̃t+1(x) = 1} = {x : ξ̃t+1(x) > ξ̃t(x)}.

We prove (4.1) by induction. If γ̃t+1(x) = 1, then γ̃t(x) 6= 1 and γ̃t−1(x) 6= 1, hence (by the

induction hypothesis) ξ̃t(x) = ξ̃t−1(x) = ξ̃t−2(x). Moreover, either (x, t) ∈ Π or else there exists

a y ∈ Nx such that γ̃t(y) = 1. In the first case, ξ̃t+1(x) = ξ̃t(x)+1 by (I2’) above. In the second

case, ξ̃t(y) > ξ̃t−1(y) and ξ̃t(y) > ξ̃t(x) (since ξ̃t−1(y) ≥ ξ̃t−2(x)), hence ξ̃t+1(x) = ξ̃t(x) + 1 as

well.

Conversely, if ξ̃t+1(x) > ξ̃t(x), then the situation is either as in (I2’) in which case clearly

γ̃t+1(x) = 1, or else there exists a y ∈ Nx such that ξ̃t(y) > ξ̃t(x). In the second case, ξ̃t(y) >

ξ̃t−1(y), so by the induction hypothesis γ̃t−1(y) = 1, and hence γ̃t−2(y) 6= 1 and γ̃t−3(y) 6= 1,

so again by the induction hypothesis ξ̃t−3(y) = ξ̃t−1(y). It follows that ξ̃t−2(x) ≥ ξ̃t−3(y) =

ξ̃t−1(y) = ξ̃t(x), and so ξ̃t−2(x) = ξ̃t(x). Using once again the induction hypothesis, we get

γ̃t(x) = 0 and γ̃t(y) = 1, so that γ̃t+1(x) = 1. �

Lemma 4.2. As t → ∞, L̃((0,t),0)
t converges to a constant ν(ps) ∈ (0, 1/3) a.s. and in L1.

Proof. We define random variables Xs,t for 0 ≤ s ≤ t. If s = t then we declare Xs,t = 0.

Otherwise, take a path π with the maximal length L̃((0, t), s) (with some arbitrary convention

in cases when there is more than one maximizer). Let (x1, t1) be the first point on π. Then

declare Xs,t = L̃((x1, t1), 0); assume the maximum is achieved at a path π′. By concatenation

of π and π′ and, if necessary, omission of (x1, t1), one gets

X0,t ≥ X0,s +Xs,t − 1.

By the subadditive ergodic theorem ([Lig, p. 277]), X0,t/t converge as t → ∞, a. s. and in L1,

to ν(ps) = supt≥1 E(X0,t − 1)/t = supt≥1 E(L̃((0, t), 0)− 1)/t. Since E(L̃((0, t), 0) > 1 for large
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t, ν(ps) > 0. It is obvious that ν(ps) ≤ 1/3. Strict inequality follows from an argument similar

to the one on p. 51 of [Gri1]; as this is not relevant to further discussion, we omit the detailed

proof. �

Lemma 4.3. As t → ∞, L((0,t),0)
t converges to a constant ν′(ps) ∈ (0, 1] a.s. and in L1.

Moreover, ν′(ps) ≤ 2.3 · p1/3s for a small enough ps ∈ (0, 1).

Proof. We skip the proof of convergence as t → ∞, as it is even easier to establish than in the

case of admissible paths. To prove the upper bound for ν′(ps), assume that if L((0, t), 0) ≥ n.

Then there must exist n times 0 ≤ t1 < · · · < tn < tn+1 = t and sites (xi, ti) such that

(xi, ti) ∈ Π and ||xi+1 − xi||∞ ≤ ti+1 − ti, i = 1, . . . n. (Here we declare xn+1 = 0.)

Let ∆i be the time differences, i.e. ∆i = ti+1 − ti, i = 1, . . . , n. The number of ways to

choose the times ti is at most
(

t
n

)

. After the ti are chosen, the probability that the nuclei (xi, ti)

exist is bounded above by (2∆1 +1)2 . . . (2∆n +1)2pns . This product is maximized when ∆i are

equal, thus

P (L((0, t), 0) ≥ n) ≤
(

t

n

)(

2
t

n
+ 1

)2n

pns ≤
(

eps(2t+ n)2t

n3

)n

,

which decreases exponentially in n as soon as n/(tp
1/3
s ) ≥ 2.3 > (4e)1/3 and ps is small enough.

An application of the Borel–Cantelli lemma ends the proof. �

Of course, ν(ps) and ν′(ps) are quite different for large ps (in fact, ν′(ps) = 1 for ps close to

1), but, as the next lemma demonstrates, they have the same scaling law near ps = 0.

Lemma 4.4. lim supps→0 p
−1/3
s |ν(ps)− ν′(ps)| = 0.

Proof. Of course, ν(ps) ≤ ν′(ps). Fix an ǫ > 0. Let Ht be the event that some discrete path

ending at (0, t) exceeds the lengths of all admissible paths ending at (0, t) by at least ǫp
1/3
s t.

What we will prove is that, given that ps is small enough, P (Ht) converges to 0 exponentially

fast as t → ∞. Let n = 2⌊ǫp1/3s t/2⌋

If ti < ti+1, and (xi, ti), (xi+1, ti+1) are successive nuclei on a path which violate admissibility,

then (xi, ti) must be one of only 24(ti+1−ti−1) points. IfHt happens, there must exist a discrete

path of length at least n on which at least every other nucleus violates admissibility. With ti
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and ∆i as in the proof of Lemma 4.3, we then get that

P (Ht) ≤
(

t

n

)

(24∆1 − 1)(2∆2 + 1)2(24∆3 − 1)(2∆4 + 1)2 . . . (24∆n−1 − 1)(2∆n + 1)2pns

≤
(

t

n

)

(18)n
(

2t

n

)3n/2

pns

≤
(

50t5/2ps
n5/2

)n

≤ (100 · p1/6s ǫ−5/2)n.

The proof is concluded by choosing ps < 10−12ǫ15. �

Lemma 4.5. As t → ∞, L((0,t),0)
t converges to a constant ν∗ ∈ (0.75, 2.3) a.s. and in L1.

Moreover,

(4.1) p−1/3
s ν′(ps) → ν∗ as ps → 0.

Proof. Again, we skip the proof of the existence of the limit as t → ∞, as it is the same as the

proof of Lemma 4.2. It is not immediately clear why ν∗ < ∞ though, and to see this we prove

the small ps approximation result first.

For a realization of P, couple P and Π = Π(1 − e−ps) in the standard way, by declaring

(x, t) ∈ Z2×Z+ a nucleus iff B∞((x, t), 1/2)∩p
−1/3
s P 6= ∅. (Note that the box B∞(·, ·) is three–

dimensional here.) Fix an ǫ > 0. We will prove that, under this coupling, and for a sufficiently

small ps there exists an α > 0 so that

(4.2) P (|L((0, p1/3s t), 0)− L((0, t), 0)| > ǫp1/3s t) ≤ e−αt.

Once we have (4.2), it immediately follows that p
−1/3
s ν′(1 − e−ps) → ν∗ as ps → 0, which is

clearly enough to prove (4.1).

To prove (4.2), note first that L((0, p1/3s t), 0) ≥ L((0, t), 0)−1 (nuclei at time 0 “feel” negative

times). On the other hand, let Ht be the event that L((0, p1/3s t), 0) ≥ L((0, t), 0) + ǫp
1/3
s t.

Denote by Y(x,t) the cardinality of B∞((x, t), 1/2) ∩ p
−1/3
s P and let n = ǫp

1/3
s t. (Hence Y(x,t)

are independent Poisson random variables with mean ps.) Moreover, let Fm be the event that

there exists a discrete path (x1, t1), . . . , (xm, tm) ∈ Π of length m ≤ n, such that Y(xi,ti) ≥ 2 for

every i and Y(x1,t1) + . . . Y(xm,tm) ≥ n−m. We now divide Ht into three events:

H1
t = {Y(0,t) ≥ n/3},

H2
t = ∪m≥n/3Fm,

H3
t = ∪m≤n/3Fm.
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Since Ht ⊂ H1
t ∪ H2

t ∪ H3
t , we need to show that all three events are exponentially unlikely

for small ps. For starters, P (H1
t ) goes to 0 as t → ∞ at a faster then exponential rate. Now

abbreviate Yi = Y(xi,ti). Since P (Yi ≥ 2) = O(p2s), the proof of Lemma 4.3 immediately

implies that P (H2
t ) must go to 0 exponentially as t → ∞. Finally, (see the Appendix in [KS]),

supm≤n/3 P (Y1 + · · · + Ym ≥ 2n/3) ≤ Cnp
2n/3
s , therefore a similar argument as in the proof of

Lemma 4.3 yields that P (H3
t ) is exponentially small in t. This ends the proof of (4.2) and hence

(4.1).

Finally, we need to prove the bounds for ν∗. The upper bound follows from Lemma 4.3 and

(4.1). We now obtain the lower bound. If P (L(0, c), 0) ≥ 1) = α, then E(L(0, c), 0)) ≥ α and,

by superadditivity, ν∗ ≥ α/c. Since the volume of {(x, t) ∈ R3 : 0 ≤ t < c, ||x||∞ ≤ t − c}
is 4

3 · c3, α = 1 − e−4c3/3. Therefore, for small ps, ν
∗ is bounded below by the maximum of

c−1(1− e−4c3/3) over c > 0. This maximum is about 0.756. �

We should mention that the lower bound on ν∗ in Lemma 4.4 can certainly be improved with

some work. A substantial improvement of the upper bound seems to present a much bigger

challenge. Computer simulations indicate that ν∗ is somewhere in the neighborhood of 1.3.

Proof of Theorem 6. Lemma 4.2 deals with (1), while (2) is proved by Lemmas 4.3–4.5. �

5. A shape result for a related growth model.

In this section, we prove a large deviation estimate for the convergence in Theorem 6(1),

and then apply it to obtain an “approximate shape” result similar to the one in [KS], but, due

to simplicity of the discrete–time dynamics, a little more precise. To this end, define a three–

dimensional discrete–time random growth model ηt ∈ {0, 1}Z3

, in which a 1 never changes, a

0 at x changes into a 1 automatically if the 6 nearest–neighbor sites of x contain 2 or more

1’s, and with probability ps if these 6 sites contain exactly one 1. Assume that these growth

dynamics are started from a single occupied site, say η0(x) = 1 iff x = 0. Standard subadditivity

arguments imply that there exist a convex set A(ps) ⊂ R3 with non–empty interior such that,

1

t
{ηt = 1} → A(ps) a.s.

Here, the convergence holds in the Hausdorff metric (see [KS], [GG] for discussions on such

convergence issues). Below is our main result of this section.

Theorem 5.1. As ps → 0, in Hausdorff metric,

p−1/3
s A(ps) → B∞(0, ν∗/

√
2).
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Our first step in proving Theorem 5.1 is to analyze what happens if {η0 = 1} is precisely the

half–space He3 = {x ∈ Z3 : 〈x, e3〉 ≤ 0}. We can do this by only slightly changing the setting

from Section 4: let now Nx = B1(x, 1), and define the interface dynamics ξ̄t by (I1), (I3) and

(I2”) Otherwise, if (x, t) ∈ Π(ps), then ξ̄t+1(x) = ξ̄t(x) + 1.

Moreover, define an η–admissible path π ending at (x, t) to be a sequence of space–time

points (x1, t1), . . . , (xn, tn) ∈ Π(ps), (xn+1, tn+1) = (x, t) such that 0 ≤ t1 < t2 < · · · < tn+1 and

||xi+1 − xi||1 +1 ≤ ti+1 − ti, i = 1, . . . , n. Again, n = Len(π), and L̄((x, t), s) = max{Len(π) : π
is an η–admissible path contained in Z2 × [s, t) ending in (x, t)}. The following two lemmas

could now be proved similarly as Lemmas 4.1–4.5.

Lemma 5.2. At any time t > 0, ξ̄t(x) = L̄((x, t), 0).

Lemma 5.3. As t → ∞, 1
t L̄((0, t), 0) converges a.s. and in L1 to a constant ν̄(ps) ∈ (0, 1).

Moreover, p
−1/3
s ν̄(ps) → ν∗/

√
2 as ps → 0.

To justify the last statement, note that the ℓ1 version of L is obtained from the ℓ∞ version

by a 45 degrees rotation and a
√
2 scaling. The fact that ν̄(ps) < 1 again follows from a Peierls

argument, very similar to the one on p. 51 of [Gri1].

By Lemma 5.3, A(ps) should intersect the coordinate axes in about [−p
1/3
s ν∗/

√
2, p

1/3
s ν∗/

√
2].

Since the growth proceeds in other directions with greater ease, A(ps) should be close to a cube.

This intuitive argument makes Theorem 5.1 plausible, all that remain are some technical details.

Before proceeding, we add a remark about a continuous–time version of these growth dynamics

introduced by Kesten and Schonmann ([KS]), in which a 0 changes to 1 at rate 1 if it has 2

or more occupied neighbors, and at rate ps if it has exactly one occupied neighbor. Though

details are much more elusive, we suspect that the asymptotic shape Ac(ps), multiplied by p
−1/3
s ,

converges to B∞(0, ν∗c ). Here, ν∗c is obtained as in Lemma 4.5, except that in the definition of

L the norm || · ||∞ is replaced by the Minkowski functional of the asymptotic shape of the

two–dimensional Richardson growth model.

Lemma 5.4. For every ǫ > 0,

P (|L̄((0, t), 0)− E(L̄((0, t), 0)| > ǫp1/3s t) ≤ 2 exp(−1

2
ǫ2p2/3s t).

Proof. We use the method of bounded differences (see [McD] for an accessible introduction to

the method and its many applications). For s = 0, . . . , t, let Fs be the σ–algebra generated by

Π(ps) ∩ (Z2 × [0, s − 1]) (F0 is the trivial σ–algebra), and define Xs = E(L̄((0, t), 0)|Fs). For
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s = 1, . . . , t, let L̄s be the length of the longest η–admissible path ending at (x, t) and contained in

Z2×([0, t−1]\{s−1}). Then L̄s ≤ L̄((0, t), 0) ≤ L̄s+1 and therefore |Xs−Xs−1| ≤ 1, so that the

Hoeffding’s inequality ([Hoe]) implies that, for every x ≥ 0, P (|Xt −X0| ≥ x) ≤ 2 exp(− 1
2x

2/t).

�

Lemma 5.5. Assume that X1, X2, . . . are i.i.d. symmetric random variables taking values in

[−M,M ] ∩ Z2, and Sn = X1 + · · · +Xn. Then, for any n ≥ 1, P (max1≤k≤n |Sk| ≥ Mn3/4) ≤
8e−

√
n/32.

Proof. By basic martingale inequalities (e.g. Theorem 22.5 in [Bil]), the probability in question

is bounded by 8max1≤k≤n P (Sk ≥ Mn3/4/4). But for every k = 1, . . . n and every λ > 0,

P (Sk ≥ Mn3/4/4) ≤ e−λMn3/4/4E(eλX1)n

≤ e−λMn3/4/4(cosh(λM))n

≤ e−λMn3/4/4+n(λM)2/2.

The choice of λM = n−1/4/4 hence finishes off the proof. �

Lemma 5.6. For every ps and a small enough ǫ > 0, there exists a time t0 = t0(ps, ǫ) so that,

for t ≥ t0, the probability that there exists an η–admissible path ending at (0, t), with the space

coordinate of the first point (x1, t1) satisfying ||x1||∞ ≤ t7/8 and length at least (ν̄(ps)−2ǫp
1/3
s )t,

is at least 1− 3
√
t exp(− 1

10ǫ
2p

2/3
s t1/4).

Proof. Let T = ⌊
√
t⌋, and n = ⌊t/T ⌋. By Lemmas 5.3–5.4, there exists a t0 so that for t ≥ t0,

(5.1) P (L̄((0, T ), 0) ∈ [T (ν̄(ps)− ǫp1/3s ), T (ν̄(ps) + ǫp1/3s )]) ≥ 1− 2 exp(−1

8
ǫ2p2/3s T ).

Let Y1 = L̄((0, t), t−T ) and choose, from all the maximizing η–admissible paths with this length,

one uniformly at random. The starting point (x′
1, t

′
1) has its space coordinate x1 distributed

symmetrically with respect to switching signs of either coordinate. In the next step, Y2 =

L̄((x′
1, t− T ), t− 2T ), determine the starting point (x′′

1 , t
′′
1) of the randomly chosen maximal η–

admissible path, and let Y3 = L̄((x′′
1 , t−2T ), t−3T ). By continuing in this fashion, Y1, Y2, . . . , Yn

are defined recursively, with (x1, t1) being the starting point on the last, n’th such η–admissible

path (which has length Yn). Note that the concatenation of such paths produces an η–admissible

path with length Y1 + · · ·+ Yn.

To apply Lemma 5.5, letM = T and letX1, X2, . . . from Lemma 5.5 be the first coordinates of

x′
1, x

′′
1 , . . . , then repeat the argument with second coordinates. The conclusion is that ||x1||∞ ≤

t7/8 with probability at least 1 − 16 exp(−n1/4/32). Moreover, by (5.1), the probability that
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Y1+· · ·+Yn ≥ nT (ν̄(ps)−ǫp
1/3
s ) is at least 1−2T exp(− 1

8ǫ
2p

2/3
s T ). Hence the proof is concluded

by suitably increasing t0, if necessary. �

In the next two proofs, we use the “lattice” ball B2(x, r), the set of all points y ∈ Z3 such

that ||x− y||2 ≤ r. We will also fix an α < ν∗/
√
2 and a β > ν∗/

√
2 for the rest of this section.

Thus all constants (in particular, those denoted by C) will be allowed to depend on them.

Lemma 5.7. Assume that {η0 = 1} = B2(0, r). For a small enough ps, there exists a r0 =

r0(ps) so that, for r ≥ r0, P (B2(0, r) +B∞(0, αp
1/3
s

√
r)) ⊂ {η√r = 1}) ≥ 1− exp(−Cp

2/3
s r1/8).

Proof. Let α′ = 1
2 (α+ ν∗/

√
2). Note first that, as remarked in [KS],

(5.2) (B2(0, r) +B1(0,
√
r)) ∩B∞(0, r) ⊂ {η√r = 1}.

For any unit vector u ∈ S3, there is an i ∈ {1, 2, 3} so that |〈u, ei〉| ≥ 1/2. Without loss of

generality we will assume, from now on, that 〈u, e3〉 ≥ 1/2. It follows from (5.2) that if r is

large enough

(5.3) [0, r + 2−1/2
√
r ·

(

1

〈e3, u〉
− 1

)

]u ∩ Z3 ⊂ {η√r = 1}.

On the other hand, Lemma 5.6 implies that

(5.4) [0, r +
√
rα′p1/3s 〈e3, u〉 − Cr7/16]u ∩ Z3 ⊂ {η√r = 1},

with probability at least 1− exp(−Cp
2/3
s r1/8). Since there are at most Cr3 vectors u ∈ S2 such

that [0, 2r]u ∩ Z2 6= ∅, P ((5.4) holds for all u) ≥ 1− exp(−Cp
2/3
s r1/8).

Now if 〈e3, u〉 ≥ (α+ α′)/2α′, r ≥
(

1
2 (α

′ − α)p
1/3
s

)−16

, and (5.4) holds, then

(5.5) [0, r + αp1/3s

√
r · 1

〈e3, u〉
]u ⊂ {η√r = 1}.

If 〈e3, u〉 < (α+ α′)/2α′ , (5.5) is deterministically true for sufficiently small ps by (5.3). �

Proof of Theorem 5.1. By Lemmas 5.2–5.4, for a small enough ps, there exist a t0 = t0(ps) so

P (ξ̄t(x) ≥ βp
1/3
s t) ≤ 2 exp(−Cp

2/3
s t). Therefore, for t ≥ t0,

P ({ηt = 1} ∩B∞(0, βp1/3s t)c 6= ∅) ≤ Cp2/3s t2e−Cp2/3
s t,

and so, with probability 1, {ηt = 1} ⊂ B∞(0, βp
1/3
s t) eventually. After dividing by t, and sending

t → ∞, one gets that A(ps) ⊂ B∞(0, βp
1/3
s ), which proves the upper bound in Theorem 1.1.
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To prove the lower bound, fix a small δ > 0. Define the Euclidean set Bδ = B∞(0, 1 − δ) +

B2(0, δ) ⊂ R3 and note that rBδ = ∪x∈B∞(0,r(1−δ))B2(x, rδ). By Lemma 5.7, there exists a

r0 = r0(ps, δ) so that whenever r ≥ r0, and rBδ ∩ Z3 ⊂ {ηt0 = 1}

(5.6) P ((r + αp1/3s

√
δr)Bδ ∩ Z3 ⊂ {ηt0+√

δr = 1}) ≥ 1− e−C(ps)r
1/8

.

Define the sequence rk by r1 = r, rk+1 = rk + αp
1/3
s

√
δrk. Note first that rk ≥ r + (k −

1)
√
δαp

1/3
s

√
δr and

(5.7) lim
k→∞

rk+1√
r1 + . . .

√
rk

= lim
k→∞

rk+1 − rk√
rk

=
√
δαp1/3s .

Iteration of (5.6) and monotonicity of the dynamics yield (recall that r is large)

(5.8) P (rk+1Bδ ∩ Z3 ⊂ {ηt0+√
δr1+...

√
δrk

= 1} for all k = 0, 1, . . . ) ≥ 1−
∑

k

e−Cp2/3
s r

1/8
k > 0.

Since t0 < ∞ a.s., (5.7) and (5.8) imply that

αp1/3s Bδ ⊂ A(ps),

which establishes the lower bound and ends the proof. �
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