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Cellular Automaton Growth on :�#

 Theorems, Examples, and Problems

JANKO GRAVNER, DAVID GRIFFEATH

1. Introduction

 In its simplest form, a  (CA) is a sequence of configurations on a lattice whichcellular automaton

proceeds by iterative application of a local, homogeneous update rule. The ubiquitous example is

Conway's Game of Life . Cellular automata were originally proposed in the late 1940s by[BCG], [Gar2]

Ulam and von Neumann as prototypes for complex interacting systems capable of self-[Ula] [vN] 

reproduction. Since that time the CA paradigm has been used to model spatial dynamics across the

spectrum of applied science, and a vast literature, overwhelmingly empirical, has developed. Seminal

papers in the area include [FHP] [Hol]  , , [JM]   [WR], and . For some more recent exemplary applications

to physics, chemistry and biology, see , [AL] [LDKB]  [NM] [EE-K], , and the review article s. Now, a

parallel architectures become increasingly prevalent in computer design, modelers continue to be drawn

to CA systems and their extensions to inhomogeneous environments and evolutionary dynamics.

 During the past half century of active cellular automaton study, rigorous results have been hard to
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been studied in great detail, especially in one dimension , , . Some progress has been[Garz] [Jen] [Lin]

made in the formal understanding of rather abstract aspects such as symbolic dynamics, and algorithmic

decidability (e.g., , , ). But there are few theorems and proofs which capture[Dura] [Har] [Kar], [Pap]

precisely the long-term behavior of specific rules. A general theory is out of the question since a Turing

�
c���� c
� �� �������� �� 
 m� � � ����� �	
���� 
 ������� 
 m���
��  ���[Ban] [LN] [Mart],

are capable of universal computation. Even the most basic parameterized families of CA systems exhibit

a bewildering variety of phenomena: self-organization, metastability, turbulence, self-similarity, and so

forth. From a mathematical point of view, cellular automata may rightly be viewed as discrete

counterparts to nonlinear partial differential equations. As such, they are able to emulate many aspects of

the world around us, while at the same time being particularly easy to implement on a computer. The

downside is their resistance, for the most part, to traditional methods of deductive analysis.
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 Our goal in this paper is to present a mathematical overview of one particular CA topic: the theory of

growth and asymptotic shape. We will restrict attention to systems on , the two-dimensional integers,!"

in which each lattice site is either ( ) or  ( ), and in which the set of occupied sites atempty occupied$ % &>
time  grows and attains a limiting geometry. Such  are interesting in their own right, but' growth models

also have application to more general dynamics such as models for excitable media ,  and[GHH] [FGG1]

crystals , in which they capture the speed and shape of wave propagation. We will first describe our[Pac]

increasingly detailed rigorous analysis of the best-behaved rules, the  models. Next, weThreshold Growth

examine some simple growth rules with more complex iterates which can nevertheless be determined by

a combination of computer experimentation and exact recursion. Then we turn to some rules with

behavior so exotic that, at least for now, empirical study seems the only avenue to understanding. We

hope that this mix of methods will effectively indicate the current state of knowledge on the subject, and

that the exercises and open problems we present will foster further research.

 Let us begin with some general notation for CA models.  At each successive time step, the sites of !"

become occupied or vacant according to the configuration in their neighborhoods. Thus, let  $ ( )a !"

be a prescribed finite neighborhood of the origin, so that its translate  is the neighborhooda aB � * +

of site .  Sites in are called  of . Introduce the configuration space* ( ,-*. *! a2 B neighbors

/ 0 / 0 0 1 !� -$2 %. ( 3 ( -$2 %. )4 55
2
, and for , let denote the restriction of configuration  to the set ."

A   is a mapping on  such that whenevercellular automaton rule g / g 0 g 6Ð*7 � Ð87

0 03 l * � 3 l 8 * 89 9: ; � <� ����� ��� 
�� �� ��� 
�� ���
�� ���� �������� ���� ���� ��� 
��

local configuration in their respective neighborhoods. Let  be the state at site  at time ,0>= ?@ A CDE FG @ H

IJ the system as a whole. As is customary, we will often think of the CA as a set-valued process,

confounding  with { : For instance, this allows us to write  to mean thatI I I KJ J L JJ
M J@ @ N FGO N P N P= ? Q

starting from configuration  we arrive at the set of occupied sites after  iterations of rule .I KL L JN P P H

 For convenience, this paper will focus on   : range box neighborhoodsR S N TU N

CÖ A V WWÖWW X G Y Z F[ N FE\ R R R2 _ � 
�� 
���� 
�� �� ��� c
� ����� ���� �
�� ���� ��]������

neighbors conveniently described as {N,S,E,W,NE,SE,NW,SW}. Henceforth, let us abbreviate the size

of the neighbor set as . We also restrict attention to  automata, in which^ N W W N Y` b F[S R d totalistic

the update rule depends only on a cell's state and the  of its occupied neighbors, but not on thenumber

arrangement of those neighbors. Thus there are maps such thate fE V CDE FEß E^ h FG i CDE FG

(1.1)   

       

  

       if  

    otherwise
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That is to say, a birth �cc�� 
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of  while the cell at  if the number of occupied neighbors is in the support of e fE @ Osurvives

Equivalently, as a map on subsets of \d,

K e fYP[ N C@ A P V G r C@ A P V Gs YWP o W[ N F YWP o W h F[ N FS Sn n .

t�
����� ���� 
 ������ ����� ��� m� ��������� � ���������� �� ����
����uP E P N YP [L Jjk JK .

 Although Conway's Game of Life and some of its variants have been studied extensively since the

1970's, the first systematic empirical investigation of nearest-neighbor totalistic CA rules was carried out

during the early 1980's in a series of influential papers by Wolfram which dealt mainly with one-[Wol1] 

dimensional systems. For our purposes, the most relevant reference is a fascinating experimental survey

of two-dimensional cellular automata by Packard and Wolfram  from 1985. They called the [PW] 2kv

Moore neighborhood rules of form (1.1) , labeling them in terms of the index:outer totalistic

w
xyL

v
dx dxjkY Yz[` b Yz[` [Oe f

For instance, Conway's Life is Rule 224, and  on  is Rule 157,286 . Since this taxonomy is notXOR T1

particularly enlightening, we will choose more descriptive names for the CA rules discussed here.

Among the provocative findings in are this summary of the shapes observed:[PW] 

 

{|}~� ��}������~�}��� �������~ ��������� �� �������� ���}���}� ��}��� ���� �
polytopic boundary that reflects the structure of the neighborhood in the cellular automaton

rule. Some rules, however, yield slowly growing patterns that tend to a circular shape

����������� }� ��� ���������� �������� ���}���}� ���������

this concerning dependence on the initial configuration:

{��� ��� ��}��� �����~�}�~ �}� ��� ��~������ �������~ ��� �~����� ����������� }� ��� �}��
of the initial seed. ... There are nevertheless some cellular automaton rules for which slightly

��������� ~���~ ��� ���� �} ���� ��������� �������~��

and this on CA complexity:

{��~���� ��� ~��������� }� ����� �}�~������}�� �������� ���}���� ��� �}��� �} �� �������
of very complicated behavior. Direct mathematical analysis is in general of little utility in

����������� ����� ��}������~��

 In keeping with this last sentiment, nowhere in do the authors explain exactly what is meant [PW] 

by a growth rule or its  asymptotic shape. Nor do they offer any compelling evidence for the claim that

CA growth can become increasingly circular. In order to discuss such intriguing phenomenological

issues,  it is  illuminating (and reasonably straightforward) to adopt a precise framework and terminology

for systems  which evolve from a finite initial set  of occupied sites.IJ P
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 For maximum flexibility, we will call  a  as long as , in which case 1'sI eJ growth model YD[ N D

c
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cells. In case so that 0's can only arise by interaction at the edge of the growth cluster, wefY^ h F[ N FE

say that  is an  growth model. Particularly simple are the  models with 1, inI fJ interfacial solidification ´

which any site is permanently occupied once a birth occurs there. Two additional structural properties

facilitate mathematical analysis. First, a few cellular automata are , or , meaning theylinear additive

satisfy the superposition property

YFO` �[ N H Z D E for all I I � IM M M M
J J J
� � � ��

Y [where  denotes symmetric difference , or�

YFO`  [ N r H Z D E for all I I IM ¡M M M
J J J
� � � �

respectively. Equivalently, these are are the  processes such thatXOR

I SM n
k Y@[ N P o Y `[E| | mod 

which in the range 1 box case has  and  and e fN F N F¢k£ ¤£ ¥£ ¦§ ¢L£ d£ ¨£ ©£ v§, OR processes such that

IMk Mª «¬Y@[ N F E®

which in the range 1 box case has and  A larger, but still quite restrictive class ofe fN F ´ FO¢k£¯£v§
automata are  ( ), meaning that whenever monotone attractive P ° P Ek d

YFO±[ ° H ² DOI IJ J
M M� � for all 

Note that CA growth models are monotone if and only if  and  are both non-decreasing and ,e f e fX

meaning that the maps jump to value 1 at thresholds with 0³ ³ ³ ³L kE E X X X ^O1 0

 The notion of limiting shape is easiest to conceptualize for solidification models. In that case IJY@[

may change at most once for each , so we let  denote the eventual state. The set @ Y@[ P NI_ _
C@ V Y@[ N FG r PI_ JJ

 then equals . Of course this limit may be some finite final crystal ( ), orfixation

conceivably some complex infinite dendritic formation. But one expects most rules capable of growth

��������� ��� �����c����c
�� ���� �� ���� �� 
� ������� �
����� 
�� �� ���
� ��� ����
��� �� ���� ����\d
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scenario in mind, say that a CA has asymptotic shape  started from if¶ PL

(1.4) H P i ¶ E·k J
¸

where  denotes convergence in the Hausdorff metric. (Every point in the set on the left is eventuallyi̧

within distance  of the set on the right, and vice versa.) Of course there is no guarantee that the occupied¹

set of a particular CA will spread at a linear rate, or even if it does that the geometry of its growth will

converge in the sense of (1.4), but such behavior is widely observed in computer experiments and
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confirmed by the rigorous results for Threshold Growth and other tractable rules to be discussed in this

paper. New complications arise when we attempt to formulate shape results for models in which

occupied sites can become empty. Even in well-behaved dynamics, one then expects the occupied region

�� �	����� 
 ���
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�� � ���� 
 ��� �
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may still be expected to exist, but  will capture only the shape of the growth, not its characteristic¶

density. We will formulate a refinement of (1.4) which incorporates a density profile when this issue

arises in Section 3.

 The organization of the remainder of the paper is as follows. We begin in Section 2 by reviewing our

current understanding of monotone solidification models ( aThreshold Growth : ³ ³ ³1 N Dp N EL

parameter) for which a reasonably complete theory is available. The limit (1.4) holds in full generality,

there is an explicit formula for the asymptotic  in terms of the system's threshold , and subtler issues¶ ³

of nucleation from small seeds can be analyzed in some detail. For comparison with more general

models, let us state the basic Shape Theorem in some detail:

Theorem 1. For Threshold Growth with a box neighborhood, starting from any finite initial seed

P P N EL _ d such that \

 ( )  ;i the occupied set  spreads out linearly in time P HJ

 ( )  ;ii  attains a limiting shape H P ¶·k J

(1.5) ( ) ;iii  is independent of the initial seed ¶ PL

 ( ) iv  is convex ;¶

 ( ) v  is a polygon.¶

We will describe three methods of proof: , which can be used for rules with small range;direct recursion

convex analysis, which describes as a certain polar transform (Wulff shape, cf.  ); and the more¶  [TCH]

robust  approach, which applies to a great many monotone spatial systems, but yields onlysubadditivity

an implicit representation of the asymptotic shape. A simple extension shows that monotone growth

models obey the same theorem, with the same limit , independent of . The section concludes with a¶ ³1

brief discussion of : which small seeds manage to grow and which do not.nucleation questions

 In Sections 3-6 we present a series of examples to demonstrate that in CA growth models which are

nonmonotone, . Since cellular automata are capable of universalany and all of ( ) - ( ) above may faili v

computation, any kind of growth can be concocted within the general CA framework. However this

observation is of little use in understanding how items ( ) - ( ) fare within our rather restrictive class ofi v

growth models. Section 3 begins an exploration of arguably the simplest nonmonotone rules on the
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Moore neighborhood. We first examine , growth models having arbitrary birthBiased Voter Automata

and survival thresholds , , in which case more exotic scenarios such as concentric rings and³ ³0 1

nonconstant limiting density profiles arise. We then turn to Exactly  Growth Automata³  in which a site is

permanently added to the occupied set the first time it has exactly  occupied neighbors. For  we³ ³ N F

find that starting from , a crystal with oscillating von Koch type boundary evolves. InP N C GL ¼

particular, (1.4 ) only holds along suitable subsequences, with a distinct limit along eachii

H N ` E A ½ E [O N `¾ ¾ k
d¿ ¿ ³1 The case  provides another example of CA growth with complex boundary

dynamics. It is easy to check that any 2  box  grows, but apart from the 2 2 case one must resortÀ Á P ÀL
to computer realizations in order to investigate the apparent limit  and whether it equals the full¶

diamond .Â N C@ A V WW@WW X GÃ2
1 1

 Section 4 treats the  3 CA, one of the most exotic of all growth rules, which Exactly generates

remarkable complexity but seems amenable to some interesting experimental mathematics. This is

Conway's Game with no 1 0 transitions, so it is called  (LwoD). One encountersi Life without Death

��������c ��c�c��� ������ �
����� ��
� �����c� 
 �������� ��c�
��c ��	u c�
���c c���
����� �lava

horizontal and vertical which evolve by a kind of weaving pattern and seem to outrun theladders 

surrounding lava, and parasitic  which emerge from the lava but can only race along the edges of shoots

ladders. The resulting interactions give rise to large-scale self-organization in which extensive regions of

the growing crystal are repeatedly cloned  in time. As an indication that LwoD can be analyzedexactly PJ
mathematically, we will prove one result which captures its .sensitive dependence on initial conditions

Namely, given  finite initial configuration , one can produce configurations  and eachany P Ä ÄL k d
consisting of at most 28 cells, such that  grows persistently starting from , but fixates startingP P rÄJ L k
from . The ability of LwoD to emulate arbitrary Boolean circuits is also discussed briefly.P rÄL d

 Next, in Section 5, we turn to solidification automata in which a birth occurs if either   of the 8³ ³or
Å

�������� 
�� �cc������ Æ
���� ���� ���� 
�� ������� �c�������	
����� �� ����
� �
�� ��³ N ` ±

Shape Theorem (1.5). Recursive dynamics establish that the limit  can depend on the initial seed ,¶ PL
and be nonconvex in certain cases. There is also an example of  persistent growth from asublinear

suitable  Computer experiments seem to suggest that some examples with chaotic boundary dynamicsP OL
have limit  shapes with piecewise smooth boundary, while others remain asymptotically polygonal. But

one must be quite careful in reaching conclusions based on visualization we will mention one caseh

which seems to indicate an octagonal  for the first several hundred updates but later is more suggestive¶

of a shape with smooth boundary.

 Section 6 presents empirical case studies for three of the most intriguing CA growth models of all.

Wolfram's Crystal is the nearest neighbor totalistic rule which seems to do as good a job as any of

spreading like a circle. We present numerical data concerning the first several thousand updates of its
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evolution from a small lattice circle, interpreting the results in the context of the general isotropy

problem Hickerson's Diamoeba for local spatial growth dynamics. Our second gem is , the most volatile

interfacial growth model we know. We will exhibit arbitrarily large seeds from which  dies outPJ
completely, whereas experiments show that comparitively small seeds with slight lattice asymmetry can

grow to fill an array several thousand cells on a side. One thus suspects that persistent growth is possible.

However boundary shocks are so catastrophic, and ultimate growth so tenuous, that the prospects for a

limit shape  remain decidedly murky. Then¶  we turn to  This renowned CA continues toConway's Life.

be studied intensively after more than 25 years of avid experimentation and analysis. Indeed, there have

been major breakthroughs in the design of recursive organizing seeds for Life within the past few years.

Still, many of the most basic ergodic properties of the rule remain a mystery. We survey the current state

of knowledge, with an emphasis on growth-related issues.

 Finally, in Section 7 we present a brief overview of  in cellular automata whichstochastic growth h

evolve from random initial states, and also for processes which evolve randomly. With deterministic

updating, chance enters the picture when we start from a random set, e.g. from the Bernoulli product

measure  which occupies each site in independently with probability 0. Such CA rules fromÇ \È d É ²

random initial states stochastic processes, albeit degenerate, and are among the most mathematicallyare 

tractable prototypes for various nonlinear spatio-temporal phenomena. For random spatial dynamics such

as interacting particle systems , , problems of asymptotic shape have played a central role[Lig] [Durr]

since Eden's crystal growth model  and Broadbent and Hammersley's first-passage percolation[Ede]

[BH] were introduced in the late 1950s. The boundary interface of even the simplest random dynamics

exhibit complex fluctuations, making explicit determination of  exceedingly difficult. Thus¶

subadditivity is often the only available technique for proving shape theorems. Until now, some variant

of the additivity property ) has been a key assumption. We describe a new result of type (1.4) forYFO`  

randomized CA dynamics called Stochastic Threshold Growth, due to Bohman and Gravner . Their[BG]

analysis of these nonlinear systems relies on a deterministic combinatorial lemma which extends the

regularity theory for Threshold Growth CA models recently developed by Bohman . Finally, we[Boh]

show how it is possible to estimate efficiently by Monte Carlo simulation, and thereby present¶

evidence for an intriguing convexification transition as the random component of the dynamics increases.

 Numerous problems are posed throughout the paper. Some are intended as exercises, others as

avenues for further research. Also, our introductory discussion makes it clear that computer calculation

and visualization play an indispensable role in the study of cellular automaton growth. Most of the

experiments in this paper were performed using our own  software;  provides anWinCA [FG] [GN]

alternative based on . The paper concludes with an Appendix listing additional electronicMathematica

resources available to the reader: links to the World Wide Web, downloadable computer programs, and a

library of companion CA experiments for this research, available on various platforms.
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2. Threshold and Monotone Growth

 We begin our survey with the most tractable CA growth models, the monotone solidification rules in

which an empty cell joins the occupied set iff it sees enough occupied sites around it.. Reiterating

notation from the Introduction, let  be a  of the origin, and let a positiveD A ° ES \ ³d neighborhood

integer, be the . We will assume  symmetric for simplicity, focusing on the range  boxthreshold S R

neighborhood case  Given defineS R \N T N C@ V Ê@Ê X GO P ° EU _ d

(2.1) K ³P N P r C@ V W o PW Z GOS n

Start from  and iterate, to generate . Recall the equivalentP ° P N P EL Jjk Jd\ K Threshold Growth

coordinate notation  I KJ
M J L JQ N P N P .

Such models are naturally classified according to whether or not they are capable of filling the lattice

eventually. Since (2.1) is a solidification rule,  exists Call if forP N P O P P N_ ¾ ¾ _
¾

dlim supercritical \

some finite ,  if  for some with finite complement, and  otherwise. ForP P Ë PL _ Ldsubcritical critical\

symmetric  one can give a complete classification. Denote max  a line throughS Ì S SY [ N CW o ÍW V Í GO¼

Then it turns out ( the dynamics are[GG2]) 

      supercritical iff   ,³ S Ì SX YW W h Y [[k
d

(2.2)
      subcritical  iff  ³ S² YW W h F[Ok

d

In the range  box case, these cutoffs are  and respectively. The crux of the firstR R R R R` b ` b ` Ed d

equivalence in (2.2) is to show that a sufficiently large lattice ball fills  as long as the threshold is\d

appreciably less than half the size of the neighbor set.

 To motivate the discussion of asymptotic shape for Threshold Growth, consider our

Basic Example:  , S ³N T N ±Ok

Note that this is the Moore neighborhood rule with highest supercritical threshold. From a  suitably large

��� 
� 
�� c�������
���� c���
����� Î c��� �� 
 ���� �
����� ���� 
 ����
��� �	�
����� ��
���c�P E PL J
�c�
����� � �º�»� ���� ���� ��� �c�
���
� ������ ������� �� �����c�¶ N E Y Ï E D[E YDE Ï [EÑ k k

d d
Y Ï E Ï [Ok k

¤ ¤  The most straightforward route to Theorem 1 for specific rules is to compute iterates

exactly. In our case, starting from the range 1 diamond seed  Ò Nk CWW@WW X FGk , it turns out that

Y`O [ N CY@ E @ [ V ½W@ W b `W@ W E `W@ W b W@ WÓ X H b `GO3 maxK J k d k d k dÒk

Fig. a shows each 6 updates in a new shade of gray. F One can verify (2.3) by induction, checking the first

��� ����
�� ����c��� 
�� ���� �������� ��
� ��� ����� �� ��� �
���c� �c�
��� 
��
�c� ��Ô� �����
��� ��
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half-spaces:

C@ b `@ X HGÕ C@ b `@ X H b FGEk d k d

�����
 ��� �c������ 
��
�c� ���� ������ � ����×���
�� �����c
�� 
�� Î ���
���
�Ø �� Ù��� º���Y

 

             Fig. 1a. Fig. 1b.  Detail of a stable cornerÞ àáâ ; 1       ã ä åæ å çè

Convergence to  follows immediately from (2.3). Next, given any finite for which ,Ñ PL P N_ d\

choose  so that  and . Monotonicity (1.3) yields ,Á ° P P ° ° P °Ò Ò Ò Òk k k kK K K K K¾ ¾ J Jj¾ Jjd¾L L L
so (1.4) holds with ¶ N Ñ, establishing Theorem 1 for our Basic Example.

 With larger neighborhoods and thresholds exact recursion becomes increasingly difficult, so an

alternate method is needed in order to establish the Shape Theorem for Threshold Growth in full

generality. An approach familiar to statistical physicists ( , ) is based on [DKS] [KrSp] half-space

propagation. Roughly, the idea is that any expanding droplet should become locally flat as it grows, and

so its displacement in direction  is determined by the advance of a half-space where¿ é N C@ ê ë X DGEì
·

ë Pis the outward normal unit vector to the boundary of in direction . After some convex analysisJ ¿

[GG1], the recipe is essentially as follows. By translation invariance, ( )   for someK é N é b íYë[ëì ì
· ·

function  known as the . From this computable data, form the region of with extent íYë[ í Espeed Ãd ·k

î N î N r ½DE FïíYë[Óë Oëkðñ  

Then the asymptotic shape  is given by the polar transform of ¶ îE

Y`O [ ¶ N î N C@ V @ ê Ö X F Ö A î GO4 for every ò kðñ

 Let's see how the formalism works for our Basic Example. In this case it turns out that  is aî

nonconvex -gon (Fig. 2), with vertices (1,0), (2,1), (1,1), and 13 more dictated by the symmetries ofFó

the lattice. For instance, the diagram reflects the fact that while horizontal and vertical half-spaces

advance with speed 1, a half-space with slope 2 only advances at speed Despite the nonconvexity,k
¥ô O

one gets  (the small dark octagon in Fig. 2), which we have already shown to be the asymptoticî Nò Ñ
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shape . For polygonal  one can obtain the (but not the size) of  geometrically by forming the¶ î ¶shape 

intersection of half-spaces containing the origin and normal to vectors  which end at a vertex of theõ

convex hull of . This intersection is the white octagon in Fig. 1. Since the limit set (2.4) can also beî

represented as

¶ N o YíYë[ë bé [ Eë ì
·

the size is then determined by a half-space velocity corresponding to one of the polygonal sides.

 

Fig. 2.  for range 1 box, ö ä ÷ø

 Evidently (2.4) is valid for our Basic Example even though the boundary of  is not smooth so thatÑ

the heuristics leading to the polar representation break down. In fact, formula (2.4) is  valid foralways

Threshold Growth, and establishes Theorem 1 in full generality. A careful analysis relies on conjugate

dynamics  on , needed to define properly, such thatK Ãd í

K \ K \YP[ o N YP o [Od d

With this trick one can mimic the technology of Euclidean Threshold Growth; and [GG1] [GG2]

provide the details, including an argument that  is always a polygon See  for another proof of¶ . [Wil1]

Theorem 1.

 According to (2.2), there are 10 supercritical polygonal limit shapes for corresponding toS N T Ed
thresholds 1 Fig. 2 of shows them all as overlays when the successive dynamics are runEß E FDO [GG2] 

from a suitable small initial seed. Clearly, smaller polygons correspond to larger thresholds, but the

number of sides varies irregularly: 4, 8, 8, 12, 8, 12, 4, 4, 8, 8. Curiously, the limits are identical for¶

³ ³ R ³ ³ R ù SN N E i úE ï i A ½DE `ÓE ¶7 and 8. As  in such a way that  the limit shape for andd £U û U
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threshold  converges to a convex with piecewise smooth boundary which is described in . In³ ¶ü [GG1]

spite of formula (2.4), we do not know how the number of polygonal sides grows with . Thus, we poseR

Problem 1. A etermine the asymptotic growth rate for the maximal number of sides of s , d ;R i ú ¶U û£
1 .X X ` b³ R Rd

 

 Another approach to asymptotic shape for monotone dynamics exploits : the fact thatsubadditivity

growth accelerates as additional sites become occupied. More precisely, for any initial seed  whichPL
fills  eventually, and any site let  denote the time until  occupies  starting from . Suppose\ ý Id J L@E Y@[ @ P

that once a sufficiently distant is occupied, it must be the case that is totally covered after @ @ b P þL
additional updates, where  is independent of . Then for any þ @ @E Ö A E\d

(2.5) ý ý ýY@ b Ö[ X Y@[ b YÖ[ b þ E  

since by (1.3) it can take no longer than  additional updates for the configuration covering  atýYÖ[ @ b PL
time  to reach site . Extend  to all of  by identifying each site of the lattice with theý ý ÃY@[ b þ @ b Ö d

unit cell centered at that site, adopting some convention along cell edges. Set inf ,õY@[ N Á YÁ@[
¾

·ký

@ A O Á YÁ@[ i õY@[ Á i ú õY@[ EÃ ýd ·kIt follows from (2.5) that  as , that  defines a norm and that (1.4)

holds with the convex limit shape given implicitly as the unit ball

(2.6) ¶ N C@ V õY@[ X FGO

One uses monotonicity to show uniqueness of the limit starting from sufficiently large seeds, just as in

our recursive proof of Theorem 1 for the Basic Example. This line of argument was first applied about 25

years ago in the context of  spatial interactions by D. Richardson ; Section 7 will discuss therandom [Ric]  

method in more detail. Note, however, that the subadditivity approach does show that  is a polygon,not ¶

nor does it give any geometric information other than convexity and lattice symmetry.

 For now, let us discuss the method's applicability to Threshold Growth models, in which case we

need only manufacture a suitable  and  leading to (2.5). For our Basic Example it turns out that oneP þL
can take and  as long as so (1.4) follows  To see this, first observe that the crystalP N T þ N ÿ @ E T E OL k d
started from  covers  after two updates. By monotonicity,  covers , and hence the process fillsT T P Tk d dJ J
\d. We formalize the choice of  as a lemma, since it will be used again in Section 7 for an extension toþ

random dynamics.

Lemma. Let  be any site separated from  by -distance at least 2. Restrict the occupied set@ A P P ÍJ L _

and the dynamics to  from time  on. Such dynamics will cover  at time .@ b T H H b ÿd nS
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Proof. Clearly must contain  neighbors of . Unless those 3 occupied sites comprise a corner cellP ± @J·k
and its two adjacent neighbors (other than ), it is straightforward to check that covers using@ P @ b TJj¤ k
only the dynamics restricted to that neighborhood. If the 3 sites lie in a corner, and , then some@ E Pk
neighbor of one of the 3 sites (other than ) must have been occupied at time  In this case one can@ H h `O

check that covers using only the dynamics restricted to P @ b T OJj¨ dnS ¨

 Of course, carrying out such explicit case checking for larger ranges and thresholds rapidly becomes

unmanageable, even with the aid of a computer. In order to describe the subadditivity approach to

general supercritical Threshold Growth, we digress briefly and consider some delicate combinatorial

questions connected with : Which  manage to grow, and what is the mechanism for initialnucleation PL
stages of growth? Here and throughout the remainder of the paper, we say

P WP W i ú H i úL Jgenerates persistent growth    if  as ,

and call the dynamics  if for every  which generates persistent growth, .omnivorous P P �L J d\

T. Bohman has recently proved

Theorem 2 [Boh].  Threshold Growth with neighborhood is omnivorous for any (supercritical) .TU ³

B���
�� ����� �� c����� �������� ����
��� �
Ô��� 
���� � �����
� �
�� ��� ��� c
� 
��³ RX Ed

much longer for general . The latter part of his analysis depends on the geometry of³ R RX Y` b F[

squares, so it is unclear to which other neighborhoods the result generalizes. At least if theS N T EU
details of the construction also show that for any  which generates persistent growth, for any ,P � úL f

and large there is an such that@ E þ N þY E E [R ³ f

@ b T ° P E5 7Ðn�j�
which suffices to prove (1.4) by subadditivity, with  as in (2.6). Note that Theorem 2 also strengthens¶

Theorem 1, implying that growth started from any finite seed either stops eventually or attains

asymptotic shape .¶

 A simple observation extends that Theorem 1 to any monotone growth model on  parameterizedTU
by survival and birth thresholds with ³ ³k LX E ¶ N ¶ EU û£ Q the corresponding Threshold Growth shape.

Namely, choose a large  so that each of its sites   at least  occupied sites (i.e., P @ WTsees ³ ³L Ln
U o PW Z [O

For instance, a large lattice ball has this property as long as YTUE [³L is supercritical. Then at time 1,

starting from , all occupied sites survive since and all newly born sites see at least P X E³ ³ ³k L L occupied

sites by definition of the dynamics. In particular, the new configuration agrees with that of YTUE [³L
Threshold Growth after one update started from  Iterating, we see that the dynamics agree withPO

Threshold Growth at all times, so the asymptotic shape is the same. By monotonicity, the Shape Theorem

holds for any larger seed.
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 We conjecture that any box neighborhood monotone rule, started from any finite seed, either fixates

or eventually fills  However, the extension of Bohman's result is not immediate, so such rules might\dO

conceivably be able to fill in a periodic or an irregular infinite subset of the lattice.

Problem 2. Let be a monotone growth model with Moore (or Are periodic finiteP TJ U) neighborhood. 

configurations possible?  generates persistent growth, must it be omnivorous?If the process

 By contrast, even the simplest nonmonotone rules can exhibit surprising behavior. Our next problem,

which requires or similar CA software, drives home this point.WinCA [FG], 

Problem 3. Consider the Biased Voter Automaton on with S N T Ed ³ ³L kN E N óO6  2 Thus, a cell

becomes occupied if at least 6 of its 25 range box neighbors are previously occupied, whereas occupied

cells automatically become empty. (Thus, the birth and survival maps  and  are both non-decreasing.)e f

Investigate this model's crystal growth starting from the seeds where  denotes the 6-Ò ° T E Ò© © ©
diamond CWWÖWW X óG Tk ©and  is the 6-box.

 Before continuing with the central theme of shape theory in the next Section, we mention some

additional nucleation problems about the very smallest seeds which grow. Let be the# # S ³N Y E [

minimal number of sites needed for persistent growth, and let  be the number of seeds of/ / S ³N Y E [

size  which generate persistent growth and have their leftmost lowest sites at the origin. Parameters # #
and  play key roles in the First Passage and Poisson-Voronoi Tiling results we have obtained in / [GG2]

and . For small neighborhoods (box or not), one can determine  and explicitly enumerate the [GG3] # /
minimal droplets with a computer. For instance, 5 5 and ( 5 574,718. As a little# /YT E [ N T E [ N¤ ¤
puzzle, the reader might check that in the threshold 2 case 2 2 and ( 2 4 2 +1 . For# / R RYT E [ N T E [ N Y [U U
larger  no such explicit evaluation of  is available for general  ; a table of small cases appears in³ / R

[GG2].

 If  is small then there are nucleating occupied sets of  cells  the smallest possible size. For³ ³E E

instance, if , then size  subset of a  box fills that box in one update, and thereafter³ R ³ R RX Àd any 

covers a box of side  at each time . The smallest example with is range 2, threshold 10,R # ³b H h F H ²

in which case  does not generate persistent growth, so  However the 11 site configuration inT ² Od # ³

Fig. 3 does nucleate,

Fig. 3. A seed that grows for , 11a øä � ä�
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showing that  in this case. The starting point in understanding  for large neighborhoods is to# #N FF

demonstrate, for almost every (0,2), existence of the threshold-range limitù A

lim
U

U
Ä_

d
d

I# ùR
R

# ù
YT E [

N Y [.

µ��� � �
�� ��� ������ ����c����� �� �����
� ��c��
���� ������� 
�� ����c������ �
����� ��� ���ù

large  they become severely constrained. Of particular interest is the largest  for which  is asù ù # ùIY [

small as possible

# ù # ù ùI I
s N C V Y [ N GOsup

Using interactive visualization to create large-range minimal droplets of size , as well as related³

constructions, it is proved in  that 1.61 1.66 . Fig. 4 shows level sets of the droplet[GG4] � �#I
s

which yields the lower bound  a range 150 seed consisting of 36,760 cells (white) which grows forh

³ ³N N36,760. We know of no seed with 36,761 cells that grows for 36,761.

Fig. 4. A barely supercritical droplet for range 150 box, 36,760ø ä

3. Some Simple Nonmonotone Rules

 As we will see shortly, more exotic crystals grow from cellular automaton rules without

monotonicity property (1.3). Typically, such rules give rise to chaotic or pseudo-random structure so

complicated as to defy mathematical analysis. In rare instances, however, starting from carefully chosen

seeds, nonmonotone CA dynamics generate a periodic pattern in space and time which can be spotted by

computer visualization and then checked recursively. In this and subsequent sections we present a series

�� �c� �	
c��� ���
��� �c�������	
����� �� ����� �� ��� ��
� ��� �����
���� ��������� �º�all i&  - ) ofv

Threshold Growth shape theory may fail in general.
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 Let us begin with a formalism which may be used to check that a given CA evolves in a prescribed

manner. The notation is somewhat burdensome, so we will first describe a simpler setup for

solidification rules, then proceed to the general framework.

(3.1) Recursive specification for solidification rules.

 Assume solidification, i.e., that 's stay 's, in which case it is natural to specify growth in terms ofF F

sets  which partition  (i.e., they are disjoint and cover the lattice). They may be thought of asC GA¾ ¾8k \d

������� ������ ���c� c���
�� ��� 
���� 
� �cc���� ����� �� �
�� c
� ��� ��c������� �
����� ��
growth is most evident every  updates after some initial epoch so let ý H EL H N H b Á¾ L ý  be the recursion

times, suppose that

Yz[ YP [ N Ä EK J L LQ

and for let designate the set of sites claimed to become occupied at time . FurtherÁ Z FE Ä ° H¾ ¾ ¾A
�
������� �
c� ������ ����� � ������ 
�� �������c�A A S S S ý¾ �

¾N r E N bß b�
7

Ä N Ä o E N r o Y b E Ä N Ä o Oh hh� � � �
¾ ¾ ¾jk 	 ¾jk ¾jk¾ ¾

� �
¾

�A A A A S Aj
 � � [ )]
+1

7

��� � �
� �� ������� �� 
 ����c� ��� c��������� �c�
��� �� ��� ��c����� ���c���� ������ ��ÁE �[ h

the evolving crystal with a coherent local pattern. Thus,  is the designation of occupied sites on chartÄ �
¾

A A�
¾ ¾jk¾

�
 at time .  consists of all those sites which could possibly influence the configuration on chartH h

A ý K A�
¾

�
¾jk ¾jk

�
¾+1

 within  updates of the rule , and is the occupied specification on  at time . AssumeÄ Hh h

also that for each �E Á
Yzz[ YÄ [ o N ÄhK A7 �

¾jk ¾jk ¾jk
� � ,

and for all � ° Y r [ E� � A	 s

Yzzz[ Y r Ä r � [ o Y r [ N r ÄK A7 � �  � �  � � 	 	 	.

Condition  says that the configuration at time  restricted to a suitable neighborhood of each chartYzz[ H¾
for time  maps to the specified configuration on that chart after  updates. Condition  ensuresH Yzzz[¾+1 ý

that once the configuration on the first shells is known to be  at time , then no additional setÁ r Ä H� �  	 ¾

of occupied sites  added at some later time can possibly change the crystal on those shells.�
Consequently, a straightforward induction using shows thatYz[ h Yzzz[

P N r Ä ÁJ 	� � �  for all ,

i.e., the true dynamics of the solidification model agree with its a priori specification.
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 Let us illustrate this formalism by sketching a few more details of the proof of (2.3) for our Basic

Example. There the iterates fill \d (i.e., there are no permanently vacant sites), so it is natural to choose

A¾ ¾N Ä E in which case solidification guarantees c  ondition . As previously noted, the shapes of theYzzz[

c����� �
�� ������ � 
�� Î� � �� � ����
� ������ �� �
Ô� � 
�� ��� ����c���� ������ �����ý N ó

H N Á Z FL 48, say. Then, in light of (2.3), for we can prescribe

A¾ ¾N Ä N CY@ E @ [ V óÁ b X ½W@ W b `W@ W E `W@ W b W@ WÓ X óÁ b &DGk d k d k d45 max ,

checking directly (by computer!) that max . Next, weK ¨v k d k dY [ N C ½W@ W b `W@ W E `W@ W b W@ WÓ X &DGÒk
partition each shell  which correspond to the sides and corners of the growingA¾ into suitable charts A�

¾
octagon. Let the 8 corner charts consist of those sites in A¾ _ which are at most -distance 6 from each ofÍ

the coordinate axes and lines . Let the 8 side charts be the connected components of the@ N Ï @d k
complementary portion of . This decomposition and symmetry effectively reduces the verification ofA¾
condition Yzz[ for recursive specification to three cases: sides, and horizontal and diagonal corners. By

construction, each chart  extends in a homogeneous fashion, meaning that the side charts extendA�
¾+1

consistently with lattice half-spaces while the corners extend consistently with lattice wedges (i.e.,

intersections of two half-spaces). Thus it suffices to check that the half space advances to@ b `@ X Ák d
@ b `@ X Á b Fk d in one update, which is immediate from the threshold 3 update rule, and to verify that

the corner charts advance in keeping with (2.3), each with the same profile after 6 updates. For the

diagonal corners this last is ensured by Fig.1. A similar but simpler calculation handles the other corners

and completes the verification.

 The previous paragraph captures the spirit of our inductive scheme: by decomposing a configuration

into homogeneous charts one need only check the claimed behavior of the update rule in a relatively

small number of cases rather than at every individual site. In practice, though, symbolic specification is

tedious and unenlightening. With effective CA visualization, it is often possible to check directly from a

picture or animation that the evolution is recursively specified. For the remainder of the paper we will

present our exactly solvable examples via graphics which we hope the reader will find convincing. Use

of a friendly interactive CA interface such as WinCA [FG] greatly eases the verification.

A Biased Voter Example

 As our first example of nonmonotone growth, we choose a Biased Voter CA with . Namely,³ ³L k�
��� � c������ ��� �
��� � ��	 ����� ���� º º � �
����� ���� 
 �
���c� �
�� �� ��
���� l³ ³L kN E N ó

(about the smallest size which gives rise to the interesting behavior we want to discuss). Throughout this

�
���Ø �� Ô������ ���� ��� �
���c� �
�� �� ��
���� � �
Ô�� �� �� p � Ù��� � ���WinCA , þ Ê@Ê � þ b Od k
d

the configuration at time 40, suggesting that successive updates fill the plane in a predictable fashion.

The totally occupied nonconvex star grows linearly, with a characteristic shape and periodic corners.
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Alternating occupied and vacant stripes of constant width 2 fill out the box which circumscribes the star.

Each update flips the states on the interior of the striped region, and a new outer occupied ring is added.

By carefully eyeballing a few iterates with a program such as it is easy to see that the dynamicsWinCA, 

reproduce exactly.

Fig. 5. Discontinuous density in the range 2 box
Biased Voter Automaton, 1  1ø ø! �ä å ä �

 However this is not a solidification model, so one needs to generalize (3.1). The shells of the simpler

scheme must be replaced by arbitrary configurations of the entire lattice, since sites may change state

repeatedly. Thus, we partition all of  into charts \d A�
¾ at each time . In place of condition , theÁ Yzzz[

more extensive charts must be checked, but otherwise the formalism is the same. Equivalently, one may

frame the general case in terms of CA solidification in three-dimensional space-time. See  for[Toom]

examples of that approach.

(3.2) Recursive specification for general cellular automata.

 is the period of recursion;  are the recursion times. is a partition of ý ý A AZ F H N H b Á N C G¾ L ¾ �
¾ \d

for each fixed  designates the sites which are claimed to be occupied at time ÁO Ä¾ ¾ . With the sameH

notation as in (3.1), assume that (3.1  - ) hold. Then for all .z zz P N Ä ÁJ ¾�
 After a suitable initial time  during which the pattern stabilizes and attains a sufficiently large size,HL
application of (3.2) to our Biased Voter example involves charts of 7 varieties, in order to handle: the

interior of the star, the exterior of the box, the interior of the edges of the star, the interior of the edges of

the box, the interior of the striped region, the corners of the star/box, and the concave corners of the star.

All of these propagate with period 1 or 2, except for the last kind which has period 4. Thus, simple

recursive growth is easily verified by computer visualization. So what is the asymptotic shape  here?¶

Note that the Hausdorff metric in (1.4) does not distinguish between solid coverage and local occupancy

���� 
 ��������� ������� ������� w��c� 
���� ���� ��� ����
��×�� ������ c����� 
 ��c����
� ��	¶ U¨
of side 4 centered at the origin, which represents the largest possible region attainable by range 2E
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growth. In models which do not fill the lattice completely as they spread, a more detailed asymptotic

density profile is clearly desirable in order to capture subtler aspects of crystal geometry such as that

indicated in Fig.5.

 To this end, introduce the measure  concentrated on , and assigning mass  to each point inÇJ J dP ïH FïH

the normalized configuration. Let  be a measure on  with compact support. Then we say thatÇ Ãd

H P i H i ú·k J JÇ Ç Ç in measure as  if  converges weakly to , that is to say

(3.3)    for all ( (0 � i 0 � 0 A Y [OÇ Ç . ÃJ s d

Note that, since the  are uniformly bounded and have uniformly bounded support, they have at leastÇJ
one limit point. As we shall see, the number of limit points may be uncountable. We should also observe

that while this notion can capture densities other than 1, it also sometimes loses information. For

instance, if  converges to a line segment in the Hausdorff metric, then  converges to  inH P H P D·k ·kJ J
measure. One general remark is also in order. Namely, suppose  is any limit point of  Since Ç Ç \J J dO P °

and  converges to Lebesgue measure in the above sense, it follows that  for any\ ÇdïH Yî[ X �þÎ�Yî[

measurable  Hence there is a measurable  such that In this sense, weî ° O V i ½DE FÓ N �@OÃ � Ã Ç �d d

could simply write .H P i·k J �

 For our Biased Voter example, let  denote the Euclidean star polygon with 4 vertices at f YDE Ï F[

and , and 4 vertices at the corners of  Then  converges in measure to the which hasY Ï FE D[ O P ïHU Ç¨ J
density 1 on ,  on  and 0 elsewhere. Even for growth models which do not fill the lattice, thef U fk

d ¨Ï E

most common scenario would seem to be an asymptotic shape with constant local density throughout,

����� � � � � ��� ��� ������� ��
����� ���
���� � 
 ����� ���������
��c�ÇY @ N � ê F @[ @ � ² DOP
profile over the support of . A novel feature in the present case is the abrupt change of density at the¶

boundary of Additional instances of (3.3) will appear throughout the paper.fO

 Fig. 5 also suggests a complex phase portrait for nonmonotone Biased Voter automata as the

thresholds  vary, with solid growth for some choices, spreading rings in others, and mixed profiles³ ³L kE

for an intermediate regime. Indeed, some initial experimentation strongly suggests the existence of

several phase transitions. Moreover, these systems are sufficiently simple, and closely related to

Threshold Growth, that a rather complete understanding of their shape theory should be possible.

Problem 4. Let be a Biased Voter automaton with range box neighborhood birth threshold P EJ R ³L and

survival threshold . Assume that  and . Determine the dependence of the model's³ ³ ³ ³ R Rk L k L d� X ` b

crystal growth on , , , and the size and geometry of the initial seed R ³ ³L k P0.
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 For the remainder of our study of deterministic growth we will restrict attention to totalistic Moore

neighborhood models, focusing on the simplest nonlinear dynamics which exhibit complexity of various

kinds. An especially fascinating class are the  solidification rules in which a vacant siteExactly ³

becomes permanently occupied if exactly  of its 8 neighbors are occupied. Only the cases  are³ ³ N FE `E ±

capable of persistent growth from finite seeds, by comparison with  Threshold Growth which is³ N ÿ E

convex-confined Let us first consider the case .O N F³

Exactly 1 Solidification

 We will study the evolution starting from a single occupied cell at the origin in considerable detail. A

key initial observation is that the locations ( join the crystal at time :  the occupied set growsÏ HE Ï H[ H

along the diagonals at the fastest possible speed, This follows from the fact that , as in any� N ` OÈ
Moore neighborhood CA started from , so by induction, at time  eachC G P ° T N CÊ@Ê X HGE H b F¼ J J _
corner cell of sees only the diagonal cell that was added at time . In general, by a  weT ÏT HJjk J ladder

mean any local CA configuration which propagates over time in some direction periodically in space.ëE

A -� ladder � 
 �
���� ���c� ����
�
�� ���� ��� �
��� ����c��� 
������ �� ���� ����� �� �������� ��S

the present case, the four diagonal trails are -ladders one cell wide and with spatial period one. We will�
encounter more elaborate ladders later in the paper. For now, note that the Exactly 1 rule grows

persistently from finite  since there must be extremal occupied cells in the diagonal directionsany PL
which give rise to permanent -ladders.�

Fig. 6. The Exactly 1 Solidification Rule,
started from a singleton, after 55 updates

 Starting from he intricate growth of  off the diagonals is shown in Fig. 6 at  OneC G¼ , t P H N &&OJ
immediately notices the recurring lace-like motifs, in striking contrast to any of the crystals discussed so

far. More careful scrutiny reveals an exactly recursive structure along dyadic sequences  whichH N ` E¾ ¾
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permits us to describe the occupied set at arbitrary times in terms of the binary expansion of . ThisH

representation, in turn, lets us compute the asymptotic density with which the Exactly 1 rule fills \dE

subsequential limit shapes  along subsequences  and boundary lengths of the . The same¶ H N þ` E ¶� ¾ �¾

������������� � ������� �� �
�� ����� ����
c�
��� m� ����� � �� � 
������� �� ��
����� 
 ������
�
��
c�
� �
������ � ��Î� ���c� ���� 
 
� �	
c��� ���
��� ��������� ��� ��
�[TM ] Packard and Wolfram

[PW] c
���� ������ ���� �c�����
��� �����
����� c��
�� �������

 Before proceeding, though, we pause to contrast the behavior of the most familiar and exactly

solvable totalistic CA on  which generates a fractal: Tk XOR over the Moore neighborhood. Starting from

a singleton, that model generates a space-time pattern which is a slightly more complicated three-

dimensional counterpart to the Sierpinski lattice obtained from Pascal's Triangle Modulo 2. In the same

way that row 2  of Pascal's Triangle has all odd coefficients and row 2  has only two, ¾ ¾h F XOR on Tk
fills each quadrant of with a regular array of 2 2 occupied boxes surrounded by empty frames ofT Àd�
width 1 at time 2 , and then collapses to only 9 occupied sites at time 2 . Evidently this process does¾ ¾h F

not grow persistently, although it does have a disconnected limit shape ¶� along each subsequence

H N þ` þ A YDE F[¾ ¾ for fixed . These shapes are cross-sections through a 3D fractal; almost all have

density 0. See  for an early account of the fractal structure of linear cellular automata. Linearity[Wil2]

property YFO` �[  makes the analysis easy in comparison with Exactly 1, to which we now return.

The Exactly 1 recursion

 Let  be the occupied set at time  for the Exactly 1 rule started from  At times P H P N C GOJ 0 ¼ H N `¾ ¾,

Á Z ±E D X @ X @ G we claim that the crystal has the following properties in the octant { (withd k
analogous structure over the rest of the lattice, by symmetry):

Yz[ @ ZThe only occupied site with k ` Y` E ` [ Y` E @ [¾ ¾ ¾ ¾ d is . All other sites of the form  are vacant, with

at least two occupied neighbors of the form (2  and so never join the crystal.¾ h FE Ö[E

Yzz[ @ N D @ N FThe only occupied site with  is the origin, and the occupied sites with  have firstd d
coordinates FE ±E "Eß E ` h FO¾

Yzzz[ The configuration on the lattice region bounded by Y` E ` [E Y` h FE ` [E¾·k ¾·k ¾ ¾·k and

Y` h FE ` h F[ YDE D[E Y` h FE D[¾ ¾ ¾·k is an exact translate of the configuration on the region bounded by ,

and andY` h FE ` h F[O Y` E ` [E Y` h FE ` [E¾·k ¾·k ¾·k ¾·k ¾ ¾·kThe configuration on the region bounded by 

Y` h FE F[¾  is the mirror reflection of the same pattern. Finally, the configuration on the region bounded

by , and is an exact rotated translate of the configurationY` b FE `[E Y` h `E `[ Y` b FE ` h F[¾·k ¾ ¾·k ¾·k

on the region bounded by , and , and all sites in lattice intervalsY`E `[E Y`E ` h F[ Y` h FE ` h F[¾·k ¾·k ¾·k

{2  and  are vacant.¾·k ¾·k ¾·k ¾ ¾·k ¾G À ½`E ` h FÓE ½` E ` h FÓ À CDG ½` E ` h `Ó À CFG
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Fig. 7. One octant of Exactly 1 Solidification,
started from a singleton, after 8 and 32 updates

 Fig. 7 shows the configurations on the octant at time 8 (  and time 32 (  Properties Á N ±[ Á N &[O Yz[-

Yzzz[ may be verified at time 8 by inspection, and at subsequent times  by induction. AssumingH N `¾ ¾

the hypothesis for , the key observation  are that -ladders emanate from , one proceedingÁ � � Y` E ` [¾ ¾


���� ��� ��
���
� 
�� ��� ��
���� ������
�� 
���� � 
�� ��
� �� ������� 
��@ N @ E @ N h @d k d k
sites of the form  with  are vacant after time  any such site whichY@ E ` [ ` b ` X @ X ` h F Y ` b Fk d¾ ¾ ¾jk ¾

is unoccupied must have an even number of occupied neighbors, and so cannot join the crystal). Thus

further growth within the octant is divided into three triangular regions, as in Yzzz[ Á but with  replaced by

Á b FE ���c� ������ ������������� ���� ��	�� �
�� º� 
�� �
�� �� �����
�� c��������� ��� ���� ���

new regions exactly replicate the conditions of the octant up to time and so generate the same` h FE¾

structure as claimed. The final triangular region also replicates this structure after a slight displacement.

The -ladder along its upper edge proceeds southeast until it occupies the point ( as desired� ` h FE F[E¾jk

in part  of the induction. We omit further details, which are checked in a similar fashion.Yzz[

Evaluation of the density

 Write , and� N WP W   N WP o C¾ d ·k ¾ d ·k� � @ Z DE D X @ X @ GWOk d k  Note first that, dividing the lattice

into octants and appealing to symmetry, � N +Y  h ` h F[ b ÿY` h `[ b � Á Z FO¾ ¾ ¾ ¾ for  Here the first

term counts occupied sites not on the diagonals   and outside the second term counts@ N Ï @ T Ed k k
occupied sites on the diagonals and outside and the third term counts occupied sites inside Thus,T E T Ok k

� N +  h ÿ ê ` h "O¾ ¾ ¾

Next, denote the triangular regions shown in (the right half of) Fig. 7, counterclockwise from the bottom

left, by I, II, III, and IV. Then the four contributions to  have cardinality  I and IV , III ,    Y [   h ` Y [¾jk ¾ ¾
and  II . For the last formula note that, as mentioned earlier, if one cuts from I the  h Y` h `[ h Á h ` Y [¾ ¾

diagonal  and the sites with and the sites with  then the remainder is isomorphic to II.E @ N FE @ N DEd d
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Therefore,

  N ÿ  h ` h Á h `E¾jk ¾ ¾

and so

� N + Yÿ  h ` h Á h `[ h ÿ ê ` h "
N ÿ Y+  h ÿ ê ` h "[ b Fó ê ` b `+ h + ê ` h +Á h Fó h ÿ ê ` h "
N ÿ� h +Á b &O

¾jk ¾ ¾ ¾jk

¾ ¾ ¾ ¾ ¾jk

¾

The solution is

� N O
ÿ b `ÿÁ h "

�¾
¾jd

In particular we see that  the asymptotic density, and so � ïW T W i E ` P i¾ d ·k d¨ ¨* *·¾� � F @[ @EP( d  where

¶ N CÊ@Ê X FGEUk N _  in the sense of (3.3).

 Let us pause here to pose four problems. The first two are exercises for the enterprising reader. The

third, motivated by empirical observation that many small seeds induce bounded perturbations of the

singleton-seed recursion, may well involve substantial effort. The fourth is quite likely most difficult.

Problem 5. Packard and Wolfram [PW] observed similar behavior in the Exactly 1 rule on the nearest

neighbor  (cf. rule 174, shown in their Fig. 2), although they did not identify a recursivediamond

structure or compute its asymptotic density. Mimic the derivation above to show that the density starting

from a single occupied cell equals .2

3

Problem 6. Starting from a single occupied cell, compute the asymptotic density of the Exactly 1 Or At

Least  solidification rule (in which  iff for ³ e ³ ³Yz[ N F z N F z Z [ ` X X +Oor

Problem 7. Does the Exactly 1 solidification rule on the Moore neighborhood fill the plane with

asymptotic density  starting from  initial seed?4

9
any

Problem 8. Find an elementary CA (solidification or otherwise) with a computable asymptotic density

which is irrational.

Subsequential limit shapes

 Closer inspection of Exactly 1 recursive growth, driven by -ladders, identifies asymptotic shapes � ¶�
along all subsequences H N þ` þ¾ ¾ for fixed . The limits are generated by a recursive scheme reminiscent

of the von Koch algorithm To describe it, introduce the[vK].  binary expansion   anþ N � ` E �D_ ·�� � LQ
integer, and Write  successively add three� N FO N E� � dQ ��QU C@ A V Ê@Ê X �GOÃ Ud _ Starting from 
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��
��
�� �� ��� ����� �c� ��
� tº� 
� ��� ��	����� c����� �� �
c� ������� ��
��� Ù���Ud L ��� � ² � �
6 is suggestive of the algorithm for  Note that smaller squares are added at each of fourþ N OFFF N O¦v
corners of the initial square, but only three of four corners are exposed at later stages.  is the monotone¶�
limit when this recursion is carried out for all  Note that  so by normalizing suitably� Z � O ¶ N `¶ EL d� �
it suffices to consider . Now the same methods as for the case  can be used to show thatþ A ½ E F[ þ N Fk

d
lim
¾Ä_ ¾

·kH P N Yz[ Yzz[J ¨*� F @[ @� P�� <( d   in general. Thus we have our first example where  of (1.5) holds, but 

�
��� ���� c��������c� �� �����c� ����� �
�� 
���� ���
��� �������c�� ��� �� ���� �c�����
����
subsequential limits except  are nonconvex, and as we are about to see, many (e.g., ) have¶ N ¶k kU '�
genuinely fractal edges, i.e., boundary curves with self-similar pieces of dimension greater than one.

Asymptotic boundary length

 Let us conclude our discussion of the Exactly 1 rule by analyzing the lengths of its asymptotic

boundaries. First suppose with , and write  Then it is not hardþ N � ` A ½ E F[E � N F N � O� �
k k

R �
� R �  ·� k

d f

to check by induction that the boundary length  of  ùYþ[ ¶� is given by

ùYþ[ N � ± `% %
$ $� )F b w

�yk
R

� ·�5� O

Hence, if  has a non-terminating binary expansion,þ

ùYþ[ N � ± `% %
$ $� )F b Ow

�yk
_

� ·�5�

This asymptotic boundary length , as a function of , is lower semicontinuous, sometimes finite andù þ

sometimes infinite, but not continuous at any value where it is finite. Assuming that  thef f�ï� i E

Hausdorff dimension of the boundary of  is given by max Thus, the Hausdorff dimension is¶ CFE GO� ¤
df ln

ln

not continuous anywhere: within any -neighborhood of any there is an with boundary of finite¹ þ ¶L ��
length (dimension 1), an  with boundary of the largest possible dimension , and a limit shape with¶� ¤

d2

ln

ln

any intermediate dimension as well.

Exactly 2 Solidification

 We conclude this section by turning to the Exactly  solidification rule with  How does a³ ³ N `O

crystal grow from small seeds when exactly 2 of 8 neighbors must be occupied for a vacant site to join?

Now a singleton obviously does nothing, but observe that a 2 2 initial seed spreads in the shape of aÀ

diamond, with density  and speed 1 along the axes. (The computation is quite doable with paper and3

4

pencil.) Thus, H P i N·k J ¤
¨F @[ @E C@ A V WW@WW X GEW( d  where 1  in the sense of (3.3). TheÂ Ã2

1
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evolution from this seed also reveals horizontal and vertical ladders of width 2 along the diagonals of the

��
���� ���c� ����� 
 ����� ����c���� c�������� ��� ������ �� ���� �� 
� ��	����� ��
�� d
�����
suppose that, after suitable translation and reflection through one or both axes,  contains the dyadPL
CYDE D[E YDE F[G C@ � DGand is otherwise confined to the half-space . Then, in the new coordinate system,k
a straightforward induction shows that  or  On the other hand, it is easy toP , CD X @ � HE @ N D FGOJ k d
check that no diamond seed  grows at all, and that any square seedÒ N C@ A V WW@WW X ÁG Á À Á¾ \2

1

with 3 Á Z stops after one step. Here we encounter our first growth model in which certain seeds grow,

whereas others of arbitrarily large size do not, depending on the geometry. Is there any hope for a

coherent shape theory in such a situation?

 One approach, proposed by Packard and Wolfram , is to study growth from [PW] disorder, e.g., from

random subsets of a box Many CA rules exhibit a characteristic, linearly spreading shape whenT OP
started from the vast majority of such random finite configurations. The Exactly 2 rule would seem to

conform to this scenario, with limit Â, although the generic dynamics are sufficiently pseudo-random to

offer little hope for rigorous results. A succession of horizontal and vertical ladders typically emerge

from the edges of the crystal growth, the first such determining the extreme points of the limiting

spreading diamond. Regions of regular growth with the pattern of the 2 2 seed may also be observed.À

Indeed, even rectangles for any  exhibit essentially the same complexity as random seedsÁ À ` Á Ë `

(apart from symmetry about the axes, of course). Fig.8 shows the evolution from a horizontal dyad at

H N FDDO Conceivably one could prove convergence to  based on the regular emergence ofÂ

indestructible ladders at the boundary, but the prospect seems too dim to pose this as an open problem.

Fig. 8. Exactly 2 Solidification,
from a horizontal dyad, after 100 updates
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4. Life without Death

 The Exactly 3 growth model is one of our favorites  able to generate remarkably complex crystals,h

yet amenable to some substantive experimental mathematics. As noted in the Introduction, this is

Conway's Game of Life with no 1 0 transitions, so upon discovering its exotic properties a few yearsi

ago we named it  (LwoD, pronounced ). Not surprisingly, we have since learnedLife without Death el·wod

that some of the extraordinary behavior of this model has also been noted by Stephen Wolfram [ ]Wol2

and various members of the  Internet forum devoted to Conway's rule. The earliest reference toLifeList

LwoD in the literature would appear to be , pp.6-7 .[TM ]

t�
����� ���� ��� �
�� ���� ����� ���� 
�� �
���c� �
�� �� ��
���� �� �� º��  ��c ��	
���

w������� ��������� ���� ��
���� ºº� 
 ���� �� Ù��� � 
� ���� º���, many such lattice balls produce

spreading crystals reminiscent of the ancient Zia design on the New Mexico state flag. To highlight

Fig. 9. -123 4169:;6 =3>69 ?6>@63C 2@:F > G>661H3 J>GG :2 K@>C1;?L MMN
Insets at the upper left and right show a ladder tip, and parasitic shoot, respectively.
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structural elements, we have drawn successive updates periodically using a 256-color gray scale gradient.

Evidently, LwoD growth is dominated by a dendritic phase which we call , since its porous,lava

seemingly organic form spreads slowly and unpredictably. Interspersed are horizontal and vertical

ladders of a single design, which emerge seemingly at random from the lava, and advance at speed  byk
¤

a back and forth weaving motion of period 12 with 4 spatial phases at the tip. The upper left inset of Fig.

9 magnifies one of the tips along the axes; of course the others are reflections and rotations by symmetry.

Ladders seem to outrun the surrounding lava, suggesting that the recursive structures along the axes

should persist indefinitely. But after more than 1100 updates, ladders which emerged from the lava

collide with edges of the ladders along the axes, and parasitic s are formed. These structures, whichhoots 

can only evolve on the edges of ladders or other shoots, also emerge occasionally from the interstices

between lava and ladders. Shoots have speed ; one is magnified in the upper right inset of Fig. 9. Thus2

3

the parasites race along the edges of their host ladders until they reach the tips, at which time any of

several lava eruptions takes place depending on the phase of the host-parasite interaction. Consequently,

it is not at all clear whether LwoD started from the 11-ball grows persistently or fixates.

  There are only two scenarios for which we know how to answer the persistence question. If the

growth produces a fixed core surrounded by finitely many autonomous ladders extending away from the

origin (with no active shoots!), then the growth persists, its asymptotic shape is the degenerate cruciform

. N CW@ W X E @ N DG r C@ N DE W@ W X G
F F
± ±k d k d ,

and we obtain an example where ( ) and ( ) of (1.5) hold, but ( ) fails. On the other hand, if all shootsi ii v

and ladders are stopped by interference with lava, and later the slow dendritic growth also grinds to a

halt, then the system has fixated. Various small seeds lead to each of these outcomes, sometimes after

hundreds or even thousands of updates. Empirical evidence, and a seeming affinity with stochastic

dynamics, suggest : once a sufficiently large boundary layer of lava has formed, it wouldnucleation

appear increasingly unlikely for all growth to stop. Here are two illustrative cases which can be resolved.

Problem 9. Run Life without Death for 100 updates starting from the 18-ball: { 18 }, and forÊ@Ê �d k
d

1,000 updates starting from

to decide whether or not these processes grow persistently.
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and ladders. For instance, synchronized ladders meeting at right angles can form a clean corner, ladders

meeting head on can form a clean final border, and a ladder can by cleanly blocked by colliding at right

angles with the side of another formed previously. Eruptions of lava, and shoot creation are also possible

results, depending on the relative phases. It is less clear whether one can describe succinctly the

preconditions for spontaneous emergence of shoots and ladders from lava. Regardless, the resulting

complex dynamics self-organize so that very large motifs appear again and again as the crystal evolves.

A striking example of this propensity, starting from an 80-ball, is discussed in an April 1995 recipe of

[Gri2] (http://www.math.wisc.edu/~griffeat/ recipe26.html). Over the first 10,000 updates a

configuration of more than 250 250 cells, containing an empty region larger than 150 150, replicatesÀ À

several times in the diagonal direction before being disrupted by a circuitous chain of interactions. Such

complex manifestations invoke suspicions of even more exotic, unseen possibilities. Are there supremely

powerful, but exceedingly rare, self-organizing LwoD structures? None has been observed from simple

seeds or random initial conditions, but Noam Elkies (private communication) notes that there are -�
ladder parasites capable of propagating between parallel sets of shoots on ladders.

 In light of the previous paragraph, our favorite open question concerning LwoD is a difficult one.

Problem 10. Find a finite  from which LwoD grows persistently  fills  with positive density.PL dand \

Experiments from large lattice balls suggest that such seeds abound. However, the only solution we can

imagine would entail construction of a ladder gun, or some other space-filler analogous to those for

Conway's Game which will be discussed in Section 6. We think there is at least a reasonable chance of

such a recursive design, but its discovery would certainly require great ingenuity.

 As an illustration that the complexity of LwoD can, to some extent, be characterized mathematically,

we will now prove a result which captures its sensitive dependence on initial conditions.

Theorem 3. Let  be Life without Death. Given any finite , there are configurations  and , eachP P Ä ÄJ L k d
consisting of 28 cells, such that  grows persistently from , but fixates from .P P rÄ P rÄJ L k L d

(Note that the design and location of  and are allowed to depend on , but not their size. )Ä Ä Pk d L

Proof. The idea is to form a closed frame around , from a minimal number of strategically placedPL
occupied cells, so that the growth emanating from  is completely confined by the time it reaches thePL
frame. If the frame is static, then this should constrain growth to its bounded interior, thereby ensuring

fixation. If the frame instead produces isolated ladders traveling away from its exterior, then since the

growth of  is still controlled, persistent growth is guaranteed. Clearly, a closed -circuit of occupiedP ÍL k
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sites (i.e., a loop of sites connected by and  transitions) prevents any interaction between the^EQ E�E S
dynamics on its interior and those on its exterior. So our frame need only include such a circuit to

achieve the desired containment.

 The details of the construction are as follows. First, choose  so that  Next, for a suitably¶ P ° T OL P
large place a 4-cell ^E side seed

along the positive axis so that the empty site between its top and bottom cells is located at@k
Yÿ^¶ b FE D[, and a 3-cell corner seed

in the first quadrant so that its middle cell is located at ( Place 3 more such sideÿ^¶ h F+ E ÿ^¶h F+ [O
seeds symmetrically along the axes (with their isolated cells closest to the origin), and 3 more corner

seeds symmetrically along the diagonals of the other quadrants (with their middle cells closest to the

origin). The 28-cell collection of corner and side seeds constitutes configuration in the statement ofÄk
the theorem. Configuration  agrees with , except thatÄ Äd k

T ��� ����� ��� ������� ��� ��� 
�� ������ c��� �� ��� ��� ��� 
���� ��� ������� V
	�@
   is at ;Yÿ^¶E D[

T ��� ������� c��� �� ��� ��� ��� � ����� � ��� ������� �� ��� ���� �� ��
� ����� 
��
   a total of 11 empty sites between it and the rightmost cell);

T ��� ������ c��� �� ��� c����� ��� �� ��� ���� ��
��
�� � 
� � Øÿ^¶ h `` E ÿ^¶h `` [

with symmetric changes to the other  seeds.ó

 Easiest to check is the evolution of the side seed pictured above. With a little care and patience, one

can verify by hand that the result is two ladders, traveling north and south, cleanly fused along the axis.

Thus, the side seeds of spread away from the axes to begin forming a frame. Simultaneously, as canÄk
only readily be checked with a computer, after a substantial but finite eruption of lava, the corner seeds

each produce a pair of ladders heading from the diagonals toward the axes. The corner motifs of Fig. 10

illustrate this effect. Moreover, the offsets of +1 and -18 from  in our design ensure that the pairs ofÿ^¶

ladders heading toward one another are aligned exactly, and their collisions produce a clean closed frame

with no additional shoots or lava. Since, as previously noted, the spatial phase of LwoD ladders is 4, that

factor in our design ensures the same outcome, independently of  and .¶ ^
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 Configuration  evolves similarly, except that the side seeds produce two parallel ladders outsideÄd
the frame traveling away from the origin, a substantial but finite lava eruption occurs inside the frame,

and the ladders heading from the axes to the diagonals are displaced a few cells from their counterparts

in . In this case the corresponding offsets of 0 and -22 ensure a clean closed frame. Fig. 10 showsÄk
LwoD started from  after 350 updates in the case . By inspection, one easilyT rÄ ¶ N F&E ^ N ±k¥ d
finds a closed -circuit embedded within the frame.Ík

Fig. 10. Formation of a frame with exterior ladders from 28 cells.
Here 15 3 350.X ä å Y ä å Z ä

 

 To complete the proof, it suffices to argue that for any , and sufficiently large, these¶ ^

constructions produce a complete frame before the growth from  can possibly interact with it. WePL
show this by comparison with our Basic Example. If denotes LwoD, and  Threshold 3 Growth, bothP PJ J
started from the same , then it is easy to check recursively that  for all . Since LwoD laddersP P ° P HL J J
travel at speed , and all lava eruptions within the frames are finite, both types of frame are complete byk

3

time 6  for some constant . Recalling from Section 2 that the asymptotic shape ^¶b � E �k k Ñ of our Basic

Example has vertices  and , it follows that Y Ï E D[E YDE Ï [E Y Ï E Ï [k k k k
d d ¤ ¤ P ° TL P cannot possibly

reach any site of either surrounding frame before time  for a constant depending only on .+^¶h � � ¶d d
By that time, for  large, the frame is in place.^ ¨
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Problem 11. Consider the threshold 2  , a 3-state CA in which 0 (flammable) changes to 1forest fire IJ
(burning) next time if 2 or more of the 8 nearest neighbors are currently burning, 1 updates to 2 (burnt)

automatically, and 2's never change. Check that  supports width 2 ladder-like fire fronts, and thenIJ
mimic the proof of Theorem 3 to show that persistence of fire (1's) depends sensitively on the initial

configuration ILO

 As another indication of Life without Death's remarkable complexity, it is shown in  that this[GM]

rule can emulate any logical circuit. The ability to do so establishes a degree of algorithmic complexity

known as  . Simple CA models of ballistic computation are known to have thisP-completeness [GHR]

property; see Chapter 18 of . The challenge with LwoD is to demonstrate how [TM] for a nice exposition

ladders, which leave tracks that cannot be crossed, nevertheless are able to compute starting from

suitably designed initial conditions. Initially, the presence or absence of input ladders corresponds to

whether or not respective logical inputs are true or false. One then designs interactions corresponding to

AND OR, , , and so forth, the truth of the circuit being determined by the presence of an output ladder. NOT

More generally, if a cellular automaton in two or more dimensions supports growing ladders which can

turn, and can block each other, then it turns out that the dynamics can express arbitrary Boolean circuits.

Fig. 11 shows a ladder interaction with 4 cells that leads to an especially graceful right turn. The ability

of one ladder to block another at right angles was mentioned previously. As in the proof of Theorem 3,

some rather delicate engineering is needed to control the model's propensity for parasitic shoots and

chaotic lava; see . Once P-completeness is established, there is an illuminating corollary[GM] for details

  
Fig. 11. Right turn of an LwoD ladder after collision with a 4-cell configuration

for growth theory. Namely, suppose we want to know whether a finite seed will grow persistently. If we

design the seed so that only the corresponding circuit's output ladder can persist, then the CA will grow

to infinity if and only if its circuit's output is true. Thus, growth model prediction is at least as hard as

Boolean circuit prediction.

 A number of minor variants of Life without Death admit ladders with similar architectures. Four

totalistic alternatives we know have the same birth rule, but preclude survival for certain population

counts: ( ) 8, ( ) 7, ( ) 7 or 8, and ( ) 1 or 3. The  solidification rule of the next section supportsa b c d ` &OR
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diagonal ladders, while the range 2 CA described in an August 1996 recipe of [Gri2]

(http://psoup.math.wisc.edu/recipe80.html) has horizontal, vertical and diagonal ladders. Of course, these

differences destabilize many, if not all, of LwoD's elementary interactions, so we invite the reader to

investigate how many of the observations of this section carry over.

5.    Rules[ [OR
\

 Let us look next at slightly more complicated totalistic rules which seem to interpolate between

Threshold Growth and the random systems to be discussed in the final section of this paper. Namely, we

consider solidification dynamics with e ³ ³N F Y � [O¢ £ § ]û ûÅ   In words, a vacant site becomes occupied

when it sees either  or  occupied Moore neighbors, while occupied sites remain so forever. We will³ ³ ]
briefly describe some interesting examples with ³ N `E ±O

 Turning first to ± OR ³ ³] ]rules, we note that for , the process started from a rN ÿ ange 1 diamond

agrees  with Threshold 3 Growth as prescribed by (2.3) (cf. Fig. 1), so the limit shape is the sameexactly

octagon . It is easy to check that  is also the limit starting from any  lattice rectangle of size atÑ Ñ ^ À Á

least 3. Of course ± ÿ POR  will not completely fill the lattice from large in general, since tiny holes suchL
as single 0's completely surrounded by 1's cannot fill in. Roughly speaking, though, 's along the exteriorD

boundary of the crystal see at most four 's, so this is a minor perturbation of the monotone case. MakingF

the last observation precise is surprisingly difficult, since (1.3) is not available  try to find an airtighth

solution to our next problem.

Problem 12. Show that  solidification, started from any finite  with persistent growth, covers a± ÿ POR L
cofinite subset of the lattice with asymptotic shape ÑO

 At the other extreme,  is an inconsequential perturbation of LwoD. One simply fills in the± +OR

isolated vacant cells, by which we mean the exact connection described in the following puzzle.

Problem 13. Show that 8 solidification, started from any finite  and run for  time steps, agrees± P HOR L
with Life without Death run for  time steps starting from , followed by one final 8 update.H h F P ±L _`

 More interesting (and much less tractable!) are the  In each of these± OR ³ ³] ] rules with N &E óE "O
cases we let the occupied region grow until it reaches the�
�� ���� 
 �
���c� �
�� �� ��
���� º�� 
��

edge of an 800 800 array, in order to get an initial impression of the purported limiting shapeÀ O To

enhance visualization, each successive update is displayed in a new color from a gray scale palette. The

results are shown in Fig. 12. Note that the boundaries of all three crystals exhibit pseudo-random
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Fig. 12a. 3  5 SolidificationOR

Fig. 12b. 3  6 SolidificationOR

Fig. 12c. 3   SolidificationOR b
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fluctuations. The ability of simple CA dynamics to emulate stochastic interfaces was first observed by

Æ�c���
c � ��� �������c�� ����������� ������ ���� ���� �c� 
 ]
������ Æ���� � �[Vic] ± _`
similar in spirit; Fig. 12a raises at least the prospect of a strictly convex limit shape with piecewise

smooth boundary. Such shapes  are believed to arise from some of the simplest random growth models,¶

as we will explain in Section 7. On the other hand, Figs. 12b and 12c suggest limit shapes of a square and

octagon, respectively.

  Precise analysis of any of these models seems prohibitive, so we resort to larger experiments on

dedicated devices such as the CAM-8 [Marg] for further insight. This cellular automaton machine from

the MIT Laboratory for Computer Science is a state-of-the-art of interactive desktop parallel processor,

offering a unique combination of computing power and visualization capability for the study of CA

dynamics. To date, our most interesting CAM-8 discovery about  is the emergence of± OR 6 growth

certain structures, at the corners, with very large but finite period. Perhaps these can be used to confirm a

square limit , at least from some initial  The 7 growth rule is illuminating for a couple of¶ P O ±L _`
reasons. First, CAM-8 experiments on larger arrays indicate rather convincingly that its limit shape  is¶

not can octagon as one might surmise from Fig 12 , but rather a shape with piecewise smooth boundary

more like the one suggested by Fig 12 Polygonal corners would seem to be a short-term artifact ofa. 

close-to-critical dendritic growth. In addition, Dean Hickerson (private communication) has recently

discovered that from certain seeds, our first bona fide counterexample to (1.5 ).± OR 7 grows sublinearly i

Problem 14. Check that 7 is persistent and sublinear when started from the 3-ball ± OR { 3 }Ê@Ê �d k
d

by showing that    2   as  H P i CÊ@Ê X G H i úO· J _ d
¤

�� É

 In light of the complicated scenarios described in the previous paragraph, it is rather surprising that

the  rule produces an assortment of recursive crystals, thereby providing our first example of a CA` &OR

for which different seeds are known to yield different nontrivial asymptotic shapes. Moreover, some are

convex, some not. We will exhibit growth crystals starting from -balls þ { } for severalÊ@Ê � þ bd k
d

values of . The exact evolution of each can be confirmed using formalism (3.1). First, when  þ þ N ` Ya

5 5 box with the 4 corner sites removed), a convex octagon with sides of slope  emerges, asÀ Ï ±E Ï k
¤

shown in Fig. 13. The same limit occurs from  But starting with , nonconvex shapes arise.þ N ±O þ N ÿ

Fig. 13. 2 OR 5 Solidification from a small seed
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(A curious exception is the  case, which stops growing after a single update.) Some of these elegantþ N +
crystals, corresponding to  and  are shown in Fig. 14. Note the fixed-width indentations andþ N �E F` F±E

diagonal ladders of the first two rules, which do not figure into the limit since they are negligible after

normalization. In the first two cases, then,  is the same nonconvex octagon, with slopes , 2. The¶ Ï Ïk
d

Fig. 14e g hi k mnoqrqsquvxqny szn{ ovxxqu| }voo~ ns �zvrq�~� 9, 12, and 13, respectively

last case yields a different nonconvex octagonal limit with slopes , . Thus ( ), ( ) and ( ) ofÏ Ï¤ ¨
¨ ¤ i ii v

Theorem 1 seem to hold, but ( ) and ( ) fail, for this growth model. To conclude this section, we offeriii iv

two instructive exercises. The first is easy to do with paper and pencil, whereas the second can only be

solved using WinCA or some other CA experimentation platform capable of handling large arrays.

Problem 15. Show that  solidification starting from a horizontal dyad grows at distinct speeds in` &OR

the horizontal and vertical directions, thereby providing our first example of a two-dimensional limit

shape which is not balanced with respect to the origin. Compute the asymptotic shape .¶

Problem 16. Show that the asymptotic shape  of  solidification is the same starting from the 14-¶ ` &OR

ball P NL { } as from the 9- or 12-ballÊ@Ê � Fÿ Od k
d

6. Exotic Case Studies

 Growth generated by maps  which are neither monotone nor solidification rules often displaysK

bewildering complexity. This section describes three totalistic models with particularly intriguing

dynamics, largely beyond the reach of mathematical understanding, but raising many fundamental

questions about the scope of possible behaviors for the simplest cellular automata.
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Wolfram's Crystal

 Can the asymptotic shape  for a simple CA growth rule be a perfect Euclidean circle? As¶

��������� 
� ��� ��������� �� ��� ������ �
cÔ
�� 
�� µ����
� ����� �� ����c
�� ���� �� �����

seminal 1985 paper [PW], both in the passage cited in our Introduction, and later when they summarize:
 

{� ���������� ������� �}� �����~��� �� ��}���� �~ ���� ��� �}�������~ }� ��� �������~
produced do not follow the polytopic form suggested by the underlying lattice construction

of the cellular automaton. Indeed, in many cases, asymptotically circular patterns appear to

�� ��}�������

��� 
����� c��� 
 ��� �	
���� �� ��������� �������� �� ���c� ���� 
��
������ ��
� ��� ����
�

growth; just how slow is unclear. For instance, they include pictures of the perturbation of Conway's Life

with  e fN F N F¢ § ¢ £ £ §3 2 3 4 and   up to about time 100 starting from a small irregular seed. Their final

configuration is still quite irregular, but vaguely circular.

 The  for spatial growth whether local interacting dynamics can give rise to anisotropy problem h

asymptotic shape which is radially symmetric dates back forty years to Eden's Model in whichh [Ede], 

a new cell is repeatedly added at a random boundary location of the crystal. For many years it was

conjectured that  for that model should be isotropic. Although the two and three dimensional cases¶

remain open, more recent supercomputer simulations,  and rigorous counterexamples in high dimensions

[Kes2], provide rather convincing evidence of a residual lattice effect in the limiting geometry of Eden's

Model. We will briefly discuss other shape results for random growth in the next section.

 For deterministic CA dynamics, an analysis in shows that Threshold Growth with moderate[GG1] 

range  and suitably chosen threshold  can achieve a polygonal asymptotic shape which approximates aR ³

circle within 2%. We also saw suggestive evidence in the last section that  for the ¶ ± _` 5 rule may be

anisotropic with smooth boundary segments. Evidently, then, we are dealing with a very subtle question

here, which cannot be resolved by cursory inspection of a few small computer experiments.

 About two years ago we met with Wolfram [Wol2] to discuss the isotropy problem. He confided

that, upon closer inspection, the examples mentioned in did [PW] not appear to grow with radial

symmetry. But he described an exhaustive search of all totalistic CA, and mentioned another rule which

seemed to do the best job of growing circles.  is another perturbation of Life, withWolfram's Crystal

e fN F N F¢ § ¢ £ §3 0,1,2,3 4and  . Fig.15 shows its evolution from a 10-ball after 1,000 updates. This

preliminary picture was sufficiently tantalizing that we designed a much larger experiment using our

m�]V� ���	�
����� �� ��� ��� ������� c����c����� �� c
������ µ����
�� m���
� ����� ��� ���
��
until it filled an 8K 8K array.  test for circular , we measured the extent of the growth in theÀ ¶ As a

horizontal and 45° directions at times 500, 1000, ..., 10000 (starting from a somewhat larger lattice
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Fig. 15. Wolfram's Crystal from a 10-ball at time 1,000

circle). More precisely, at each such time we computed the distance from the origin to the closest

hyperplanes touching the occupied set, and normal to the ° and 45° directions. The results  and ,D � �J J
together with the eccentricity , are tabulated in the Table below. We leave it to the readerÎ � � ï ` �J J JÈ
to decide whether the numbers support isotropy, or whether there is a residual eccentricity on the order of

Time Horizontal Displacement Diagonal Displacement Eccentricity � � � �� � ����
����
����
�

 269  180.5 1.054

 453  307  1.043

 643  432  1.052

���
����
$���
$���
%���
%���
����

 823  559.5 1.040

1005  685.5 1.036

1192  810.5 1.040

1368  934.5 1.035

1556 1056  1.042

1746 1183.5 1.043

1931 1310.5 1.042

2110 1436  1.039

2296 1563.5 1.038

2481 1686  1.041

2669 1816.5 1.039

2854 1941.5 1.039

3037 2065.5 1.040

3217 21

����
����
����
b���
b���
����
���� 90.5 1.038

3399 2317.5 1.037

3582 2443  1.037

3768 2569.5 1.037

����
����

�����
Table. Horizontal and Vertical Extent of Wolfram's Crystal up to time 10,000
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a few per cent. Regardless of the interpretation, a rigorous mathematical solution to either part of our

next problem would constitute a major milestone in the theory of cellular automata shapes.

Problem 17.  Find a CA (with =  for some , say) having an asymptotic shape  which is two-S RT ¶U
dimensional and convex, but not a polygon. Is there such an example for which  is a circle?¶

Hickerson's Diamoeba

 As non-monotone cellular automata go, Wolfram's crystal is quite well-behaved. Despite its

complicated boundary dynamics, the growth spreads steadily albeit slowly  and appears to acquire ah h

characteristic shape. By way of contrast, we now introduce an incredibly wild totalistic CA discovered

by Dean Hickerson, and called the for reasons that will become clear shortly. Its birth andDiamoeba 

survival maps are

e fN F N F O¢ £¥£©£¦£v§ ¢¥£©£¦£v§3   and   

Note that this rule is interfacial. Nevertheless, its evolution from simple seeds is so complex that we still

do not know, or even hazard to guess, whether persistent growth is possible. We extend our gratitude to

Hickerson for letting us describe his findings, some of which have been posted to the (private) LifeList

Internet discussion group, but are otherwise unpublished.

 From small random seeds the Diamoeba typically dies out, although a few configurations have

������ �� Ù�� ���
�c�� ��� �
���c� ��	 ���� » c��� �� 
 ��� � �c� 
 �����Ô����  
���� ��
�� ���� ����
side length 2  grow to diamonds of twice the size, but then lock into a period 2 orbit, as we invite theÁ

reader to verify.

Problem 18. Carefully describe the asymptotic behavior of Diamoeba from lattice boxes with an even

number of cells on a side.

Much more interesting is the fate of square seeds  with odd side length 2 +1. Early in ourT E Á¾
experimentation with Hickerson's Diamoeba, we noticed that these initial configurations first grow into

(near-) diamonds, as in the case of even side length, but then begin a complicated withering process until

they vanish completely ! For instance, Fig. 16 shows the collapse after has spread to a 300-diamond,Tk¥L
with level sets of the shrinking boundary drawn using a periodic gray scale palette. We observed the

cyclic occurrence of several distinct polygonal shapes, and suggested to Hickerson that the evolution

appears recursive. Not only did he confirm our conjecture, but he was also able to obtain an exact

expression  for the lifetime of the process as a function of ÁO
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Fig. 16. Oscillating collapse from �150

 During the first  updates the shape is a 12-gon which interpolates between the original square andÁ

the maximal diamond. From time  to  the shape is a shrinking 12-gon.  After that, most shapes in theÁ `Á

collapse are 16-gons, some convex, some not, which interpolate between a cycle of 6 characteristic

octagons with slopes  and , respectively (along with their negatives, reciprocals, and3 3 2

4 3
E E E Ek kk k
d v d¨ d

negative reciprocals).  Summation of an infinite geometric series shows that the time until death isý¾
asymptotic to while Hickerson's detailed analysis yields the exact formulaF` ÁE

ý¾ k kkN F` Á h + h ÿÁ b `Á b YÁ `[ mod .

Here  and  are the number of 's and the number of adjacent  pairs in the binary representation ofÁ Á F FFk kk

ÁO N F` ê F&D h + h ÿ ê ÿ b ` ê F b D N F""+E(For instance,  as is readily confirmed by experiment.)ý150

We remark that other large, lattice-symmetric seeds such as lattice -balls are drawn toward thisþ

collapsing attractor.

 In light of the discussion so far, one might be tempted to conclude that the Diamoeba either fixates or

dies out, possibly after a modest growth spurt, from any initial seed. However, even moderately large

initial configurations with slight lattice asymmetry can tell a very different story. As an illustration, let us

consider seeds of size rectangles 2 cells high and  cells wide, but with the upper right corner`^ h F V ^

cell removed. The cases 64 all die by time , except for  and  which stabilize as^ X FDE DDD ^ N ±ÿ ÿ±E

period 2 blinkers within a few thousand generations and the four cases  whoseE ^ N &ÿE &�E óFE ó±
behavior we will now describe in some detail.
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 The Diamoeba first truly lives up to its name when  or . If fter rapidly^ N &ÿ &� ^ N &ÿE then a

forming a rough diamond within the first 25 updates, asymmetry at the boundary leads to chaotic time

������
� �� ������ 
�� c���
��� Occ
���
� ������
c�
� ���cÔ� c
�� �×� ���c��
���� �� ��� ����� ��
the entire crystal. In real time, the growth seems almost organic, like the undulations of a single-celled

creature. This effect is heightened by the dynamics of virtual  which run along Diamoeba's boundarycilia

(cf. the upper left inset of Fig. 17, for the case ). The net effect after 50,000 updates is a blob of^ N &9

more than 50,000 cells, suggesting omnivorous growth (with a modest appetite). However, at generation

52,150 the process seems to stop growing, at least for a very long while. Its shape is roughly an oblong

diamond, a recurring geometry for Diamoeba, while its population fluctuates only a few hundred cells

away from 67,500. Examination of the cilia along the edges explains this hiatus. The northwest edge is

period 2, except for a small period 8 region at its top. The top half of the northeast edge and about the

bottom  of the southeast edge also have period 2. Three  independent boundary regions are still active:k
3

the lower half of the northeast edge, the upper  of the southeast edge, and the entire southwest edge.2

3

Further computation shows that the northeast region  becomes period 4,088 in generation 952,824 and

the southeast region becomes period 167,409,998 in generation 731,625,667. Alas, Hickerson has

checked that the longest, southwest region remains aperiodic for more than 200 billion updates without

experiencing a shock that destabilizes its shape and starts another growth spurt. The eventual fate of this

process remains unresolved. If tempted to conclude that the crystal has stopped growing, you might ask

yourself why. A 3 199 rectangular seed is instructive in this regard: within about 2,500 updates itÀ

stabilizes as a ciliated diamond of approximately 13,000 cells, retains essentially the same formation

until shortly after time 99,000, but then starts changing shape again..

Fig. 17. Chaotic growth of Hickerson's Diamoeba

from a 2 59 rectangle with one cell removed�
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 The case  is a better candidate for persistent growth, but ends up creating even more^ N &�
confusion. Fig. 17 shows its growth during the first 50,000 updates using a cyclic gray scale palette to

represent cells added at successive times. The intricate fossil-like striations reflect the chaotic ebb and

flow of Diamoeba growth. A detail at the upper left shows cilia below the right corner. After about

940,000 updates the crystal stops growing temporarily, with a population of around 41,900,000 cells.

Hickerson has actually identified 6 different patterns of cilia which arise along the edges of Diamoeba

and can be modeled exactly by one-dimensional CA rules with boundary conditions. For instance the

linear  rule arises frequently. By isolating the boundary dynamics and feeding them to a 1D simulatorXOR

he is able to predict that one of the cilia regimes will break down after another 5,191,475 updates, after

which another growth spurt is possible. He speculates that alternating cycles of growth and stasis arise as

the different 1D CA rules compete for supremacy along the boundary, but that eventually a single rule

should attain dominance along each edge of the rough diamond, and then, perhaps eons later, the

Diamoeba should finally settle into a periodic state.

 Growth stops for  around generation 109,000 with a population of about a quarter of a^ N óF

million cells. The  case is settled by time 14,276, with an 86 86 bounding box and periodic 1D^ N ó± À

CA dynamics along the four sides of its diamond.  The periods of these rules  1478, 1246, 2936, andh

4628  are small enough that the period of the entire crystal is computable as 17,572,432,696.h

 For values of  above about 65, there seems to be a kind of nucleation transition: the great majority^

of seeds grow to at least a very large size. Over the range  only the cases 69 and 73 die out½ó&E +&ÓE
within the first 100,000 updates, none of the others become period 2 within that time span, only 77, 80

and 83  to have stopped (like 54), and the remaining 16 cases seem to still be growing, withappear

bounding boxes between about 500 and 1000 cells on a side. Now that our readers are completely

bewildered, we finish this subsection with an open problem which can perhaps be resolved by very clever

construction of a seed that grows recursively.

Problem 19. Does Hickerson's Diamoeba fill  starting from some initial seed  ?\d LP

Conway's Life

 John Conway's Game of Life, the totalistic rule with birth and survival maps

e fN F N F¢ § ¢d£¤§3   and   

is without question the most celebrated of all cellular automata. Popularized by Martin Gardner in a

series of Scientific American articles beginning in 1970 the model rapidly became a favorite[Gar1] , 
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experimental playground of recreational mathematics. For a superb account of the early years, see

volume 2 of . More recently, Conway's Game has been recognized as one of the first and simplest[BCG]

prototypes for the emerging arena of complex systems theory known as Artificial Life (cf. ).[Lan]

Perhaps surprisingly, despite the intense scrutiny this rule has received for nearly 30 years, exciting new

discoveries continue to be made, while many fundamental questions remain unresolved. We are by no

means experts, but will attempt to summarize here some recent developments relating to persistent

growth from finite seeds. For clarity, the discussion is divided into three subsections.

Universality and Pattern Synthesis

 One of Life's most famous properties is , a stronger form of the circuitcomputation universality

emulation for Life without Death which was described in Section 4. The counterparts of LwoD's ladders

are moving , various  which can block gliders without being damaged, and  suchgliders  eaters glider guns

as the famous 45-cell construct for which Bill Gosper won a $50 prize from Conway. Life does not share

LwoD's propensity for unbridled chaotic growth, so using these ingredients identified in the early 70s,

one can simulate a Turing machine with its infinite storage capacity. Consult for details, and[BCG] 

[Min] [Cal] for theoretical background. Refinements by Hickerson and Callahan (cf. ) have simplified the

construction and improved its theoretical efficiency.

 Life experts vouch for the feasability of a much more powerful (and complicated) extension of the

Turing scheme which establishes , meaning that Life can faithfully simulate construction universality any

CA rule in space. Although details of the general construction have never been specified,. at least in

principle Life could then grow from a suitable seed in the manner of any model described in this paper.

D. Bell (cf. ) recently worked out one instance, a  which lets Conway's rule simulate its[Cal] unit Life cell

own universe. As another illustration of universality, since  any computer algorithm can be simulated,

theoretically it should be possible to design a Life seed which grows with asymptotic isotropy.

 Lest the reader conclude that anything is possible, so there is nothing to know, we hasten to point out

two essential limitations of the simulation approach. First, it gives no information about how Life

evolves starting from the preponderance of initial configurations, or from prescribed simple seeds.

Second, even if the goal is to design prescribed dynamics a finite  with period 17, say, or the delay-h P

line memory architecture of the 1949 EDSAC computer  general theory is worthless for a manageableh

construction. Thus, a small group of dedicated researchers continues to do remarkable work on the

synthetic objects   understanding of Conway's rule, assembling a huge menagerie of known , and

interactions between them which can be controlled despite Life's complexity. Paul Callahan's wonderful

Patterns, Programs and Links web site features annotated animations of more than a hundred key[Cal] 

constructs. Another even more extensive web site maintained by Mark Niemiec includes contact[Nie] 
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information for most of the Life cadre mentioned in this review. Before proceeding to our discussion of

persistent growth, let us mention a recent crowning achievement. Based on ten years of active

experimentation by David Buckingham with B-heptomino interactions, there is now a general recipe for

constructing a finite Life seed of  period greater than 57. At present, only fourteen periods are not yetany

known to arise within elementary objects:

19, 23, 27, 31, 33, 34, 37, 38, 39, 41, 43, 49, 51, and 53.

(Of these, the values 33, 34, 38, 39, and 51 can be achieved by non-interacting pairs of known objects

with the required prime periods.)

Breeders and Spacefillers

 A glider gun generates persistent growth, albeit in a single direction, since it emits a steady stream of

gliders which advance at constant rate. The first example of a Life seed with two-dimensional asymptotic

shape was Gosper's 4060 -cell  from the early 1970s. Nowadays the term is used to describe anybreeder

pattern with a population that grows quadratically by creating a stream of objects, each of which creates

another stream. Fig. 18 shows the smallest known breeder at present, due to Hickerson. In this variant, a

�������� ��
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� ���� � ��
���� 
 ��
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Fig. 18. Hickerson's 603 cell Breeder

which emits gliders traveling in the NE direction. The asymptotic effect is a triangular shape composed

completely of gliders, occupying one out of every 45 cells in a regular array:

H·k JP i �
45
F @[ @ N CD � @ � @ � h @ GE�( d ,     where  � d k d

�
�
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in the sense of (3.3). A more elaborate and very recent puffer/glider construction by Gosper yields a

��� ���� ���c�  ��� ������ � ��
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that the occupation times of each  form an aperiodic sequence.@

 One of the most remarkable Life constructions of the 1990s is the . First, the readerMax,  spacefiller

should understand that a  is any configuration which is a fixed point for Conway's rule. Forstill life

instance, a 2 2 box is a still life. So is the density  periodic tiling of the lattice by such boxesÀ 4

9

��
�
��� �� ����� ���
��� ���� ����� ���� � �
c�������� ����� � 
 ��� �c� ��
� �� �����P PL _
exists, and is a still life with positive density in . The 187-cell seed at the upper left of Fig.19\d Max 

Fig. 19. Stripes generated by , a 187-cell Life spacefillerMax

generates a density  still life by spreading, as shown, in a diamond of alternating occupied and vacantk
d

����×���
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again in the sense of (3.3). Max has been dieting recently. The design shown here, currently the smallest

known spacefiller, incorporates the combined efforts of H. Holzwart, D. Bell, A. Hensel and T. Coe. Max

is optimal in two additional respects. First, by comparison with Threshold 3 Growth, no Life

configuration can advance on an empty background in the horizontal or vertical direction at speed greater

than . Second,k
d  N. Elkies has shown that  is the maximum possible density for a still life. In fact, hek

d
proves the following beautiful combinatorial generalization:

Theorem 4 [Elk]. If every site  of configuration  has at most 3 range 1 box neighbors belonging@ P ° \d

to then PE WP o T W ï WT W X Olim sup
¾Ä_ ¾ ¾ k

d
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In the same paper, Elkies obtains analogous sharp upper bounds if 3 in his theorem is replaced by any

other possible value except 4 or 5, also solves the corresponding range 1 diamond problem completely,

and discusses generalizations to higher dimensions and other graphs.

Nucleation Issues

d������ �� ��� ��c���� �� m���
�� ���� � �
� 
����� ��� ��� �� ������� �����c
�� ���
grow persistently. Most of the smallest configurations either die out or rapidly stabilize as a still life or

oscillator, perhaps after emitting a few gliders. Early on, Life experimentalists coined the somewhat ill-

defined notion of a a small seed, of less than a dozen occupied cells say, which does notmethuselahh

stabilize in a recursive pattern for a rather long time, say until at least 969. Perhaps the first exampleH N

encountered was the -pentomino , which stabilizes in generation 1103 after producing 6 gliders.r

 What, then, is the size of the smallest seed which generates persistent growth? This question is still

open, although it may not remain so for long. By an exhaustive computer search, Nick Gotts and Paul

Callahan have checked that no initial configuration of 8 or fewer cells grows persistently. Within the past

few months Callahan has also discovered a 10 cell seed that does grow. His method was to test large

collections of possible interactions between two minimal methuselahs with total population 10. One

successful combination arises within a box 35 sites wide and 18 sites high: place an -pentominor

(oriented as above) in the upper left corner, and its 5-cell grandparent  in the lower right. After about

2000 iterations the evolution stabilizes, with a steady stream of gliders traveling SW. For now, there

remains the possibility of persistent growth from 9 initially occupied sites, although Callahan feels he has
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����
����

� �� �
�� ��� ���������� ��� �
���� ���� ��� �����c����c
�� ����� ��� ���� �	��c� ��������

growth to be the norm once the initial seed is sufficiently large. Thus it is natural to pose

Problem 20.  Do most finite Life seeds have infinite population growth?  More precisely, if �YÁ[
denotes the number of configurations  such that , does   as  ?P ° T WP W i ú YÁ[ï` i F Á i ú¾ J �� �� �
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speed  puffer moving outward somewhere along its boundary, output from which will cause the totalk
d

population to grow. But this assertion is probably quite difficult to prove since some rare structure might

conceivably chase along the puffer's trail, delete its output, and ultimately destabilize the puffer itself, in

the manner of an LwoD shoot overrunning its ladder.
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Section 2, supercritical growth should spread over the whole lattice starting from almost any suitably

large finite seed, subcritical growth should be unable to fill in large holes from typical exterior

configurations, and the remaining alternative might well be deemed critical. Since the great

preponderance of small Life seeds either die or stop growing within a few thousand updates, since there

are apparently no known examples of persistent chaotic growth, and since Life on a large torus started

from random initial conditions (e.g., the default screen saver of SUN Sparcstations for many years)

eventually relaxes to a periodic state, it is natural to surmise that Life should be subcritical. On the other

hand, attempts have been made to evaluate growth properties of Life by measuring its ability to

propagate finite perturbations of a disordered equilibrium. Two contradictory conclusions have emerged:

in it was claimed to have a power law tail and hence that Life enjoys ,[BCC] , self-organized criticality

whereas used larger, more extensive simulations on a CAM to conclude that effects die off[BB] 

exponentially quickly, albeit with a small exponential rate. What seems clear is that the Game of Life is

remarkably close to critical, by any reasonable definition. In this vein, K. Evans  has studied[Eva]

higher-range generalizations of Conway's rule known as Larger than Life, finding a whole parameterized

family of CA rules which are close to critical and support various glider-like bugs, breeders, replicators

etc. To end on a paranoid note, Problem 19 raises the specter of some exotic, exceedingly rare

architecture with the ability to outcompete any surrounding environment and spread supercritically over

any environment, in a manner reminiscent of the stable periodic objects of [FGG1]. Life aficionados

have never come close to encountering such a creature, but one might be lurking in another galaxy.

7. Remarks on Random Growth

 Chance enters into growth dynamics in two natural ways: either by , i.e., by startingrandom seeding

from a random configuration while keeping the update rule deterministic, or by a  ofrandom perturbation

the update rule. In either case, there is a bewildering variety of ways to make the random assignments, so

we will confine our discussion to the simplest choices. For concreteness, we also restrict the discussion

to range 1 box solidification rules.

 In the case of random seeding, we will assume that the initially occupied set  is obtained simplyPL
by adjoining every site independently with probability . Such initializations are convenient since theyÉ

are relatively easy to compute with, and convenient for simulation, while typically capturing the essential

ergodic behavior of many other translation invariant initial states. Since we are dealing with

solidification rules, the random set  is well-defined, and  measuresP N C@ V Y@[ N FG � Y YD[ N F[_ _ _I I

the final density of occupied sites. The immediate question facing us is whether the dynamics are likely
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to fill in most of the lattice under these conditions. The first of the following two problems is not difficult

to solve (see ), whereas the second is largely open.[GG2]

Problem 21. Consider Threshold Growth with threshold  and seeding density . Prove that for any³ É

É ² D P N X ÿO Yz[ N F z N F, almost surely,  iff  Also, for the solidification rule which has iff  _ d\ ³ e or

z Z &E É A YDE F[ � Y YD[ N F[ Ashow that for any , (0,1).I_

Problem 22. For Exactly  Growth, when is inf ? Simulations seem to suggest³ Ilim
ÈÄ L

_� Y YD[ N F[ ² D

that this is the case for 3. Does the limit of final densities as  exist, and is it equal to  for³ X É i D 4

9

Exactly 1 Growth?

 The situation when seeding is sparse, i.e., for   small, is of particular interest, as it emulates crystalÉ

growth caused by rare impurities. In such circumstances the rate at which the dynamics fill space is of

basic importance, and the natural statistic to measure this rate is , the first time the origin is occupied. 
Simulations make it clear that, in the process of covering the lattice, the system evolves through three

stages: ( )  of occupied areas which are able to grow by themselves, ( )  in a slightlyi nucleation ii growth

polluted environment, and ( )  between large growing droplets. Understanding these aspectsiii interaction

is crucial for estimating the size of . For example, the following theorem holds. 

Theorem 5. Let  be Threshold Growth with threshold  and seeding density . In supercritical cases,I ³J É

i.e., for 3,  converges in distribution to a nontrivial random variable as . In the critical case³ X   É É i Dû

³ N ÿ D � � � � � ú � YÉ   A ½� E � Ó[ i F É i D, there exist two constants  such that  ln  as  .k d k d

Roughly, then,  is of order  for supercritical dynamics, and of exponential size in  for critical  É· k
È

û

dynamics. In the latter case, the origin is likely to wait a prolonged time of  before it getsmetastability

occupied. The metastable period  which is exponentially large in a power of  is a signature property ofE k
È

critical thresholds for neighborhoods which are invariant under 90-degree rotation. References ,[AL]

[GG2] [GG5] [Mou] [Sch], ,  and  include further discussion of metastability effects in various models.

 The more precise statement of Theorem 5 in the supercritical case is possible because the nucleation

positions can be scaled by  to yield a Poisson point location. (For general , the correct scaling is .)É Éû ¡US

On this scale, the growth and interaction phases involve polygonal shapes which evolve in a computable

way in continuous space and time. We refer the reader to  for a complete proof, but include a[GG2]

problem here which should illuminate at least the nucleation ingredient of the argument.
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Problem 23.  For a general solidification rule, define  as the size of the smallest initial set  which# PL
generates persistent growth. Assuming , label  a  if there exist  a set  of # \ #� ú @ A � Pd Lnucleus

initially occupied sites such that ( )  generates persistent growth, and ( )  is the leftmost of the lowesti iiP @L
points of . Compute  is a nucleus . Then do the same if ( ) is replaced by ( )P É � Y@ [L

ÈÄ L
·lim ¡ i i'

  YP [ N O_ dL \

The suggested computations (more suitable for a computer then a human) should provide some insight

about nucleation properties of range 1 solidification rules. For supercritical Threshold Growth, the

common value of the above two limits determines the intensity (number of points per unit area) of the

Poisson point location described above.

 To illustrate how shape theory applies to related systems, we briefly mention the Multitype

Threshold Voter Model. In this CA one starts with a uniform product measure over  colors on the lattice¢
and, at each update, site  changes to color  iff  is the  color with at least  representatives in@ � � unique ³

@ b S ¢. As  becomes very large, widely separated regions of single color start expanding, until they

eventually induce a division of available space. If the space is scaled by (note that  must be at least¢ ³k·û

` Ofor anything to happen), then this division approaches a  tessellation of  This is thePoisson-Voronoi Ãd

object constructed by assigning every point in a Poisson point location  its own color, and then painting£
every other point in  the same color as the closest color in . The limit shape of the correspondingÃ £d ¶

Threshold Growth model determines the norm in which distance is measured.

 The rest of this section is devoted to randomly perturbed dynamics. Assuming that growth is

generated by a deterministic monotone transformation , and that  is a fixed K É A ½DE FÓ update

probability, we confine our discussion to the following simple randomized algorithm:

Y�[ ¤ E @ A E H N DE FE `Eß E YÉ[ Let  be an independent family of Bernoulli  random variables, i.e.,n£J d\

� Y¤ N F[ ´ É ´ F h � Y¤ N D[n£J n£J .

Y [ P E ¤ O P EStart from some (deterministic or random) set  independent of  Given the random setL n£J J
PJjk is determined as

P r C@ A YP [ V ¤ N FGOJ J n£JK .

Such a process is therefore a Markov chain on subsets of . Dynamics in this vein have been widely\d

studied for more than twenty years. One of the first and most famous examples in which  is  ThresholdE K

Growth with range 1 diamond neighborhood and , is called  . Related³ N F Richardson's model [Ric]

threshold 1 systems with random births and random deaths (often run in continuous time) are Eden's

crystal growth , voter models ,  and the contact process . Many papers have[Ede] [Durr] [Toom] [DG1]
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been  devoted to shape theory for such local rules. The only known approach is subadditivity, so

existence of shapes and rates of convergence are within reach of rigorous mathematics, but explicit

computations are not. By contrast, it  possible to explicitly compute shapes when they result fromis

aggregate behavior of random walks. Two such examples are: branching random walks, which are

tractable by projection onto lines, in terms of (anisotropic) large deviation rates ; and Internal DLA,[Big]

which inherits  shape from isotropy of the continuum space-time limit , .circular [LBG] [GQ]

 A common feature of the rules described above is that the limiting shape is a convex set, hence about

as regular as Euclidean sets can be. At the opposite extreme are models like DLA  which[WS],

apparently approach some random fractal. Although a lot is known about such dynamics from the

physics literature , rigorous results are few and far between.[BS]

 To reiterate, subadditivity is apparently the only general tool for proving convergence of a random

sequence of sets, given by -  above, to an asymptotic shape. The two alternative approachesY�[ Y [

described in previous sections  explicit recursion, or identification of half-space velocities  seemh h

hopeless. Moreover, even the subadditivity arguments which have been applied to random dynamics rely

on a self-evident property of  Threshold 1 Growth: the process can be  from any occupied cell.restarted

To illustrate how subadditivity works in the presence of randomness,  how to handle thresholdsand

³ ² FE we will now outline the proof of a shape theorem for the randomized version of our Basic

Example.

Theorem 6. Consider Random Threshold Growth on the range 1 box neighborhood, with  and³ N ±

update probability  Then there exists a convex compact neighborhood of the origin, É ² DO D A ¶ ° EÃd

such that

H P i ¶ P YP [ N O·k _ dJ L L
¸

for every finite  such that K \

Proof. Let  denote a geometric random variable with parameter  (i.e., ;ý ýÉ � Y N �[ N ÉYF h É[�·k
� Z F[O P N T YDE F[Moreover, assume that ; this entail no loss of generality since a seed whichL _
generates the plane under  will cover this square in a finite time under the random dynamics. NowK

define

  Y@[ N CH V @ A P GE
  Y@[ N CH V @ b T ° P GE

  Y@E Ö[ N CH V Ö b T ° P Y@ b T E  Y@[[G

inf

inf

inf

J] k J] ]k kJj¥ Ðn�Å

Here  is notation for the state of the process at time  if it is restarted from  at time .P YTE ë[ H b ë T ëJjì
Write  Our first step is to prove that  does not extend too far beyond .P N C@ V @ b T ° P GO P P] ]

J Jk J J
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 The Lemma from Section 2 implies that  is bounded above by the sum of   Y@[ h   Y@[ `&]
independent copies of , since in the worst case sites inside 2  are added one by one. (The numberý T Y@E [_
25 can be reduced somewhat.) The following crude bound therefore holds for any ,ë Z D

(7.1)  e� Y  Y@[ h   Y@[ Z ë[ X `& ê � Y Z ëï`&[ X `& O] ·Èìðd¥ý

Of course  so  includes at most  sites. Therefore, for large P ° YP [E P Y`H b ±[ HEJ L JJ dK

� Y   Y@[ h   Y@[ ² H @ A P [ X Y`H b ±[ ê `& ê X `DD ê H E
FDD
É

 log    for at least one e  ] ¤ ·¨ J ·dJ log 

and hence, by the Borel-Cantelli lemma, there exists a random  such that log for    Y@[ h   Y@[ X HL ] kLL
È

every  as soon as  It follows that@ A P H Z   OJ L

Y"O`[ P ° P ° P H Z   O] ]
J J LJj J�QQ¦ log

     for 

 The last step use  subadditivity to show that  has a limiting shape. By monotonicity,� P]
J

  YÖ[ X   Y@[ b   Y@E Ö[O   Y@E Ö[] ] ] ]In addition, the last two summands are independent, and  has the

same distributions as . Moreover, if  then the argument leading to (7.1) also shows  YÖ h @[ Î N YFE D[E] k
that, for every exp  In particular,  for every ë Z DE � Y  YÎ [ ² ë[ X `& ê C h Éëï`&GO �½   Y@[Ó � ú @O] k
Moreover, if  and  are independent copies of , then§ N ÉïFDDDE   E  Eß   YÎ [k d

] ] ] k

                                  

exp 

exp 

� YT °ï P [ X Y` H b F[ � Y   ² H [

N Y` H b F[ � C   h HG Z F
É É

&D &D
Y"O±[

X Y` H b F[ C h
É

©
©

©
J ] d ]

J x
xyk

d J

d ]
xyk

d J
x

d

§

§

§

w

ª «w

&D &DH G ê � C   YÎ [G
É

X Y` H b F[ C h H G ê Y&D[É
&D

X C h GE
É H
FDD

¬ exp 

exp 

exp 

] k
d J

d d J

©

©§

so that, with probability one,  eventually includes .P TJ
] ©t

 From this point on, the argument proceeds along standard lines (as in Chapter 1  and ).Ò ®¯ Ò ®Durr CD

First one extend   to  by:  inf where  is the Euclidean square�   @ A   Y@[ N CH V @ A P b °GE °] d ] ]
JÃ

[ . Then the Subadditive Ergodic Theorem (cf. ) is applied to conclude that, for everyh E Ók k
d d

d [Dur]

@ A Ãd,

Y"Oÿ[ Á   YÁ@[ i õY@[ Á i ú·k    with probability one, as ,

where is the deterministic limiting velocity in the direction of . Function  is a norm on .õY@[ @ õ Ãd
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Convergence (7.4) for all  in a suitable finite set, together with lower bound (7.3), implies that the unit@

ball  is the limiting shape: . This fact, in combination with (7.2),¶ N C@ V õY@[ X FG H P i ¶·k ]
J
¸

completes the proof. ¨

 An essential ingredient in the above proof is the Lemma from Section 2. It turns out that a

version of that deterministic result holds in considerable generality , but the complete[BG]

answer is known only for Threshold Growth on range  box neighborhoods. In that case, anR

occupied point sees a large set within  distance log . More precisely, forÍ ± N FDDD YF b [_ ¤R R

every  which is not within   distance  of , there is a set  such@ A P Í ± P ² ° P o Y@ b T [J L J ³_

that  Given this property, it is not hard to make appropriate modifications in theK \_ dY²[ N O

above proof and conclude that Theorem 6 extends to general box neighborhoods and arbitrary

thresholds.

 As already mentioned, analytic identification of the limiting shape seems impossible for nearly all

random growth models. However, partial information is available in a few instances. The best-known

example is Richardson's model: if  the critical probability for oriented site percolation, then theÉ ² É Es
shape has flat edges . (It is believed that  but the best available rigorous upper bound at¶ É ´ O"DóEÒ ®DL s
present is ) It is also sometimes possible to approximate  in a nearly deterministic model. ForÉ � O+F�O ¶s
example, as  the shape of Richardson's model converges to the unit diamond. A more difficultÉ i FE

example is the solidification rule in which a site with exactly one of its four nearest neighbors becomes

occupied at each update with probability , while two or more occupied neighbors make it occupied forÉ

sure. In this case, it is not hard to show that the asymptotic shape exists, but more to the point is that¶È

É ¶ É i· È
��  converges to a square (of unknown side) as 0 , .[KeSc] [Gra2]

 Since techniques for explicit computation of limit shapes for random dynamics are lacking, we resort

to Monte Carlo simulation. Running the dynamics from finite sets has some serious drawbacks: the

convergence is slow, while strict convexity and differentiability properties are very difficult to detect. A

more expeditious approach assumes validity of the polar formula  and proceeds to estimate¶ N î EÈ ò
kðñ¦

the half-space speeds  Efficient estimation of these speeds is possible since one can reduce randomí OÈ
fluctuations by averaging,  exploiting the fact that half-spaces are translation invariant in one direction.

While this approach yields interesting results, as we shall see below, it unfortunately has no theoretical

foundation at present. The models for which half-space velocities can be proved to exist are limited to

those which admit either a first-passage  or last-passage  representation. Beyond such [Kes2] [Gra2]

examples, even the special case stated in our next problem remains unresolved at the rigorous level.

However this has not stopped physicists from developing voluminous and sophisticated theory on the

regularity of interface motion (see, e.g., , ).[KrSp] [BS]
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Problem 24.  Consider, again, Random Threshold Growth with  Let consist of sites on or³ N ±O PL
below the -axis, and let  comprise the second coordinates of the intersection of  with the -@ µ ° P ÖJ J\

axis. Show that

í YÎ [ N H µ N H h µ [È d J J
JÄ_ JÄ_

·k ·k dlim limmax min (\

exists with probability one.

 Overlooking the current lack of a proof that half-space speeds exist, we now present some intriguing

computer simulations which estimate  and  for Random Threshold Growth with =3 and variousî ¶kðñ È¦ ³

values of . Figure 20 shows the results for . Of course the sets  on the left increaseÉ É N FE E ß E î9 4

10 10

as  decreases, whereas the shapes on the right decrease. These pictures suggest the following behaviorÉ ¶

for the randomized version of our Basic Example in various -regimes:É

( ) If  is very close to 1, then the convex hull of  is the same as the convex hull of . In this casea É î îÈ k
 , so the shape is an explicitly computable polygon.¶ N ¶È k

( )  As  decreases, eventually the boundary of  no longer intersects the boundary of . In this caseb É î îÈ k
 the boundary of  is smooth, but if  is not too small, then  is still non-convex. Hence  has aî É î ¶È È È

���V����������
��� �����
�� ������ �c�������� ��� �� ��
� �����

  

Fig. 20. (left) and  (right) for ¶ · ¸ ¹ �
 º�
 » 
 º%¼½¾ ¿À

( )  Further decreased values of  seem to produce a smooth strictly convex . While thec É îÈ
 mechanism which causes the onset of this regime remains mysterious, the resulting shapes are
 apparently smooth and strictly convex.

 Whether or not there is a phase between ( ) and ( ) in which  is not a polygon but still has botha b ¶

corners and flat edges seems too subtle to predict from our simulations, but that fourth scenario seems

likely for at least some choices of neighborhood and threshold. We remark that smoothness of the
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limiting shapes is important in understanding boundary fluctuations of random growth . More[NP]

details on these issues, including rigorous proofs of some of the observations described above, will

appear in a forthcoming research paper .[BGG]

 One feature of supercritical Threshold Growth models is that small random perturbations do not

change their long-term behavior appreciably. For instance, in the example just discussed,  as¶ i ¶È k

É i F É N F[ (with equality in a small neighborhood of . By contrast, any random perturbation may

destroy the delicate growth pattern of a non-monotone rule. The reader can either try to work out the

solution to our next problem (which is rather difficult; see for the appropriate technology), or else[BN] 

trust Fig. 21, which shows a realization of the Random Exactly 1 CA with , after 55 updates,É N O�&
started from a single occupied cell. Note how the fractal pattern of Figure 6 is completely destroyed.

Problem 25Þ  Consider the Random Exactly 1 CA with update probability . Show that, for every É ² DE¹

there exists a  such that, for every update probability , a large enough time  exists withÉ É A YÉ E F[  L L
probability one, so that for any H Z   E

U Uk· J·kÁ Á° H P b

Ywhere both boxes above are Euclidean).

Fig. 21. Random Exactly 1 growth from a singleton, ¸ ¹ º��

 In short, the limiting shape, if it exists, is close to the unit square for  close to 1. The statement inÉ

Problem 22 is convoluted since  is not known to exist. Indeed, except for trivial cases, no techniques¶

are currently available to prove existence of a limiting shape for any random non-monotone model. The

relatively simple Random Exactly 1 rule might offer the best prospects for development of such

techniques. We therefore make it the subject of our last open problem.

Problem 26.  Show that the Random Exactly 1 rule with update probability , started from any (non-É

empty) finite seed  has a unique asymptotic shape .P E ¶L
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8. Appendix: CA Computation and Visualization Resources

 The Primordial Soup Kitchen :[Gri2]

http://psoup.math.wisc.edu/kitchen.html

is an extensive Web site devoted to cellular automata. Included are an annotated archive of colorful

images illustrating the theory and application of CA rules, electronic versions of several of our

research papers, and the software which was used to perform most of the experimentsWinCA [FG] 

discussed here, as well as links to other sites on the Internet which deal with complex spatially-

distributed systems. A page at the same site,

http://psoup.math.wisc.edu/java/growth.html

has been produced specifically to supplement this article. There the reader will find a Java applet

which runs small-scale, device-independent animations of many of the growth models we have

discussed, together with ready-made  data files for larger and much faster versions of theWinCA

same experiments, and up-to-date Web links to additional resources concerning CA shapes.
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