
from
Spatial Stochastic Processes

A festschrift in honor of the seventieth birthday of T.E. Harris,
 K.S. Alexander and J.C. Wadkins eds. Birkhäuser, Boston, 1991, 171-185.

CYCLIC CELLULAR AUTOMATA IN TWO DIMENSIONS

Dedicated to T.E. Harris on his 70th birthday

   
Department of Mathematics Department  

University of North Carolina - Charlotte 
Charlotte  NC  28223

Robert Fisch Janko Gravner  
of Mathematics 

University of Wisconsin 
Madison  WI  53706

 
Department of Mathematics 

University of Wisconsin 
Madison  WI  53706

David Griffeath 

Abstract
Start by randomly populating each site of the two-dimensional integer lattice with any one of N

types, labeled 0,1, , 1  The type at site  can the type at neighboring site  ( . y  y eat x  x
(i.e., replace the type at  with ) that mod  We describe the dynamicsx y  provided y x   1 N.
of , discrete-time deterministic systems which follow the rule:cyclic cellular automata (c.c.a.  t

(•) At any time , each type eats neighboring type that it can.t y  every t

These systems have remarkably complex dynamics. As  becomes large they display a curiousN
metastability leading to large-scale locally-periodic structure. This article contains a preliminary account
of our findings. For the most part, we rely on computations and computer graphics produced by the
Cellular Automaton Machine. However we are able to give a simple proof that the infinite system  ist
asymptotically locally periodic for any Moreover, we identify a number of regularity propertiesN . 
of rule (•), mostly topological in nature, that offer some hope for a more detailed rigorous analysis.
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1. Introduction

Think of the two-dimensional integers  as a terrain inhabited by creatures of  , labeled2 N types
0,  ( Let , , denote an i.i.d. random initial configuration of types, the1, , N 1 N 3 . x x0

2

value at each site  being uniformly distributed over [ 0, , The creatures proceed to competex N 1 ]. 
for space by feeding on their neighbors, but each type can only eat the one immediately preceding it in a
“cyclic food chain." More precisely, if the type at site  can the type  —y x 1, y  y eat x
that is, replace the type at with its own —  provided that mod . This articlex y x 1  N
describes the dynamics of discrete-time deterministic systems with local transitions of this sort. Namely,
we study determined recursively by the rule:cyclic cellular automata (c.c.a.  

  if   mod    for such that t t t tx   y  y x     N some y y x ,
(•)
  x  t otherwise.

In other words, at any time , each type eats neighbor that it can. Note that this update rule makest every 
sense since each type can only be eaten by one other.

The c.c.a.  determined by (•) exhibit unusual self-organization over time, leading to large-scalet

locally-periodic structure. We will describe four distinct phases of the evolution, characterized by debris,
droplets, defects demons. and Each of these objects will be defined rigorously, and a series of
propositions, essentially topological, will illuminate their roles in the dynamics. The c.c.a. are interesting
not only as mathematically tractable prototypes for local periodicity, but also for the exotic metastability
they display along the way to the limit.

Our goal here is to identify the basic qualitative behavior of these systems, give some background
that motivates our work, present a few empirical findings, and lay the groundwork for a rigorous
mathematical analysis. A more complete and systematic study will appear elsewhere [ ]. A popular
account of c.c.a. dynamics appeared in [4].

2. Four stages of complex dynamics

The c.c.a.  form a one-parameter family of random systems indexed by the number of types t N.
Noise in the i.i.d. initial configuration  is subjected to the organizational logic of deterministic rule (•).0

As we shall see, this dynamic gives rise to coherent limiting structure which grows in size as increases.N 
Approximation of the infinite c.c.a. by finite lattice systems is therefore delicate. To obtain an accurate
glimpse of a finite window, say of width , in the infinite c.c.a., we must select finite systems with  aL L- L
suitably chosen function of . In particular,  must grow very rapidly with N L N.
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In order to describe the essential qualitative features of c.c.a. evolution, let us first consider the 14-
color model on a 256 256 finite sublattice of , with wrap-around at the boundary. The choice2

N 14 is large enough that all stages of the complex dynamics are plainly visible, but small enough that
the finite system with 256 provides a faithful representation of the infinite 14-type system. ComputerL  
graphics, with types represented as effectively communicate the behavior of . Most of ourcolors t

computations have been performed on a customized Cellular Automaton Machine (CAM) [12]. We use
the word  rather than  because pseudo-randomness only generates the initial statecomputation simulation

0 0. The scenario described below is remarkably insensitive to the statistics of , at least in its qualitative
aspects.

Sample trajectories of , such as the one illustrated in Figures 1-4 are characterized by  distinctt , four
stages:

Stage 1 The vast majority of creatures have nothing to eat initially or
quickly run out of food — i.e., within a short time there are only a very few types that
have a neighbor they can eat. However, the rare remaining active areas form critical
droplets.

Stage 2 These  remain active and, by generating wavecritical droplets
activity, expand at a linear rate until they overrun all of the inactive  that wasdebris
present in the initial state.

Stage 3  are formed, leading to the emergence of periodicDefects
spiral structures. Spirals overtake the Stage 2 wave activity at a linear rate, competing
with one another for all of the available space.

Stage 4 Certain minimal defects, which we call , give rise toclocks
optimally efficient . These demons displace less efficient spirals until everydemons
site in the lattice is regulated by a local, periodic structure of period .N

For 14 Stage 1 is over quite quickly; the droplets form and coalesce so rapidly that it is hardN , 
to distinguish one from another. ( By merely increasing  to 20, as illustrated in Figure 5, the activeN
droplets become quite distinct and “drop-like.") Figure 1 depicts the situation well into Stage 2: the
lattice is about equally divided between fine-grained regions that consist mainly of debris from , and0

waves of solid type.

Figure 2 occurs early in Stage 3. A  has “popped up" in the center of the picture.first spiral
Others appeared shortly thereafter, and still others are in the process of forming. We will explain later
how these spiral formations are generated by topological defects.
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Fig. 1.  The 14-color c.c.a. at time 100 (

Fig. 2.  The 14-color c.c.a. at time 150 (

The state of  toward the end of Stage 3 is shown in Figure 3: all waves of solid color have beent

overwhelmed by spiral formations. Note that the first spiral is still evident in the center of the figure. But
note also the spiral with center just to the north and slightly west. As chance would have it, this is a
demon — a structure driven by a period 14 clock. The first spiral, on the other hand, turned out to have 
period 16. The eventual periodic state is reached after several thousand more updates.  In it, the first
spiral is almost entirely displaced by the nearby demon. Moreover, every site of the entire lattice
becomes part of some demon, cycling through the 14 states in order. Different regions are regulated by
different clocks that are out of phase with one another. This is .local periodicity
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Fig. .  The 14-color c.c.a. at time  (

Fig. .  The 14-color c.c.a. at time 3000 (

Fig. 5.  Droplet interaction in the 20-color c.c.a. (
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3. Background and Motivation

Our interest in the c.c.a.  grew out of work on similar cyclic systems  with  dynamics,t t random
described in [2] and [8]. In those models, with time either discrete or continuous, the type at each site
chooses a neighbor at random and eats that neighbor if it can. The main result of [2] deals with one-
dimensional (continuous-time) . It is proved that for the system That is to say, each sitet N 5 fixates. 
attains a final random type (with probability one). If or 4, on the other hand, meaningN  3  clusters, t

that contiguous regions of all one type grow arbitrarily large (in distribution). Article [8], an expository
piece written for a general audience, describes some Cellular Automaton Machine experiments on the
two-dimensional . To our great surprise, CAM gave compelling evidence that these systems neithert

cluster nor fixate for  value of  Rather, after an initial metastable period of wave droplet formationany N.
and growth, the dynamic settles down to a remarkably stable statistical equilibrium consisting of large-
scale spiraling wave formations, as illustrated in Fig. 6. When  increases, both the duration of the initialN
metastable phase, and the size of the eventual vortices, grow rapidly. For more details and a few pictures
see [8].

Fig. 6.  Stable spirals in the cyclic particle system (

In some cases, deterministic cellular automata are easier to analyze than their random
counterparts. For instance, some rigorous results for the one-dimensional c.c.a.  are derived in [5] andt

[6]. Reference [5] establishes fixation for and fluctuation for 3, 4, in direct analogy to theN 5 N
results of [2]. Paper [6] computes the exact asymptotic rate of clustering for the 3-color c.c.a. on : as
t ,

(†)     Average cluster size at time t
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(with probability one); the corresponding problem for  is open. We note in passing that the calculationt

†  is accomplished by considering the evolution of cluster  as a deterministic particle system, oneedges
closely related to the deterministic model analyzed by Harris in [9]. Instead of reflecting, the particles in
[6] annihilate upon collision.

We initiated our investigation of the two-dimensional c.c.a. in the hope that they might shed light
on the random cyclic systems . In spite of the fact that the deterministic rules lead to local periodicityt

and the random rules lead to stable random equilibria, many qualitative and quantitative features of the
two dynamics are shared. In the next section we identify several regularity properties of  that improvet

the prospects for detailed rigorous analysis. Such an analysis may, in turn, aid our understanding of the
more mysterious behavior of .t

In the general classification of cellular automata, both fixation and local periodicity are instances
of “Class 2" behavior, according to the scheme of Wolfram [16], [11] . (It is less clear where clustering
fits into that scheme.) Local periodic spiral formations are present in two-dimensional cellular automaton
models for: atrial fibrillation [10], Belousov-Zhabotinsky chemical reactions [13], [15] , neural networks
with firing and recovery [3], [12] , and related nonlinear wave dynamics. As far as we are aware, there are
no substantial rigorous mathematical results for any of these systems. We propose the c.c.a. systems  ast

relatively tractable prototypes for this important variety of complex spatial phenomena.

4. Regularity Properties

Let us now define and , the principal features of c.c.a. dynamics.debris, droplets, defects, demons
First, site  belongs to the at time  if its type differs from that of each of its neighbors byx debris D  t x  0

t t

at least 2 (mod ). We set call the connected components of and for N D D , D  droplets, x1 2 0 1
t t t

D D x  x Fig. 11 1
t t, let denote the droplet containing . Roughly speaking, the fine-grained regions in 

correspond to , whereas the open fields comprise . Note that by time 200 in , veryD D , Figure 20 1
100 100

little debris remains.  This reflects the first key property of :t

( ) is increasing in .1
1D  tt

Given neighboring sites , say that bond  is at time  if {-1,0,1} (mod )x y, x, y open t y x N .t t

Property ( ) follows from the simple observation that an open bond stays open at all subsequent times.1

Call  at time  if   {-1,1} (mod  if , and x,y active t y x N ), inert y x closedt t t t

otherwise. A droplet is  at time  if it involves at least one active bond; otherwise it is .active t inert
Whereas the set of all droplets increases, over time it is quite possible for to switch repeatedlyD x  1

t

between being active and inert.
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Next, we introduce the  of  restricted to an open loop  in Let index  D .   z , z , , zt t 0 1 nt
1

be an  in (with an open bond for each  and ) Let  be the unit circleopen loop D  z ,z  k, z z ). S1
t k k 1 n 0 m

S m v , , v  S1 marked with  equidistant vertices, labeled (counterclockwise). Given , take : 0 m 1 n

S  N to be the linear extension of the vertex map

v   v .k zt k

Now define to be the index (winding number) of . Figure 5 below shows loops of index 0 andt  
index 1 in sample 8-type configurations; these examples should make the definition clear. A loop in D1

t

with positive index is called a . We let denote the set of all sites that are part of some defect atdefect D  2
t

time , and put Of course any defect must involve all  types, so in fact, ist D x   D D x . N D  2 2 1 2
t t t t

contained in the set of of active droplets at time .D  tt

 

   

0 1 2   
1  3 4 5 6
2     7
3 4    6
 5 6 7 6 5

An 8-type loop of index 0

   

0 1 2   
7  3 4 5 4
6     3
6 5    2
 4 5 4 3 2

An 8-type loop of index 1 (a defect)

Fig. 7. N 8 Sample loops of index 0 and 1 in the  c

The characteristic c.c.a. spirals, such as those forming at time 150 in Figure 2, indicate the
presence of defects. In fact, any loop contained within one of these formations and surrounding its
“center" is a defect. The spread of spirals by time 300, evident in Figure 3, reflects a second key property
of :t

2
2D  tt is increasing in .

To verify this claim, we make use of the formula

    n  z z ,
k

n
t k t k

where the terms in brackets are all chosen mod  to be either -1, 0, or 1  (since and theN D ), 1
t

addition is ordinary ( mod ). It is easy to check, case by case, that this sum of differences cannotnot N
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change from time  to  Thus, the index of any loop is invariant once that loop is open. In particular,t t+1.
defects are permanent, property ( ) holds, and any defect present at time  belongs to for all 2 t D  u t.u

The transition of  from Stage 3 to Stage 4 is governed by and . A  at time t clocks demons clock t
is a loop  such that Evidently the size of the loop must be at k 1 t kz z   1 ( 0 k n 1 . 
multiple of . The set consists of all that belong to a clock, or can be reached from one by a path ofN D  x 3

t

1 bonds.  More precisely, provided there exists a path of sites such that  x D  y , , y  i3
t 1 m

{y , y  k ii  y x y  t iii) y yk k 1 0 m t k 1 t kis a bond for each , ( and belongs to a clock at time , and (
 1  ( 1 k m 1 . D  demons; Connected components of are called we denote the demon3

t

containing  by x D x .3
t

As explained earlier, the onset of local periodicity involves the displacement of “less efficient"
spiral formations by demons. This process reflects yet a third key property of :t

3
3D  tt is increasing in .

Clocks are clearly stable under the c.c.a. dynamic. Since any site connected to a clock by a path  of 1
bonds remains “in phase" with the clock at all later times,  follows. Such paths are clock-driven3

“tentacles" of the demon, which cycle at maximal speed, and latch on to neighboring sites unless their
types also cycle in steps.N 

Note that monotonicity properties ( ) - ( ) apply to any , either on  or a finite lattice1 3
2c.c.a.

of width , starting from any initial configuration, either deterministic or random. Letting  L T (x)  infk
t

t 0 : D x } (k 1, 2, 3k
t ), it follows that

T (x)    T (x)    T (x)1 2 3
t t t

in full generality. As we shall now see, existence of a single clock ensures periodicity at every .x

5. Local Periodicity

Say that a cellular automaton   with random initial state is  iflocally periodic

 i  x, x  t ( ) for each is eventually periodic in with probability one, and

 ) inf(ii   P x a, y  b     0.
t, x y, a, b

Condition ( asserts that the type at each site settles into a periodic orbit eventually (with period 1).i  
Condition ( requires that self-organization remain local: correlations between distinct sites must beii  
uniformly controlled in space and time. In particular, the latter condition distinguishes local periodicity
from  where for each clustering, x, y,
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lim  P x y     .
t

We now present a proof that, starting from a random initial configuration , the c.c.a. on ,0
d

d 2, is always locally periodic, with minimal period at every site, no matter how large the number of
colors . Thus the limiting behavior is quite different from that of one-dimensional cyclic systems ( [2],N
[5], [6] ), which either fixate or cluster.

Verification of ( is based on the following simple observation.i  

Lemma.  If there is a clock anywhere in  (or if a clock forms at some later time then every site  is0 t), x
eventually periodic with period N.

Proof.  Let  be the set of sites that have period  eventually in . , since the c.c.a. contains aN t
clock by hypothesis. Suppose Then the difference x , y , y x 1. y xt t

{ 0, , } (mod )  is eventually non-increasing. Hence this difference is eventually constant. But
then a contradiction. We conclude that every site  belongs to , as claimed. (We note that inx , x
CAM experiments with  large, the eventual constant difference is almost invariably 1 or 0. In the
former case, and are part of the same demon; otherwise bond almost always belongs to thex y x y  
boundary between two distinct demons.)

Condition (  is even easier to check. Given any time , distinct sites and , and types  and ii t x y a b,
the event in question occurs provided that  contains a pair of disjoint clocks through  and with0 x y 
appropriate phases. The probability of this latter occurrence is at least

 1 
N

4N
   0 .

6. Spirals:  what,  where,  when, and why?

Although the argument just given determines the limiting behavior of any c.c.a. on , it does not2

capture the true nature of the dynamics. CAM experiments clearly indicate that the first demon to reach a
typical site  is  present in the initial state, but “pops up" at a later time. In other words, defects in ,x not 0

used to prove local periodicity of the infinite system, occur on too large a scale.

 Many intriguing problems concerning c.c.a. evolution are suggested by Figures 1- 4. In this
section we make some empirical observations that shed light on perhaps the four most fascinating
questions:
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What are the characteristic c.c.a. spirals, and where, when and why do they pop up?

What? —

When is small, the spirals of have noticeable “glitches." As these coherent structures form,N  t
there is enough variation in the environment that occasional “errors" occur. But as  increases, theN
individual spirals grow in final size  exhibit fewer errors. What is an ? Here, at least, is anand ideal spiral
example. Suppose 14 Let  be a “convex" loop of length 14 in , say the boundary of a 5 4N . 2

rectangular array of sites. Specify  on  to be a clock. Choose types for the interior of the array so that
all interior sites are connected to the clock by a path of +1 edges. Now define  outside of  by the
formula:

(§) , where  minx     x   x, x x, x   x, y : y } ,* * *

and denotes the length of a shortest path in  between and We invite the reader to color ax, y  x y. 2

piece of graph paper according to (§) in order to confirm the connection with Figures 2 and 3. Recipe (§)
also generates representative spirals when  on  is a defect but not a clock. If  is not convex, then,
roughly speaking, the recipe should be applied to a suitable “convexification" of .

Where? —

CAM experiments strongly suggest that spirals can only pop up on the interfaces between
droplets and debris. In fact, this is a topological necessity. Recall that any loop of sites surrounding the
center of a spiral has index at least one, and that the index of any loop is invariant once that is open. It
follows that if a defect  forms at time  ( i.e., then  must involve at least one\t 0 D , D , 1 1

t 1 t

closed bond at time Either some site of  belongs to the debris, or  involves two distinct droplets,t 1. 
at that previous time.

When? —

Suppose we lay down a uniform random distribution of  types on , and then construct aN 2

starting configuration  by modifying the values on a suitable loop  to produce a clock.  For instance, if0

N , 14 we could change the values on the boundary of a 5 4 array of sites. What happens when the
c.c.a. starts from such an initial state? With the aid of a microcomputer, the enterprising reader can verify
that  does  give rise to well-formed spirals.  A roughly circular disturbance spreads out from thet not
clock, but it is fragmented and incoherent, with remarkably little resemblance to the spirals encountered
before. This is a striking indication of the fact, already mentioned, that characteristic c.c.a. spirals are
produced by the dynamic, not the initial noise. Aided by CAM we discover that at typical sites , all ofx
the random times  increase rapidly with . In particular, since the distance between critical dropletsT x Nk
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becomes very large, and since the formation of defects seems typically to involve interaction between
distinct droplets, spirals only tend to pop up after most of the debris has been displaced.

Why? —

How does the c.c.a. evolve if  consists of a clock on a background of all one type? We0

encourage the reader to solve this riddle, either by hand or by computer. Again, surprisingly, waves
emanating from the clock do  make a spiral. So what  the proper environment for spiral creation? Innot is
an attempt to solve this mystery we examined a few trajectories of the 18-color c.c.a. (with 256L ),
carefully watching for the appearance of the first spiral.

In one typical instance the first spiral “popped up" at about time 800. It contained a clock 
consisting of 18 sites, and by time 850 had formed a perfect spiral satisfying (§) without error for a
distance of about 50 bonds in all directions. We then worked  through the (deterministic)backwards
history of , in order to discover the timet

T  T xx
2 2    min

of the first defect anywhere in the 256 256 lattice. In this case we determined 727. ManyT 2

different defects formed at that time, since various routes across numerous wide bands of solid type were
possible. As shown in Fig. 8, all these routes needed to wind through a narrow passage of debris, leading
to a “pivotal" bond that completed the loops by opening at time . The first defects were remarkablyT 2

long, involving over 100 sites that had previously belonged to three different large droplets. At time 727
there was no real indication of a spiral. After , however, shorter interior defects rapidly formed,T 2

feeding on remanants of debris, until the clock appeared. This process of consolidation, it would seem,
created the proper environment for a perfect spiral.

Fig. 8.  Defect formation in the 14-color c.c.a.at time 727 (
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7. Additional challenging problems

Our preliminary investigation of the c.c.a. rule on  suggests many challenging mathematical2

problems. In this final section we mention a few.

The early stages of c.c.a. dynamics are  To understand their quantitative aspects onemetastable.
should study finite systems of size , as and increase appropriately, along the lines of theL N L  2

asymptotic analysis for  presented in [1]. However the lack of monotonicity andbootstrap percolation
manifest complexity of cyclic systems make the corresponding agenda more challenging. We have
therefore collected some empirical data as a first step. Here we present only a sampling of our findings; a
more complete account will appear in [7].

Fig. 9.  Density of active bonds in c.c.a. (

Fig. 10.  Proportion of inert bonds in c.c.a. (
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Figures 9 and 10 show the frequencies of active and inert bonds over time in the -color c.c.a. onN
a 256 256 lattice with wrap-around, for  ranging from 12 to 16. Each plot tracks the average valuesN
obtained from 50 trajectories. In Figure 9, first note the rapid initial decrease. This corresponds to Stage
1, when most creatures run out of food. But droplet growth signals the onset of Stage 2 and causes the
density of active bonds to increase. The density then continues increasing to a limit: roughly, the
probability that adjacent sites belong to a common demon. In Figure 10, the proportion of inert bonds at
first increases very rapidly, as initially active bonds form small inert clusters. There follows a longer
period of slower but steady increase, signaling the presence of waves of solid type in the growing
droplets. At the end of Stage 2 a maximum is reached, and then the freqency begins to dip as bonds are
reactivated by defects and demons. The eventual limit is, roughly, the (very small but positive)
probability that adjacent sites belong to different demons.

We note that the sum of the corresponding frequencies in Figures 9 and 10 (i.e., the density of
open bonds) increases monotonically in accordance with ( ). In our data the limit of the sum is very1

close to 1; in particular, none of our samples fixated. Evidently, the theoretical probability of fixation for
L  N  L N256 and 16 is extremely small. With  fixed and  increasing, fixation continues to be very
rare until an apparent critical value  when critical droplets are too rare to appear in the -system.N L Lc

Although we have not checked, we expect that 256  lies in the low 20's. For values of beyond thatN N c

point, the curves corresponding to Figure 6 will appear, for all practical purposes, to decrease
exponentially to 0. As beautifully illustrated in [1], this “pseudo phase transition" should become more
pronounced as  increases, but will increase  to .L N L  very slowlyc

At what rate should increase with ? Based in part on weak analogy with bootstrapN L  Lc

percolation, and in part on heuristic arguments, we make the following conjecture, which suggests
logarithmic growth:

Conjecture.  Let denote the probability that the -color c.c.a. on an lattice (with wrap-p N, L  N L L 
around) fixates.  Then there are constants  and such thatc C  0 c C  

 lim whenever  e
N

 p N, L     1 L   ,N N
cN

   0 L   e .whenever  N
CN

We suspect that the first assertion of the conjecture may follow from percolation considerations.
To establish the second claim, one will need a better understanding of critical droplets and how they
grow. A  c.c.a. rule may prove helpful in this connection. Let  be a uniform randomlocalized 0

0

configuration of  types on  as before. Inductively define  and a sequence of finite subsets of N A  2 0 2
t t

by:  (the origin), andA    0
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 x   y  y x   1  N0 0 0 0
t 1 t t t if   mod 

 for some such that and y y x 1,   (x A  or y A ),t t

( ) otherwise;  x  0
t

 A   A   { x : x  x }.t 1 t t 1 t
0 0

Roughly speaking, algorithm ( ) isolates the droplet at the origin. This droplet will stop growing with
overwhelming probability when  is large. But if it reaches a certain critical size, then it almostN
invariably survives forever, acquiring an asymptotic shape as it spreads out at a linear rate. The three
large droplets in Figure 4 evolve in essentially the same manner until they collide. This localized rule is
interesting in its own right, as a deterministic dynamic with behavior reminiscent of stochastic growth
models.

Finally, most of our discussion also applies to corresponding dynamics in three or more
dimensions. Winfree and Strogatz [1 ] have made a rather thorough investigation of the locally periodic
formations that can arise from systems of interacting cyclic waves in three-dimensional space. We plan to
investigate  counterparts of the ideal spirals in Figures 2-3, and compare our findings with those of3

[1 ]. Fig. 11 shows a c.c.a. configuration for a rule having 12 nearest neighbors instead of 4.

Fig. 11.  A c.c.a. with 12-cell neighborhood
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