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GROWTH PHENOMENA IN CELLULAR AUTOMATA

Janko Gravner

1. Introduction.

In essence, analysis of growth models is an attempt to study properties of physical systems far

from equilibrium (e.g., [KS], [Mea] and more than 1300 references cited in the latter). CA growth

models, by virtue of their simplicity and amenability to computer experimentation ([Gri2]),

have become particularly popular in the last 20 years, especially in physics research literature

([TM], [Vic]). Needless to say, precise mathematical results are hard to come by, and many

basic questions remain completely open at the rigorous level. The purpose of this paper, then,

is to outline some successes of the mathematical approach and to identify some fundamental

di�culties.

We will mainly address three themes which can be summarized by the terms: aggregation,

nucleation, and constraint{expansion transition. These themes also provide opportunities to

touch on the roles of randomness, monotonicity, and linearity in CA investigations. We choose

to illustrate these issues by particular CA rules, with little attempt to formulate a general

theory. Simplicity is often, and rightly, touted as an important selling point of cellular automata.

We have therefore tried to choose the simplest models which, while being amenable to some

mathematical analysis, raise a host of intriguing unanswered questions. The next few paragraphs

outline subsequent sections of this paper.

Aggregation models typically study properties of growth from a small initial seed. Arguably,

the simplest dynamics are obtained by adding sites on the boundary in a uniform fashion. In

fact, such examples were among the �rst studied. It soon became clear that they expand linearly

in time and, properly rescaled, obtain a characteristic limiting shape. What if the space over

which such growth spreads is not uniform, but instead contains a �eld of obstacles? Stationary

obstacles do not complicate the analysis much, but the situation becomes murkier once one

allows the obstacles to move. In fact, the literature appears to contain conicting claims in

the case of moving obstacles. Section 2 presents a detailed discussion of this class of models,

including some rigorous results and conjectures.

Properties of asymptotic shape for linearly spreading growth can be notoriously hard to

elucidate. By contrast, symmetric random walks progress through space more slowly (di�using
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as the square root of time), and have an isotropic continuum space{time limit. For these reasons,

growth models based on such walks often yield sublinear growth and circular asymptotic shape.

One such example is presented in Section 3.

Section 4 is more theoretical in nature. It proposes a general classi�cation scheme which,

simply put, provides a precise way to divide CA into those which grow and those which do

not. This taxonomy may be viewed as a simple alternative to Langton's approach based on the

frequency of transitions to non-quiescent states (the � parameter, see [Lan]). Especially for CA

which depend on a parameter, it provides an alternative strategy to search for complex rules

on the boundary between qualitatively distinct regimes. Section 5 then provides two illustrative

examples from a four parameter rule space of general Life{like non{monotone rules.

If the initial state is disordered, how do droplets which generate persistent growth emerge

from random \soup" and with what frequency? Nucleation analysis addresses such questions.

Nucleation e�ects can sometimes be very tricky to discern by computer, but we will show in our

�nal Section 6 how a mathematical analysis with an essential experimental component aids in

understanding self{organization of a simple competition model.

2. Obstacle Course (OC).

Before describing our �rst models, let us emphasize that in this section and the next, the

neighborhood of a site consists of its nearest 4 points. To de�ne the OC CA, start by assuming

that the state of every site in Z

2

can be either 0 (empty), 1 (occupied) or 2 (an obstacle).

In the simplest version of the OC rule, called static OC , 1's never change, a point in state

0 changes to 1 as soon as some neighbor is in state 1, and �nally a site in state 2 with a

neighboring 1 changes to 0 with a �xed probability q 2 [0; 1]. (In epidemics terms, 1's, 0's, and

2's could be interpreted as infected, and more and less susceptible individuals, respectively.)

This rule is applied synchronously and independently at all sites in Z

2

at every step of discrete

time t = 0; 1; 2; : : : . As for the initial state, we assume that the origin contains the only 1, while

every other site is independently 2 with probability p and 0 with probability 1�p. Our attention

will focus on the set A

t

of 1's at time t.

Say that L

p;q

is the (linear) asymptotic shape of A

t

if

(2.1)

A

t

t

! L

p;q

as t ! 1. It is easiest to de�ne this convergence in terms of the Hausdor� metric. That is,

de�ne the �{fattening of a set B � R

2

to be B

�

= B +B

2

(0; �) = [

x2B

B

2

(x; �). Then say that
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(2.1) holds if, for any � > 0,

L

p;q

�

�

A

t

t

�

�

and

A

t

t

� L

�

p;q

;

for a large enough t.

The case p = 0 is simple: A

t

is merely the diamond f(x; y) 2 Z

2

: jxj + jyj � tg. Therefore,

we can explicitly compute

L

0;q

= f(x; y) 2 R

2

: jxj+ jyj � 1g:

Equally clearly, L

1;1

= L

0;q

=2.

Assume now that p > 0 and q 2 (0; 1]. This model �ts into a general class of dynamics known

as �rst passage percolation (FPP). To explain the correspondence, we assign to every site x 2 Z

2

an independent random variable �

x

with P (�

x

= 1) = 1 � p and P (�

x

= k) = p(1 � q)

k�1

q for

k = 2; 3; : : : Assuming only x is initially occupied by a 1, the time T

x;y

when y becomes occupied

is given by

inff

n

X

i=0

�

x

i

: n � 1 and x = x

0

; x

1

; : : : ; x

n

= y is a nearest{neighbor pathg:

If �

x

is interpreted as the time needed for x to become 1 after it has a neighboring 1, then

a short induction gives A

t

= fx : T

0;x

� tg. The next crucial observation is subadditivity :

T

x;y

� T

x;z

+T

z;y

. A fair amount of mathematical theory and technical machinery ([CD], [Kes])

then yields existence of a deterministic convex set L

p;q

� L

0;q

with non{empty interior, such

that A

t

=t! L

p;q

almost surely.

The q = 0 case is similar, but we need to allow for the possibility that the set A

1

, consisting

of the origin and any sites with state 0 to which the origin is connected (by a nearest neighbor

path), is �nite. This happens a.s. if p � 1� p

c

� 0:407 and otherwise with probability strictly

less than 1. (Here, p

c

is the critical density for site percolation in the plane.) Thus L

p;0

is a

random set if p < 1 � p

c

: there exists a nontrivial deterministic convex set L

0

p;0

such that L

p;0

equals f0g on fjA

1

j < 1g and L

0

p;0

on fjA

1

j = 1g. The top left frame of Figure 1 provides

an example with p = 0:3. Sites in A

t

are gray and obstacles black in all four frames.

Thus the existence of L

p;q

is established, but what more can we say about these sets? It is

possible to show that L

p;q

! L

0;q

as p ! 0, and that L

1;q

! L

1;1

as q ! 1 (using techniques

from [DL]), but more detailed aspects of L

p;q

are not easy to discern. For instance, there are

presently no rigorous methods available to show that L

p;q

is never a circle. More discussion
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on existence and properties of asymptotic shapes appears in [BoGr] and [GG3], while [GrMc]

addresses a combination of bootstrap percolation ([AL]) and OC rules.

A more complex CA called moving OC results if we allow the obstacles to di�use. The easiest

way to achieve this e�ect is to view 2's as particles which move freely on 0's and are forbidden to

jump onto a 1. More precisely, the state of the CA consists of sites in state 1, sites in state 0, and

sites containing one or more 2{particle. The following steps are then performed in succession:

(1) Every 2-particle randomly and independently chooses a neighbor. If the chosen neighbor

is not a 1 it jumps onto it. If the chosen neighbor is a 1, the jump is suppressed and the

particle is killed (removed from the system) with probability q.

(2) Every 0 with a neighboring 1 becomes a 1.

As before, start with a single 1 at the origin, surrounded by sites �lled independently with

a random number of particles from a distribution which is the same for all sites. We will also

assume that this random number is bounded. Let p stand for the initial density of 2{particles,

that is, the average number of 2's per site.

We should mention that, alternatively, one could restrict the number of 2's to at most 1. In

this case, 2's would perform simple exclusion outside A

t

, in which case synchronous dynamics

would require a scheme such as Margolus neighborhood updating ([TM]). Phenomenologically,

there should be little di�erence between our moving OC and the exclusion OC ; this is easy to

believe when p is small, while exclusion e�ects for p � 1 should correspond to those for p � 1 in

the version above. Furthermore, simple exclusion outside A

t

ensures that 0's perform the same

dynamics there as 2's, so the exclusion OC rule with q = 0 is a variant of lattice{gas DLA ([TM],

[Vos], [SU]). One motivation for the agenda of this section is to take a step towards rigorous

study of that still{mysterious rule. Additional details will appear in [GG8].

In what follows, we will say that a sequence A

t

, t = 0; 1; 2; : : : of subsets of Z

2

expands linearly

if there exists an open ball G 6= ; and a �

0

> 0 such that, for every open ball B � G,

(2.2) jA

t

\ (tB)j � �

0

t

2

area(B) for all large enough t,

hence A

t

=t covers G with density at least �

0

. In practice, G is most often centered at the origin.

As with the static OC, let us start with the simpler case q > 0 and outline the proof that

A

t

expands linearly, almost surely. Linear expansion implies that the number of particles in A

t

is on the order of the square of its diameter, eliminating the possibility that A

t

is fractal (as
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extensive experimental evidence suggests to be the case in \ordinary" DLA, to which much of

[Mea] is devoted). The top right frame of Figure 1 is a snapshot of A

t

with q = 0:1 and an

initial set consisting of three 2{particles per site. In light of this picture, (2.2) is no surprise. In

fact, A

t

=t seems to converge to a deterministic limit, but techniques for investigating this issue

are completely lacking.

Figure 1. Growth in the static and moving OC dynamics.

To prove (2.2), attach to every 2{particle w a random variable �

w

, which simply measures

the number of times w attempts to jump onto A

t

. Thus, for example, �

w

= 1 i� the particle is

killed on its �rst attempt. It is also clear that �

w

are independent geometric random variables

with mean 1=q. Moreover, the position of w at any time t before extinction is, in `

1

{distance, at

most �

w

from where w would be if it moved freely. A standard computation with random walks

then shows that the density (i.e., the expected number of 2{particles) is bounded uniformly in
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space and time. After a substantial extra argument, this property ultimately su�ces to establish

(2.2). It is also worth noting that at every time t a particle w which has come in contact with

A

t

is either killed, in which case it contributes nothing to the total density, or else is still alive,

in which case it contributes at most 2�

2

w

+ 2�

w

+ 1 to the density. Hence the density is always

bounded by p if q is su�ciently close to 1.

What happens with (2.2) in the most interesting case q = 0? For p 2 (0; 1), there could

conceivably be three scenarios: either linear expansion persists for all values of p, or there is no

linear expansion for any p, or there is a phase transition at some value of p. (Recall that this

last is the state of a�airs in the case of static OC.) The empirical literature on exclusion OC

concurs that the second scenario is impossible, but there appear to be conicting claims about

linear expansion for high p ([Vos], [SU]).

In fact, it seems natural to conjecture that, for very small p, the density of obstacles which

remain active, in the sense that they are not captured within A

t

, is uniformly bounded by p,

and this property should imply linear expansion (2.2). At present, a rigorous argument still

appears elusive, so we simply illustrate the result by means of the bottom left frame of Figure

1 (which has p = 0:3). If p is high, however, judging from computer simulations, the density

of 2{particles at the boundary of A

t

increases substantially above p, and the possibility that

it increases without bounds cannot be eliminated. See [SU] for more discussion on this thorny

issue, and the bottom right frame of Figure 1, where p = 3, for an illustration.

3. Internal Di�usion Limited Aggregation (IDLA).

The IDLA dynamics was �rst introduced in [BGL], where its basic asymptotic shape theory

is developed. For a di�erent perspective, see [MM] which contains an analysis of complexity

properties on this rule. The synchronous version of IDLA we present is speci�ed by the occupied

set A

t

and the behavior of a collection of random walks. Initially, A

0

= f0g. At every time

t = 1; 2; : : : , each site in A

t

contains one or more particles. To get A

t+1

, together with a new

particle con�guration, execute (in succession) the following three steps:

(1) One particle at each site is frozen, while the others execute one step of a symmetric

nearest{neighbor random walk.

(2) A

t+1

is obtained by adjoining to A

t

all sites which are being visited by a particle for the

�rst time.

(3) One particle is added at the origin.
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To understand the behavior of this process, one approximates it by a continuum{valued CA

on Z

2

. This CA, determined by u

t

: Z

2

! R

+

, t = 0; 1; : : : , is obtained by simply replacing the

true particle con�guration at time t+1 by the expected number of particles at every site. If we

set �(u) = maxfu� 1; 0g and

�

d

(f)(x) =

X

y2@fxg

(f(y)� f(x))

(where @fxg is the set of nearest neighbors of x), we obtain

(3.1)

u

t+1

(x) = maxfu

t

(x); 1g +

1

4

X

y2@fxg

�((u

t

(y)) + 1

f0g

= u

t

(x) +

1

4

�

d

(�(u))(x) + 1

f0g

:

To get the di�usion scaling limit, one de�nes, for x

0

2 R

2

and t

0

� 0, u

0

(x

0

; t

0

) = u(�

�1

x

0

; �

�2

t

0

),

writes (3.1) in terms of the new variables t

0

; x

0

; u

0

, then divides it by �

2

, and computes the limit

as �! 0 by (formal) Taylor expansion to obtain (omitting primes)

(3.2)

@u

@t

=

1

4

��(u) + �

0

In either (3.1) or (3.2), the occupied set is given simply by fu � 1g.

Although not obvious at �rst glance, it turns out that (3.2) is equivalent (in the proper weak

interpretation), to the famous Stefan problem, a model for ice melting in the presence of heat

sources. It is also true that (3.2) has an explicit unique solution given in polar coordinates by

�(u) = v(rt

�1=2

), where

v(s) =

Z

K

s

2

��

e

��

2

d�;

e

�K

2

= �K

2

:

Hence A

t

=

p

t converges to a circle with radius K � 0:498, and the proportion of non{frozen

particles is 1��K

2

� 0:22. Figure 2 gives a snapshot of an IDLA simulation at t � 38; 000 on a

200 � 200 array. For many more details, and to see how the above heuristic can be turned into

a proof for the very similar asynchronous version of this model, see [GQ].
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Figure 2. A snapshot of IDLA at a large time.

Assume now that one adds c(t) particles at the origin at time t, where c(t) is no longer 1,

but an increasing function of t. An interesting question is how quickly c must increase for the

shape of the occupied set to no longer be circular. Since the normal approximation for binomial

probability

�

n

k

�

2

�n

holds up to k = o(n), one would expect that the set A

t

needs to expand

linearly. Furthermore, during the time interval [0; t], a random walk started at 0 will visit sites

of distance order t from the origin with exponentially small probability. We therefore expect

that c(t) must increase exponentially fast to initiate the transition away from circular shape.

More precisely, let us assume that c(t) = e

t

, and write

L



= lim

t!1

A

t

t

:

Then we conjecture that L



exists almost surely, and approaches a circular shape as  ! 0,

while as  !1 it approaches the unit diamond f(x; y) : jxj+ jyj � 1g. In general, the shapes

L



should be determined by large deviation rates; this model is therefore similar in spirit to

branching random walks ([Big]).

An exponentially increasing number of particles makes veri�cation of the above conjecture by

direct simulation of the particle system prohibitively slow. On the other hand, the continuum{

valued CA (3.1) simply becomes

(3.3) u

t+1

(x) = u

t

(x) +

1

4

�

d

(�(u))(x) + c(t)1

f0g

:

The two frames in Figure 3 show the resulting growths for  = 0:1 and  = 5, both stopped

when they reached a radius of about 50. (Gray shading is logarithmic to make the density pro�le
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visible.) A more general discussion on applications of continuum valued CA may be found in

[Ruc].

Figure 3. The continuum{valued CA (3.3) with  = 0:1 and  = 5.

4. Growth properties of CA: a general framework.

The setup we now introduce is essentially the same as in [GG4]. Let us start by describing

the neighborhoods we most often consider. The neighborhood for the origin will be a �nite set

denoted by N , its translation x+N then being the neighborhood of the point x. By convention,

we assume that N contains the origin. Most typical is the range � Box neighborhood, in which

caseN is the (2�+1)�(2�+1) box centered at the origin, and the range � Diamond neighborhood,

when N consist of points with `

1

{norm at most �. In particular, range 1 Diamond and Box

neighborhoods are also known as von Neumann and Moore neighborhoods, respectively.

Let �

t

be a general probabilistic CA, which, for simplicity, only has states 0 and 1. By this

we mean �rst that �

t

: Z

2

! f0; 1g describes the con�guration at time t; as usual, 1's will be

thought of as occupied sites, and �

t

and the set of occupied sites f�

t

= 1g will be identi�ed.

Moreover, the synchronous transition rule is given by a neighborhoodN and a set of probabilities

�(S) 2 [0; 1], S � N , specifying that �

t+1

(x) = 1 with probability �((�

t

�x)\N ) independently

at every time t and every spatial location x. Such CA rules are called monotone (or attractive)

if S

1

� S

2

implies �(S

1

) � �(S

2

). Deterministic CA of course have �(S) only 0 or 1. Finally, in

solidi�cation CA every set S which contains 0 has �(S) = 1.

Assume that a two{state CA �xes the all 0's state, that is, �(;) = 0. Let B

n

be the (2n +
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1)� (2n+1) box around the origin, and construct initial state �

0

by �lling B

n

with density 1=2

product measure, and B

c

n

with 0's.

We will call a CA expansive if P (�

t

expands linearly)! 1 as n!1 (recall the de�nition of

linear expansion from Section 2). On the other hand, we say that a CA is constrained if there

exist positive constants c

1

and c

2

so that P (B

c

1

n

ever includes an occupied site) � exp(�c

2

n).

Finally, we classify as equivocal those CA which do not �t into either previous category. (Various

subcategories of equivocal may also be of interest, e.g. CA in which the number of occupied

sites is likely to grow without limit, those in which linear spread occurs along a subsequence of

times, and so on.)

The main motivation for these de�nitions comes from oriented percolation, in which N is,

say, the von Neumann neighborhood, and the monotone rule declares that �(S) = p > 0 as soon

as S 6= ;. Then there exists a critical probability p

c

2 (0; 1) such that �

t

is expansive in the

supercritical regime (that is, when p > p

c

). On the other hand, P (�

t

= ; for some t) = 1 for

every n as soon as p � p

c

, and the subcritical (p < p

c

) regime leads to a constrained dynamics,

while the critical (p = p

c

) oriented percolation is equivocal ([Dur], [BeGr]).

Assume now that a CA rule is monotone and deterministic, and, for the sake of simplicity,

that �(S) does not change if S is reected around either coordinate axis. It can then be proved

that the model is expansive if and only if it enlarges every half{plane H

u

= fx 2 Z

2

: hx; ui � 0g

(u 2 R

2

is an arbitrary unit vector):

�

0

= H

u

) �

0

��

1

and �

0

6=�

1

:

One direction is easy: if this last condition is violated, then the CA is constrained, so in fact there

are no equivocal CA in this class. (For much more on monotone CA growth, see [GG1,3,5,6].)

Outside the realm of monotonicity, there are very few available rigorous techniques ([GG3]),

but it is worth mentioning a few. First, it is not hard to prove that any linear deterministic

CA, where �(S) = jSjmod 2, is equivocal: it grows, but also repeatedly collapses to a set of

jN j � j�

0

j points at exponentially spaced times. (For a discussion of the replication properties of

such rules, see the July 15-21, 1996 recipe at [Gri2].) This example also illustrates how equivocal

dynamics are typically fragile { by analogy with the one dimensional case ([BN]), one expects the

random perturbation �(S) = p � (jSjmod 2) to be expansive for p < 1, as is strongly suggested

by simulations. Figure 4 provides a range 1 Box example with n = 20 at time t = 64 with p = 1

and p = 0:999. By contrast, expansive dynamics typically seem to be robust with respect to

small changes in p.
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Some CA growth models can be analyzed by �nding an embedded one{dimensional linear

rule ([GG7]). One such case is Exactly 1 solidi�cation with von Neumann neighborhood N and

�(S) = 1

jSj=1

if 0 =2 S. To see how this works, �x a site x at distance exactly t + 1 from the

initial seed. (This distance is measured in \light speed", in this case via the `

1

, metric.) The

state of x at time t + 1 is obtained by an xor of the states at time t of its two neighbors at

distance t. While not immediate, it is possible to use this property to prove that this system

is expansive, and in fact show that the �nal density of occupied sites is 2=3 starting from any

�nite initial seed.

Figure 4. A linear CA and its random perturbation.

Finally, the \edge of the light cone" technique described above, in conjunction with analysis

of one{dimensional random CA from [BN], shows that, for example, random Exactly 1 solid-

i�cation, where �(S) = p � 1

jSj=1

if 0 6= S, is expansive when p < 1 and N is either the von

Neumann or Moore neighborhood.

For the vast majority of CA, however, one must resort to computer simulation to get an

indication of their growth properties. Deterministic Moore neighborhood Exactly 1 solidi�cation,

for instance, is evidently expansive, although no rigorous argument for this is known at present.

In any case, one must be very cautious about conclusions from simulation, since it is always

possible that a very large n (corresponding to a very large initial random set) is necessary before

limiting behavior as n ! 1 kicks in. For example, it is easy to convince oneself that Life is

equivocal, as gliders are likely to emerge from initial soup, while the rest apparently settles into

a periodic state. In fact, it seems more likely that Life is expansive, since a large box will likely
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contain space{�lling structures on its boundary. But none of these structures is known to have

appropriate self{defense properties against destabilizing inuences from outside. Despite the

spectacular advances in understanding the mechanisms of Life's growth, as described elsewhere

in this volume, prospects for proving its expansiveness still seem quite remote.

Problems with simulation notwithstanding, one can use the computer to look for interesting

CA rules on the border between \metastably" expansive and constrained cellular automata. If

a CA depends on a parameter, and is apparently expansive for one value but constrained for

another, then the values near the transition o�er prospects not only for equivocal dynamics,

but also for signature properties of complex dynamics. For example, one dimensional objects

such as gliders, bugs, and ladders (see next section for the meaning of last two terms) typically

cannot persist in \robust" expansive rules, as they \explode" into growth in all directions. (See

[Boh] and [BoGr] for some rigorous results in this direction.)

5. Larger than Life (LtL).

This rule was introduced in [Gri1] and studied in [Eva]. Assume that the neighborhood N is

a range � box. The deterministic LtL rule is given by

�(S) = 1

0=2S;�

1

�jSj��

2

+ 1

02S;�

1

�jSj��

2

:

In words, birth of a 1 occurs at a site if the number of occupied neighbors is between �

1

and �

2

,

while for survival of a 1 this number must be between �

1

and �

2

. For example, Life is given by

� = 1 and (�

1

; �

2

; �

1

; �

2

) = (3; 3; 3; 4).

Of particular interest is the threshold{range regime, when � is large and (�

1

; �

2

; �

1

; �

2

) =

�

2

� (

~

�

1

;

~

�

2

;

~

�

1

;

~

�

2

). Two reasons for signi�cance of this regime are outlined below.

Assume that space is scaled by 1=�. As � ! 1, the LtL rule converges to an analogous

Euclidean rule in which cardinalities are replaced by areas. This leads to limiting geometry

of various objects of interest, such as bugs, which are �nite sets with the property that the

dynamics exactly translates them in �nitely many steps { large{range versions of gliders, in short.

Moreover, the boundary between expansive and constrained dynamics appears to form a three{

dimensional subset of the four{dimensional parameter space f� = (

~

�

1

;

~

�

2

;

~

�

1

;

~

�

2

)g � [0; 4]

4

. In

other words, if a one parameter subfamily �

~�

experiences a transition between expansive and

constrained dynamics, then it is very likely (unless �

~�

happens to move on the critical surface)

to experience a sharp transition: for some ~�

c

, the dynamics is expansive if ~� < ~�

c

and � large

enough, and constrained if ~� > ~�

c

and � large enough.
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The study of phase transition in deterministic CA is generally hampered by the fact that

the rule space is inherently discrete. But in models such as LtL with intrinsic threshold{range

scaling, there is a natural way to introduce continuously varying rules. Excitable media modeling

provides other examples ([FGG], [DG]).

An example when sharp transition can be proved is monotone LtL, that is, for �

2

= �

2

=

(2�+ 1)

2

and �

1

� 1 � �

1

. These CA are often referred to as monotone Biased Voter Automata

(BVA). In the threshold{range regime, expansive BVA dynamics is characterized by

~

�

1

< 2,

and constrained by

~

�

1

> 2 ([GG1]).

Figure 5. Exactly � CA with � = 2 and � = 3.

Typically, one does not need to go all the way to the limit � = 1 to experience interesting

phenomena near critical points ([DG], [Eva]). Fairly small neighborhoods may already contain

some ingredient of critical behavior. For example, a variety of interesting scaling phenomena

occur in monotone BVA rules with �

1

= 0 near

~

�

1

= 2 ([GG5]). Two non{monotone examples

are given below. In the simulations of Figures 5 and 6 we have chosen n = 100, on a 400 � 400

array.

The �rst example is range 1 Exactly � solidi�cation: � = 1 and �(S) = 1

jSj=�

if 0 =2 S.

Note that this rule is obviously constrained for � = 4; in fact nothing outside the initial box

B

n

gets occupied. On the other hand, overwhelming experimental evidence (e.g., see Figure 5)

suggests that the � = 2 rule is expansive. The � = 3 case, called Life without Death, also seems

supercritical, but close enough to critical for existence of ladders. These objects, which grow

but are restricted to a strip, actually appear quite frequently within the chaotic spread. Papers
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[GrMo] and [GG3] analyze this rule in some detail, proving its P{completeness ([GrMo]), and

showing that its growth is sensitive to small perturbations of the initial seed ([GG3]).

Our second example is from [Eva]. Consider range 3 LtL with parameters (14; 19; 14; �

2

).

This rule seems constrained for �

2

� 22 (the periodic state in Figure 6 was achieved by t = 40)

and expansive for �

2

� 24 (although the growth at �

2

= 24 is slow { the state in Figure 6 was

achieved at t = 300). The intermediate case �

2

= 23 is not so easy to decipher; in fact it gives

rise to a rich menagerie of bugs, and is otherwise remarkably similar to Life. (Note also that

the proportions of neighborhood size, (14; 19; 14; 23)=49 and (3; 3; 3; 4)=9, are not too far apart,

suggesting an interesting threshold{range critical point nearby.) The snapshot in Figure 6 was

taken at t = 1000, by which time the dynamics has neither settled into a periodic state, nor

conquered much space.

Figure 6. LtL with �

2

= 22; 23, and 24.

In light of this last example, it is an interesting open question whether one might devise

a general scheme to design gliders guns and other fundamental building blocks of universal

computation for large{range LtL in some parameter regime.

6. Spatial Prisoner's Dilemma (SPD).

Prisoner's Dilemma is a game in which either player chooses strategy 1 (cooperation) or 0

(defection), and the player with strategy i receives payo� a

ij

when playing against a player who

chooses strategy j.

The basic assumption a

01

> a

11

> a

00

> a

10

leads to a well{known paradox: the defection

strategy is clearly the optimal choice for either player, but making this choice leaves them with
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lower payo�s than mutual cooperation. This has lead to a large number of papers investigating

strategies in tournaments with repeated rounds between players (see [Grim] and other papers

in the same volume of BioSystems); in this case, one usually makes the additional assumption

that a

10

+ a

01

< 2a

11

to make the cooperating strategy better than out of phase ip{opping

by two players.

As an alternative approach, Nowak and May ([MN], [BMN]) investigated self{organizing

properties of the spatial version of the game above. A later paper with a point of view some-

what closer to ours is [LN]. A version of the Nowak{May SPD rule is as follows. Start with a

con�guration of 0's and 1's on Z

2

. The player at each site x plays against every player in its

neighborhood x+N (excluding itself). After all payo�s are computed, the player at each site x

changes its state to the state associated with with the largest total payo� in x+N . Moreover,

with mutation probability p the player adopts a random state. Under inde�nite iteration of this

rule, let �

t

: Z

2

! f0; 1g be the state of the system at time t.

Without loss of generality, we will assume that a

10

= 0 and a

00

= 1. Therefore, the SPD

parameters are N , p, and the two remaining payo�s.

Figure 7. SPD with p = 0 and with p = 0:01.

Clearly, the most interesting issue is how regions of substantial cooperation may emerge from

a sea of defectors in this rule. Let us start with the observation that if p = 0, then all 0's is a

�xed state, and then investigate what happens under a small p perturbation.

To reiterate, we will assume �

0

� 0 from now on. Also, for simplicity, let us assume, unless
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speci�ed otherwise, that N is the von Neumann neighborhood. This makes SPD a CA with

range 2 Diamond neighborhood, although writing out the associated � by hand would take some

time.

If a

01

+3 > 3a

11

, then every 1 with a neighboring 0 changes into 0 with probability 1� p, so

the set of 0's compares favorably to supercritical oriented percolation CA (see Section 4). Thus

(6.1) lim

p!0

lim sup

t

P (�

t

(0) = 1) = 0;

and there is a very low level of cooperation.

In fact, simulation suggests that (6.1) persists when a

01

+3 > 2a

11

, but the situation changes

when a

01

+ 3 < 2a

11

. In the language of Section 4, when p = 0 the SPD is constrained in

the former case, and expansive in the latter case. According to the general (though unproved)

principle that expansiveness is robust under small random permutations, we conjecture that

cooperation emerges when a

01

+ 3 < 2a

11

, to the extent that

(6.2) �

e

= lim

p!0

lim inf

t

P (�

t

(0) = 1) > 0:

The right frame in Figure 7 gives a snapshot of these dynamics at p = 0:01 at the time substantial

cooperation (black) has started to emerge. In our simulations we have chosen a

01

= 4:2 and

a

11

= 4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.05 0.1 0.15 0.2 0.25

Figure 8. Equilibrium density vs. p in two SPD models.

As an interesting aside, Figure 8 provides a plot of the equilibrium density lim

t!1

P (�

t

(0) =

1) (assuming it exists) versus p in our case of SPD (diamonds) and the range 1 Box case
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with a

01

= 10 and a

11

= 7:5 (pluses). To estimate the densities, we made every initial state

contain a 30 � 30 square of 1's (surrounded by 0's) to speed up emergence of cooperation.

Simulations were run on squares of various sizes and up to various times, depending on the

speed of convergence. As a result, we estimate �

e

� 0:62. Moreover, as in many arti�cial life

models (and also, presumably, in the real{life counterparts), a high level of mutation makes

coherent self{organization impossible, so beyond a critical p � 0:14 the equilibrium density is

driven purely by noise. Note also that the Box neighborhood example suggests a second{order

phase transition exactly at the minimal density, which is rather mysterious and merits further

study.

In view of (6.2), it is natural to ask how long it takes for the cooperating region to reach

a typical point if p is small. This is the statistic which measures nucleation of the SPD. To

be more precise, call T the �rst time the box B

p

�1=3

(of (2p

�1=3

+ 1)

2

sites) around the origin

contains 2�

e

p

�2=3

1's. The choice of p

�1=3

reects the trivial lower bound on the order of T

obtained by assuming that a single 1 generates growth which spreads with the speed of light (cf.

the derivation of (6.3) to see how this would yield p

�1=3

).

Nucleation questions are connected to studying the smallest seeds which grow, as those are

likely to be the �rst which a�ect the origin. Again, assume for a moment that p = 0. Then a

single 1 dies, and so does any pair of 1's. Three 1's may form blinkers:

1 1

1

 !

1

1 1 or

1

1

1

 ! 1 1 1 :

A 2 � 2 square of 1's expands linearly (the left frame in Figure 7 is a snapshot of growth from

this initial state), and this property apparently persists for small enough p > 0. (In fact, positive

p seem to make the resulting shape convex.)

To estimate the order of T for small p, we now need to make a few estimates. In the discussion

of the next paragraph, all times and probabilities are to be interpreted within the order of the

quantity given.

Imagine space{time as embedded in R

3

, with the xy plane containing Z

2

and time being the

positive z{axis. Form a cone C

t

with apex at (0; 0; t), height t, and circular base of radius t.

Then cooperation is likely to reach the origin at time t if C

t

contains at least one 2 � 2 square

of 1's. At any �xed time, such a square appears by itself with probability p

4

. However, the �rst

type of blinker above appears with a much higher probability p

3

and creates a square by time

1=p with a probability which is bounded below (by 0:2, say). Since there are t

3

sites in C

t

, T
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must satisfy

(6.3) T

3

� p

3

� 1:

We can therefore, with some con�dence, conjecture that T is on the order of p

�1

as p! 0.

Quite formidable obstacles would need to be overcome before our last conjecture could be

proved. In fact, there are no rigorous results whatsoever on nucleation in non{monotone dy-

namics. On the other hand, quite a lot is known about this aspect of monotone CA ([AL], [DS],

[GG1], [GG2], [GG5], [Sch2]). As one illustration, consider the BVA (introduced in Section 5)

and assume for simplicity that randomness is con�ned to initial states with density p of 1's.

In such cases, a rather general nucleation theory is possible, leading sometimes to power laws

in p, and sometimes to exponential metastability. To explain the latter, we consider a speci�c

example with range 2 Box neighborhood and �

1

= 11, �

1

= 3. In this case, T can be simply the

�rst time the origin becomes occupied, although the de�nition given above also works. Then, it

can be proved ([Sch1],[GG6]) that every site eventually becomes permanently occupied. Thus

the limiting equilibrium density �

e

of (6.2) equals 1. On the other hand, there exist constants

C

1

and C

2

such that

P (C

1

p

�3

� log T � C

2

p

�3

)! 1

as p! 0, so it takes a long while to be occupied when p is small. Simulations with very low p

are therefore not feasible. Nevertheless, Figure 9 depicts a 400 � 400 system with p = 0:13 at

an intermediate time t = 117; occupied sites at di�erent times are periodically shaded to give a

basic impression of nucleation and growth in this CA.

Figure 9. Nucleation in BVA.
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