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SCALING LAWS FOR A CLASS OF CRITICAL

CELLULAR AUTOMATON GROWTH RULES

Janko Gravner, David Griffeath

1. Introduction.

A natural and fairly general class of cellular automata (CA) growth rules consists of for which

an occupied site always stays occupied, and any addition of occupied cells can only enhance

further growth. It turns out that the former condition is not essential for the results presented

here, but it does eliminate a number of complications. However, absence of the latter property

fundamentally changes the game, adding major obstacles to the development of rigorous theory

([GG5]). Furthermore, the literature on spatial growth is largely limited to two{dimensional

systems, since necessary geometric techniques are much harder to develop in higher dimensions,

as are also illuminating simulations and statistical analyses ([Adl], [Sch2]).

Accordingly, we assume that growth is given by a transformation T : 2

Z

2

! 2

Z

2

which

satis�es the assumptions (A1{5) below. (A sixth axiom will be introduced at the end of Section

2).

(A1) T is translation{invariant : T (x+A) = x+ T (A).

(A2) T is local : there exists a �nite neighborhood N � Z

2

, i.e., a set for which x 2 T (A)

i� x 2 T (A \ (x+ N )). To avoid trivialities, we assume that N is minimal (no proper

subset is a neighborhood) and that it is not included in a line.

(A3) T is monotone (or attractive): A � B implies T (A) � T (B).

(A4) T solidi�es : A � T (A).

Dynamics with inherent drift, such as various oriented models, are often of interest ([Mou1],

[Sch3]), but seem to elude a general theory along the lines presented in this paper. We eliminate

them by imposing a further restriction:

(A5) T is symmetric: T (�A) = �T (A).

Given a (deterministic or random) initial set A

0

� Z

2

, T

n

(A

0

); n = 0; 1; : : : is interpreted as

the set of occupied points at time n, while T

1

(A

0

) = [

n

T

n

(A

0

) is the set of eventually occupied
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points. Sometimes, we represent occupied and unoccupied sites as 1's and 0's, respectively.

We say the dynamics are

� supercritical if T

1

(A

0

) = Z

2

for a �nite initial set A

0

,

� subcritical if T

1

(A

0

) 6= Z

2

for an initial set A

0

with �nite complement ,

� critical if they are neither supercritical nor subcritical, and

� convex con�ned if T

1

(A

0

) is �nite for every �nite A

0

.

Our main objective in this paper is to analyze critical dynamics starting from the random

set A

0

= �(p), to which each lattice site belongs independently with probability p. Various

scaling laws for small p shed light on the size, dynamic nucleation, and propagation of viable

growing droplets ([Adl], [AL], [GG2{4], [Mou1{2], [Sch1{3]), and so are illuminating prototypes

for such phenomena in crystal growth and adsorption processes. Much of the rigorous theory

reviewed here provides a rigorous foundation for the following insights from an early paper by

G. Vichniac ([Vic]):

\[In] convex con�ned [critical] rules [...], local high{density 
uctuations in the initial distribu-

tion initiate the growth of clusters of 1's. The growth consists in �lling concavities, and halts

once the convex shapes are reached. For small p, the clusters stop growing before they can

meet. They remain separated by a sea of 0's. To be sure, on an in�nite lattice, this 0{phase is

metastable: an exceptional 
uctuation can create a very large cluster that will grow forever,

feeding on isolated small clusters."

Let us now introduce several concrete, illustrative examples. Most �t within the context of

threshold growth (TG) dynamics ([GG1{5]). Such CA rules have two parameters: a �nite neigh-

borhood N � Z

2

(with 0 2 N ), and a positive integer threshold �; the growth transformation T

is then given by

(1.1) T (A) = T

TG

(N ; �)(A) = A [ fx : jA \ (x+N )j � �g:

With � = 1 this is an instance of additive dynamics, which are always supercritical (by virtue of

(A2)). On the other hand, it is instructive to check that the following four examples constitute

critical TG dynamics, and that Example 2 is the only one which is not convex con�ned.
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Example 1.

N =

�

� 0 �

�

; � = 2:

Example 2.

N =

�

� � 0 � �

�

; � = 2:

Example 3.

N =

�

� � 0 � �

�

; � = 3:

Example 4.

N =

� � �

� 0 �

� � �

; � = 4:

Example 1, probably the best known instance of critical dynamics, has its own name: bootstrap

percolation ([Adl], [AL]). A �fth example of critical dynamics, from [TM], is not an instance of

TG.

Example 5. In the Soil Erosion CA, T (A) comprises sites in A along with those x which see one

of the following local con�gurations (0's represent soil, 1's eroded areas):

1

1 x

1

x

1 1 1

1

x 1

1

1 1 1

x

We illustrate Examples 2-5 with snapshots of 200 � 200 systems with periodic boundary

conditions. In each case, the initial density p is chosen close to critical, i.e., so that only a

few growing clusters emerge, and the dynamics are shown after these clusters have reached a

substantial size. Sites added at successive iterates are shaded with a periodic palette, to provide

a glimpse of the temporal evolution. Evidently sites of the same shade align with characteristic

slopes (�1 in Examples 2 and 3, �2

�1

in Example 4, 0 and 1 in Example 5). Can the reader

explain this? A nice illustration of Example 1 is the front page graphic of the Primordial Soup

Kitchen [Gri]. WinCA, a Windows-based program for CA simulation, written by R. Fisch and

D. Gri�eath, is also available at that Web site.
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Figure 1. Example 2 with p = 0:008, and Example 3 with p = 0:08.

Figure 2. Example 4 with p = 0:08, and Example 5 with p = 0:17.

Most past and current research on critical dynamics is focused on the four fundamental aspects

introduced in the remainder of this Introduction. We will formulate several rigorous results in

the remainder of the paper, and give rough sketches of some of the proofs, deferring further

details to [GG7]. The emerging message is that this class of CA rules gives rise to a variety of

scaling laws in various regimes, most of which can be described in terms of a few combinatorial

quantities called nucleation parameters .

The natural statistic to quantify the metastable behavior described above by Vichniac is the

�rst passage time to the origin:

T = inffn : 0 2 T

n

(�(p))g:

For any p > 0, the in�nite lattice contains every possible �nite con�guration of occupied sites,

so P (T < 1) = 1 if T is supercritical. Equally clearly, P (T < 1) < 1 in any subcritical case.

Which of these two alternatives holds for critical dynamics? In fact, every site is eventually
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occupied with probability 1 ([GG2]). (This is one property which fails in the absence of (A5);

see [Sch3] and [GG2] for examples.) Once it is known that T is �nite, our next order of business

is to address the questions posed in Problems 1{4 below.

Problem 1. What is the asymptotic behavior of T as p! 0?

The magnitude of T for small p is closely related to the size of the smallest L for which

the dynamics on an L� L box (with either free or periodic boundary) eventually reaches total

occupancy with substantial probability ([AL]).

As follows from results in Section 3 below, if p is small and the dynamics are convex con�ned,

then nucleation positions of viable growing clusters are widely separated, so that these clusters

continue growing for a long time in a sparse helpful environment (which is, in fact, a slightly

perturbed product measure).

Problem 2. Does the appropriately rescaled shape of a typical growing cluster approach a

deterministic limit set as p! 0?

For example, Figure 2 vaguely suggests that said deterministic set might be an octagon in

Example 4 and a diamond in Example 5. While the latter shape can be rigorously established,

we are currently unable to rule out the possibility that the former shape is a square.

Our next topic deals with the �nal stage of the dynamics, long after the expanding clusters

from Problem 2 have collided, when the last, rare remaining holes are being �lled. The ultimate,

and very ambitious, goal would be to describe the shape of these holes, a problem currently solved

only for additive models ([GG6]). To be precise, let C

n

(0) denote the connected cluster, in the

usual site percolation sense, of unoccupied sites containing the origin. Thus, fC

n

(0) = ;g =

fT � ng. Measure the distance between compact subsets of R

2

in the Hausdor� metric, and use

the associated Prohorov metric for distance between random compact sets. For a �xed � > 0, let

�

p;�;n

be the measure induced on sets C

T��n

(0)=�n under the conditional measure P ( � jT > n).

We call a random set H

p

, with associated distribution �

H

p

, the last hole if

lim

�!0

lim sup

n!1

d(�

p;�;n

; �

H

p

) = 0:

For additive models, H

p

is a deterministic set, which turns out to equal the forward shape L (see

Section 4) for every p. It all likelihood, H

p

is truly random in most other cases. For instance,

we conjecture that for Example 1, H

p

equals, or at least converges as p ! 0 to, [�1; 1]� f0g

and f0g � [�1; 1], each with probability 1=2.
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Since the last holes story involves conditioning on fT > ng, a fairly detailed understanding

of this event seems necessary; our next problem identi�es a �rst step in that direction.

Problem 3. What is the asymptotic behavior of P (T > n) as n!1, when p is small?

This problem was studied for some special cases in [Sch3], [And], and [AMS]. The last pa-

per contains a surprisingly precise result for a �xed p in the case of modi�ed bootstrap per-

colation, in which T (A) = T

TG

(N

1

; 1)(A) \ T

TG

(N

2

; 1)(A), where N

1

= f(0; 0); (�1; 0)g and

N

2

= f(0; 0); (0;�1)g.

Our �nal topic concerns the ability of critical dynamics to overcome a polluted environment.

More precisely, assume that sites are independently removed from Z

2

with a small probability

q > 0, occupied with probability p, and vacant with probability 1�p�q. Then run the dynamics

as before on the non{removed sites, with free boundary conditions.

Problem 4. What relationship between p and q ensures that P (T < 1) ! 1 as p ! 0 (so

pollution \does not matter")? When is the pollution signi�cant to the extent that P (T <1)!

0 as p! 0?

In the context of Example 5, Problem 4 asks for the minimal density of forested patches which

provides su�cient protection to prevent substantial erosion.

In conclusion, let us brie
y mention two areas of growth dynamics which remain largely

unexplored. The �rst concerns random perturbations of the update rule: while shape theory

from �nite sets can be developed for supercritical rules in some generality ([BG]), basic problems

such as existence of interface speeds remain open even in simplest cases ([GG5]). Secondly, there

are many interesting questions, but very few answers, concerning multi{color critical models such

as the cyclic CA ([FGG]), or various voter models ([Gri]).

2. Half{spaces, nucleation parameters, and voracity.

Unfortunately, our results require quite a lot of notation, and many de�nitions, to which this

section is devoted. The reader may want to skim it for now, and refer back later as necessary.

We start by de�ning a transformation

�

T on subsets of R

2

which is conjugate to T :

�

T (B) \ Z

2

= T (B \ Z

2

);
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for every B � R

2

. This mapping decides whether to occupy x 2 R

2

by basing the lattice at x,

intersecting the lattice with B, and then applying the discrete rule:

�

T (B) = fx 2 R

2

: 0 2 T (((x+ Z

2

) \ B)� x)g:

One of the main reasons for introducing

�

T is that it translates half{spaces. For a unit vector

u 2 S

1

, let H

�

u

= fx 2 R

2

: hx; ui � 0g. By (A1), there exists a w(u) � 0 such that

�

T (H

�

u

) = H

�

u

+ w(u)u:

Note that w(u) = w(�u), by virtue of (A5).

Next, we state a basic characterization result, which can be proved by approximating bounded

sets of small curvature with half spaces (see [GG1] and Section 2 of [GG2]).

Proposition 2.1. Growth dynamics are supercritical i� w(u) > 0 for every u, and subcritical

i� w(u) = 0 for every u. Moreover, the dynamics are convex con�ned i� w(u

1

) = w(u

2

) = 0 for

two linearly independent u

1

and u

2

.

To apply the above proposition in the threshold growth case, de�ne �

1

= �

1

(N ) and �

2

= �

2

(N )

to be, respectively, the size of the largest and the second largest intersection of N with a line

`(u) = fx 2 R

2

: hx; ui = 0g:

�(u) = jN \ `(u)j;

�

1

= �(u

1

) = maxf�(u) : u 2 S

1

g;

�

2

= maxf�(u) : u 6= �u

1

g:

Then w(u) = 0 i� � > jinterior(H

�

u

) \ N j =

1

2

(jN j � �(u)). Hence T is critical i� � 2 [

1

2

(jN j �

�

1

) + 1;

1

2

(jN j � 1)], and convex con�ned i� � �

1

2

(jN j � �

2

) + 1:

We now de�ne nucleation parameters 


0

, 


1

, and 


2

. These quantify the smallest instabilities

which have long{range e�ects for the evolution, and thus play a crucial role in the scaling laws.

In de�nitions below, we adopt the usual convention that inf ; =1.

Say A

0

generates persistent growth if T

n+1

(A

0

) 6= T

n

(A

0

) for every n � 0. Set




0

= inffjA

0

j : A

0

generates persistent growthg:

Then, for any u 2 S

1

, let 
(u) be the least number of sites one needs to add to the half{space

H

�

u

to ensure growth, i.e.,


(u) = inffjA

0

j : A

0

[ (H

�

u

\ Z

2

) generates persistent growthg:
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The next two parameters are the maximal and second largest 
(u):




1

= 
(u

1

) = supf
(u) : u 2 S

1

g;




2

= supf
(u) : u 6= �u

1

g:

The proposition below is now little more than a restatement of the previous one.

Proposition 2.2. The dynamics are critical i� 0 < 


1

<1. Moreover the dynamics are convex

con�ned i� 


2

> 0, or equivalently, i� 


0

=1. Finally, P (T <1) = 1 for all critical dynamics.

Convex con�ned dynamics are called balanced if 


1

= 


2

.

It is not hard to check that for convex con�ned TG dynamics, 


i

= �� (jN j� �

i

)=2, i = 1; 2.

Hence a TG model is balanced i� �

1

= �

2

. One now readily veri�es that the dynamics in

Examples 1, 4 and 5 are all balanced, with 


1

= 


2

= 1. In Example 3, however, 


1

= 2 and




2

= 1.

Almost all our results to follow require a regularity condition ensuring that \if the dynamics

do not �ll the space they supposed to, then they stop altogether." We call dynamics which

satisfy this condition voracious . Voracity is easiest to de�ne in the supercritical case ([GG2]):

T

1

(A

0

) = Z

2

for every A

0

with jA

0

j = 


0

which generates persistent growth. In critical cases,

we instead have two similar conditions and a third which states that smaller than minimal sets

have no e�ect:

(V1) If 


0

<1, then every A

0

with jA

0

j = 


0

which generates persistent growth �lls in a strip,

i.e., there exist numbers a; b so that T

1

(A

0

) is the union of (bu

1

+H

�

u

1

)\(au

1

+H

�

�u

1

)\Z

2

and a �nite set.

(V2) For i = 1; 2, every u with 
(u) = 


i

, and every A

0

with jA

0

j = 


i

such that A

0

[(H

�

u

\Z

2

)

generates persistent growth, there exists a number a > 0 such that T

1

(A

0

[ (H

�

u

\Z

2

))

is the union of (au+H

�

u

)\Z

2

and a �nite set. (Interpret the i = 2 part of this condition

as vacuous if 


2

= 0.)

(V3) For i = 1; 2, for every u with 
(u) = 


i

, and every A

0

with jA

0

j < 


i

, T adds no site at

all to A

0

[ (H

�

u

\ Z

2

).

Properties (V1{2) in e�ect eliminate the possibility of growing checkerboard patterns, parallel

strips, etc. Note, for example, that if 


0

<1, then (V1) implies that N cannot be a subset of a

proper sublattice of Z

2

. These conditions involve only minimal growing sets because those are
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the only ones that matter on relevant scales. For small neighborhoods one can therefore check

voracity by hand or by computer. As an illustration, we sketch how one deals with Example 2,

the remaining four examples being even more straightforward. First, one �nds that u

1

= e

2

, and

there are 8 di�erent two{point sets A

0

which generate persistent growth. (Assume that these

sets have their leftmost lowest point at the origin, say, to avoid double{counting.) By examining

the �rst few iterations, one veri�es that all of these �ll in a strip, thereby establishing (V1).

Next, take all A

0

as in (V2) translated so that their leftmost point is on the y{axis. There are

two such: the singletons f(0; 1)g and f(0; 2)g, making H

�

e

2

advance by 1 and 2 units respectively.

Therefore, (V2) holds as well. As for (V3), one easily checks that it holds for any TG model.

Such examples suggest the possibility of a general theory to the e�ect that voracity should be

automatic for \nice" N . Such a theory is far from easy to develop; at present the only result in

this direction, due to Bohman ([Boh]) and proved by a complex combinatorial argument, applies

to supercritical TG dynamics on box neighborhoods.

To avoid repeatedly stating the voracity hypothesis, we o�cially add it to the axiom list

(A6) T generates voracious dynamics,

and assume, from now on, that T satis�es (A1{6).

3. Scaling laws for �rst passage times.

To provide the proper context, we start with a theorem for supercritical rules.

Theorem 3.1. Assume that T generates supercritical dynamics. Then

p




0

=2

� T

d

�! �;

as p! 0, where � is a non{degenerate random variable.

The power of p is not at all surprising: a viable nucleus occurs at a �xed site with probability

on the order p




0

, so there should be a Poisson number of them among p

�


0

sites at distance

p

�


0

=2

. However, the proof of Theorem 3.1 (see [GG2]) is complicated by the fact that the

resulting growing clusters interact in a non{trivial fashion. Although the scenario is entirely

di�erent in critical cases, T may still satisfy a power law.
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Theorem 3.2. Assume that T is critical, but not convex con�ned. Then

p

(


0

+


1

)=2

� T

d

�! �;

for a non{trivial random variable � .

Example 2 is probably the simplest instance of this theorem, hence the best setting to explain

its proof and the exponent (


0

+ 


1

)=2. Recall that 


0

= 2 and 


1

= 1 in this example. Start

with a horizontal scaling of Z

2

by p, thus transforming Z

2

into horizontal copies of R at distance

1 apart, each equipped with a unit{intensity Poisson point location. Assume that every point

in the random �eld is equipped with a percolation gadget of the variety shown on the left side

of Figure 3. Moreover, make each location point a nucleus with probability � 8p.

Speed up time by a factor of 1=p. Starting from a nucleus, the growth progresses with speed

1 in the horizontal direction, and jumps instantaneously in the direction of an arrow whenever

it passes through its tail. This is an instance of additive growth dynamics, so the origin will

be reached by the time it makes the origin to reach the �rst nucleus in the dual growth model,

obtained by reversing the gadget arrows (as on the right side of Figure 3).

Figure 3. Percolation gadgets at the Poisson point locations.

One can invoke standard subadditivity arguments to show that, starting with the origin

occupied, this growth model then has an asymptotic shape

~

L:

fpoints reached by time tg

t

!

~

L

as t!1. Therefore,

P (T � p

3=2

� �)

� P (no nucleus reached by time � � p

�1=2

)

� P (no nuclei in �p

�1=2

~

L)

� e

�8�

2

area(

~

L)

:
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Despite the simplicity of additive growth,

~

L is apparently not computable (although its intersec-

tion with the x{axis is obviously [�1; 1]). Figure 4 depicts a simulation of the rescaled growth

and gives a rough idea of what

~

L looks like.

Figure 4. The rescaled growth.

For the general case, one starts with a horizontal scaling by p




1

, which yields a variety of

gadgets at the resulting Poisson point locations. (One appeals to sophisticated Poisson conver-

gence theory here; see [AGG] and [BHJ]). The growing set in the dual model then must proceed

until it reaches the �rst nucleus of 


0

sites, which happens when its radius is order p

(


1

�


2

)=2

.

The product of these two scalings gives the power of (


0

+ 


1

)=2.

By contrast, in convex{con�ned cases the growing droplet cannot expand in any direction

without the help of its sparsely occupied surroundings. This causes T to be much larger. In

fact, ln T behaves like a power of p, possibly with logarithmic corrections.

Theorem 3.3. Suppose T is balanced, convex con�ned, and critical. Then there exist constants

c

1

; c

2

> 0 so that

P

�

c

1

�

1

p




1

� lnT � c

2

�

1

p




1

�

! 1 as p! 0:

Theorem 3.4. If T is convex con�ned and critical, but not balanced, then there exist constants

c

1

; c

2

> 0 so that

P

�

c

1

�

1

p




2

ln

1

p

� lnT � c

2

�

1

p




2

ln

1

p

�

! 1 as p! 0:
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To get the rough feeling for these two results, consider �rst the dynamics of Example 1. Call

site x a nucleus if it is occupied, and the square annulus B

1

(x; n + 1) n B

1

(x; n) contains at

least one occupied site within each of its four sides. If x is a nucleus and the dynamics cover

B

1

(x; n) at some time, then B

1

(x; n+1) is occupied in at most 2n additional steps. Moreover,

lim

p!0

p � lnP (x is a nucleus) = 4

Z

1

0

ln(1� e

�2u

) du = �

�

2

3

:

Assuming the nuclei occur at di�erent sites nearly independently, the nearest one to the origin

occurs with high probability at `

1

{distance at most e

C=p

, for some C > 0. Then the origin is

reached no later than at time 2e

2C=p

. This heuristic is easily adapted to provide a rigorous upper

bound on T of the form given in Theorem 3.3. The lower bound requires a di�erent argument;

[AL] and [GG2] contain complete proofs for Examples 1 and 4, respectively.

By contrast, in Example 3, a typical non{balanced case, advance in the vertical direction is

very costly compared to horizontal spread. The square annuli above should therefore be replaced

by long thin rectangular ones, from which it follows that the \hard" direction only contributes

a logarithmic factor. See [GG2] for more details.

In growth processes, random seeds are often sown not only at the beginning, but continuously

in time. To model this situation, de�ne the rule T

c

, in which T

c

(A) consists of points in T (A),

and any other point independently with probability p. By convention, T

c

is started from the

vacant lattice. Let T

c

be the �rst passage time to 0. Estimates on how fast T

c

grows as p! 0 can

be obtained as simple applications of results in this section. The �rst step is to view T = T (p)

and T

c

= T

c

(p) as random functions of p. By monotonicity, T

n

c

(;) is bounded above by the

result of n random seeding steps followed by n iterates of T . Even more obviously, a lower

bound on T

n

c

(;) is obtained from n=2 seeding steps followed by an equal number of iterates of

T . Under the coupling which demonstrates the two comparisons,

fT (1� (1� p)

n=2

) � n=2g � fT

c

(p) � ng � fT (1� (1� p)

n

) � ng;

and a simple computation leads to the following result.

Corollary 3.5. Let T be critical, convex con�ned and balanced. Then there exist constants c

1

and c

2

such that

P (c

1

�

1

p � (ln(1=p))

1=


1

� T

c

� c

2

�

1

p � (ln(1=p))

1=


1

)! 1 as p! 0:

Non{balanced convex con�ned cases lead to even more intriguing asymptotics: T

c

� p

�1

�

(ln(1=p))

�1=


2

� (ln ln(1=p))

1=


2

. Finally, if T is on the order of a power p

��

, then T

c

is of order

p

��=(�+2)

. See [DS] for a similar model.
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4. Characteristic shapes of growing droplets.

In supercritical cases, every �nite set A

0

for which T

1

(A

0

) = Z

2

generates the forward shape

L :

lim

n!1

1

n

T

n

(A

0

)! L:

In fact L can be characterized as the polar transform of K

1=w

= [

u2S

[0; 1=w(u)]u. That is,

L = K

�

1=w

= fy 2 R

2

: hx; yi � 1 for every x 2 K

1=w

g (see [GG2] for a proof and examples).

To capture shapes observed when the dynamics are started from randomness, let C

n

(1) be the

connected site percolation cluster of 1's at time n which contains the origin. Condition on the

event that the origin is part of an occupied set of size 


0

which generates persistent growth,

Proposition 4.1. With respect to the above conditional probability,

1

n

C

n

(1)! L; as p! 0;

in probability, provided that n = n(p)!1 in such a way that n � p




0

=2

! 0.

In words, then, the shapes we see are small perturbations of forward shapes. The time n of

course needs to be restricted, since even the normalized shape tends to R

2

as n � p




0

=2

! 1.

A proof of Proposition 4.1, based on large deviation bounds for probabilities of linear e�ects,

appears in [GG2].

The corresponding story in critical cases is necessarily more complicated, since C

n

(1)=n must

be scaled by a power of p to obtain a non{trivial limit. Suppose T is balanced and critical.

Consider the event that B

1

(0; 2p

�4


1

) contains an occupied cluster of diameter p

�2


1

at time

p

�4


1

. The lattice is thus centered near a large occupied set at a time after the nucleation phase,

but far before the growing droplets start to interact.

Theorem 4.2. Conditional on the above event, there is a convex polygon L, and a � > 0, so

that for any any n = n(p) 2 [p

�5


1

; exp(�p

�


1

)],

p

�


1

�

C

n

(1)

n

�

! L

as p! 0 in probability.

The number of sides of L is bounded by the number of directions u for which 
(u) = 


1

.

The reason is that growth in all other directions is much faster, and so is not manifest in the
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asymptotic shape. Hence L must be a square in Example 1, a diamond in Example 5, and at

most an octagon in Example 4. Let us concentrate on this last example to explain the main

step of the proof.

Essentially, the shape is determined by the speed of horizontal and diagonal half{planes of

occupied sites in a random environment which is approximately a density p product measure.

We consider H

�

e

3

�rst. After horizontal rescaling by p, one gets exactly the same growth model

as in Section 2 (de�ned by Figure 3), started from a Poisson point location on the x{axis).

This being an additive model, the half{plane can be shown to have a coherent vertical speed. A

similar argument for the diagonal interfaceH

�

u

with u = (e

1

+e

2

)=

p

2 generates similar dynamics

except that the lines corresponding to Figure 3 are now 1=

p

2 apart, the Poisson locations have

intensity 1=

p

2, and the gadgets have range 3 instead of 2. This last fact implies that the shape

cannot be a diamond, as the diagonal interfaces are too fast. To eliminate the square as a

possible limit shape, one would have to prove that, when locations and distance between lines

are the same, the speed with range 3 gadgets is strictly smaller than twice the speed with range

2 gadgets. This seems likely, but a rigorous argument has eluded us so far.

Theorem 4.2 describes the growth of a critical model in a slightly helpful random environment.

At �rst glance, this may look very similar to the following random dynamics, which can be

thought of as a small supercritical perturbation of a critical rule. Assume that T

1

and T

2

de�ne,

respectively, convex con�ned dynamics and supercritical dynamics. Now de�ne the rule T

r

thus:

given a set A, include in T

r

(A) every point in T

1

(A), while every point of T

2

(A) not in T

1

(A) is

adjoined independently with probability q. Start from a large deterministic set A

0

and assume

that somehow the existence of an asymptotic shape

L

q

= lim

n!1

1

n

T

n

r

(A

0

)

can be established (see [BG] for a general method). How does L

q

scale with small q? Perhaps

surprisingly, the answer does not depend on nucleation properties of either T

1

or T

2

. Rather,

the diameter of L

q

is always on the order of

p

q. See [KS] and [Gra] for speci�c examples.

5. Decay rates for �rst passage times.

A completely satisfactory solution to Problem 3 of the Introduction is challenging even in

supercritical cases. At least this much is clear: for any � > 0, a necessary condition for T > n is

that there are no minimal sets which generate persistent growth in (1� �)n �L, while a su�cient

condition is that, for a large enough R, the event G

x

= fB

1

(x;R) contains 


0

1

0

sg happens for

no x 2 (1 + �)n � co(N ). (Here L is the forward shape and co(N ) is the convex hull of N .) The

fact that the events G

x

are positively correlated then implies the following result.
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Proposition 5.1. If T is supercritical, then there are constants c

1

; c

2

> 0 such that for every

p < 1 and su�ciently large n,

c

1

p




0

n

2

� � lnP (T > n) � c

2

p




0

n

2

:

It is natural to conjecture that �p

�


0

n

�2

lnP (T > n) converges as n! 1 and then p! 0,

but this is known only in the quasi{additive cases, i.e., when K

1=w

is convex, in which case it

can be proved ([GG6]) that the limit equals the area of L.

As expected, decay is much slower in critical cases.

Theorem 5.2. Assume T is critical and balanced. Then, for every p 2 (0; 1), �

1

= �

1

(p) =

� lim inf n

�1

P (T > n) and �

2

= �

2

(p) = � lim supn

�1

P (T > n) are positive and �nite.

The proof of the above result is a relatively straightforward adaptation of the methods in

[Sch3] or [And]. The lower bound is easy, since a su�cient condition for T > n is that a long

thin rectangle perpendicular to u

1

, with length on the order of n and width larger than the

diameter of N , is completely unoccupied. The techniques in [And] and [AMS], can be adapted

(with some work) to show that, at least for balanced critical dynamics, ln �

i

= ln p! 


1

as p! 0,

i = 1; 2. However more precise results would be welcome, perhaps along the lines of [Mou2] and

[AMS], which show for a modi�ed bootstrap rule that �

1

= �

2

= �2 log(1� p).

6. Scaling relationships in the presence of pollution.

Supercritical dynamics have no problem circumventing �nite obstacles, as evidenced by the

following result from [GG3].

Proposition 6.1. For any supercritical T ,

lim

q!0

lim inf

p!0

P (T <1) = 1:

On the other hand, pollution may have a dramatic e�ect on critical dynamics. Call � > 0

a lower pollution power (l.p.p.) if, for every � > 0, q > p

���

implies that P (T < 1) ! 0 as

p! 0. Say � <1 is an upper pollution power (u.p.p.) if, for every � > 0, q < p

�+�

implies that

P (T <1)! 1 as p! 0. Naturally, a pollution power is both a u.p.p. and an l.p.p. The letter

� will denote such a pollution power from now on. Note that our terminology makes sense since

the larger �, the more pronounced the e�ect of site removal on T .
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Theorem 5.2. For any critical T there exists a u.p.p. and an l.p.p.

To illuminate this last theorem, we sketch the proof that � = 1 in Example 2. The main step

in general is essentially an appropriately rescaled modi�cation.

First let q = p

1+�

. Divide the lattice into 1 � p

�1��=2

line segments, arranged in vertical

stacks, so that each segment has a neighboring segment directly above, below, to the left, and to

the right. Call such a segment open if it contains no removed sites and at least one occupied site.

Then the probability that a segment is open converges to 1 as p ! 0. Hence, with probability

tending to 1, the segment containing the origin is connected (by a neighbor{to{neighbor path)

to in�nitely many segments. Almost surely, one of these is completely occupied and, since

occupation is able to spread between neighboring open segments, the origin must eventually be

occupied.

Now assume that q = Cp. De�ne a blocking path to be an oriented nearest neighbor path on

Z

2

which makes only right and up moves, contains no occupied site within `

1

{distance 2, and

only moves up to a removed site. The reason for this name is that the dynamics cannot penetrate

a blocking path from below. For small p, the probability of the existence of an in�nite blocking

path from the origin approaches the survival probability of the one{sided contact process. Hence

such a path exists with very high probability if C is su�ciently large. At this point, standard

oriented percolation arguments enable one to encircle large sets with paths that cannot be

penetrated from the outside. These sets can be much smaller in size than p

�2

, thereby ensuring

that, with high probability, the encircling paths are safe from the inside as well. The vast

majority of sites therefore remains unoccupied forever.

In other critical cases, pollution powers depend on the ability of removed sites to block

progress of concavities in the occupied set, as well as the now familiar issue of advancement of

occupied half{spaces. However, a general result is quite cumbersome to state, so we will merely

mention answers for the four remaining examples, and then conclude with two still frames from

computer experiments.

It is proved in [GM] that � = 2 for Example 1. The fundamental building blocks in the

argument are squares of size on the order (1=p) � (1=p) (in contrast to the horizontal line

segments of size (1=p) � 1 in Example 2). Some inessential modi�cations of the arguments in

Sections 1 and 3 of GM establish that � = 2 in Examples 4 and 5 as well. Example 3 needs

a more substantial modi�cation, since the building blocks are (1=p

2

)� (1=p) rectangles in this

case, but the ultimate conclusion is that � = 3.
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Figure 5 shows snapshots of �xated states for Examples 3 and 5. The dynamics were run

on a 130� 130 array with 1{boundary conditions (to eliminate tricky nucleation issues). This

time the removed sites are black, and the occupied sites have gray shades. Note the blocking

paths which outline the boundaries of the two \frames" of 1's. In both cases, q = 0:01 was �xed,

then p was increased until the frame of 1's was able to make substantial inroads into the square.

The resulting \critical" p's, 0.04 in Example 1 and 0.09 in Example 5, should not suggest that

Example 5 has a higher pollution power. Instead, they merely point out that reliable simulations

of critical dynamics typically require very large arrays, a (sometimes unpleasant) lesson that has

been encountered by researchers several times over the past 15 years.

Figure 5. Examples 3 and 5 in polluted environments.
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