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1 Introduction

In this paper we exhibit some virtual snowflakes, or snowfakes, generated by a natural, fully
three-dimensional algorithm for snow crystal evolution. The present study extends our earlier
work on growth and deposition [GG1, GG2, GG3|, and other previous efforts in this direction
[Pac, Rei]. The key features of our model are diffusion of vapor, anisotropic attachment of
water molecules, and a narrow semi-liquid layer at the boundary. All three ingredients seems
to be essential for faithful emulation of the morphology observed in nature.

Growth of a snow crystal in a homogeneous environment, that is, in constant weather con-
ditions, is primarily dependent on temperature, pressure and vapor density. However, the prin-
ciples by which these determine how supersaturated vapor attaches to a growing ice crystal
are poorly understood [Lib4|. Therefore, incorporating this process into a mathematical model
in terms of tunable parameters is a sensible strategy. While it is not a priori clear how our
parameters correlate with physical conditions, experimentation provides valuable clues (cf. Sec-
tions 7-13). This approach also makes it possible to model inhomogeneous environments by
varying the parameters during the evolution (cf. Section 12). As a reasonable first step, the
diffusion of latent heat, generated by solidification [Lib4], is neglected, as are surface diffusion
[Lib4], impedance [NB] and other effects that may be important in some regimes. Based on
the verisimilitude between snowfakes and actual snow crystals (the most convenient resource for
such comparison is Libbrecht’s field guide [Lib6]), it would appear that this approach is able to
shed light on a substantial portion of snow crystal physics.

The algorithm assumes a mesoscopic (micron) scale of basic units for the ice crystal and water
vapor, which eliminates inherent randomness in the diffusion and the attachment mechanism.
This brings the process within reach of realistic simulation; by contrast, any three-dimensional
approach based on microscopic dynamics is completely beyond the scope of present computing
technology. We refer the reader to [GG3] for a brief history of snow crystal observation and
modeling, background on our approach in a two-dimensional setting, and many references to
the literature. See also [NR] for another attempt at spatial mesoscopic modeling.

There are many papers and books, for a variety of audiences, dealing with snowflake pho-
tography and classification, the underlying physics, or some combination thereof, so we will not
offer a comprehensive review here. Excellent introductions to the subject include the classic
book by Nakaya [Nak], early empirical studies and classification schemes [BH] and [ML], and
more recent papers and books by K. Libbrecht [Libl, Lib2, Lib3, Lib4, Lib5, LR]. Among
research papers that attempt to decipher the three-dimensional aspects of snow crystals, the
standout reference is [TEWF]; also worth mentioning are [Iwa], [NK] and [Nel].

As a preview of the capabilities of our model, let us illustrate the crystal tip instability and
initiation of side branching studied in the laboratory by Gonda and Nakahara [GN]. A sequence
of four still frames from their paper was reproduced in [GG3] so we will not show it here. But
Fig. 1 depicts the top view of a corresponding snowfake at four different times (12, 15, 18, and 21
thousand), and oblique views of the crystal’s top and bottom at the final time. The parameters
are: o1 = 2.8, B0 = P20 = 2.2, f11 = B21 = 1.6, B30 = B31 = 1, K = .005, p10 = p2o = .001,
u = .0001 otherwise, ¢ = .01, and p = .12. Their role, and that of the initial state, will
be described in Section 2. Similarity between the real and simulated sequences is striking: in
both instances a defect arises at a characteristic distance from the crystal tip, becomes more
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pronounced, and later gives rise to a side branch with its own ridge structure similar to that of
the main branch. Note also that our snowfake has its ridges, and most other markings, on the
top side; the bottom is almost featureless. This is due to a small downward drift in our model, an
aspect we will discuss later in more detail. The direction of the drift represents the motion of the
crystal in the opposite direction — we prefer upward motion because interesting features then
appear on top, although this would obviously correspond to the bottom of a falling snowflake.
We should also note that the drift value means that, during its evolution, our simulated crystal
moved for about 200 space units, which is comparable to the diameter it reached. This is
typical of drift values that erase features on one side without otherwise significantly changing
the morphology. Our model thus predicts that a significantly larger range of motion during
growth is not possible for most interesting physical snow crystals, such as dendrites or plates.
Another example of our algorithm’s potential to make new predictions about basic aspects of
snow crystal growth is the location of markings. From micrographs, it is almost impossible to
tell whether these are on the top, bottom, or inside a given physical specimen, so little attention
has been paid to this issue to date. We have gathered a considerable amount of evidence that
inside markings are quite common (cf. Sections 7, 8 and 9).

\..
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Fig. 1. Tip instability and oblique top (left) and bottom (right) views of the final crystal.

Our account will focus on seven case studies that reproduce many features commonly ob-
served in actual snowflakes: ridges, ribs, flumes and other “hieroglyphs,” formation of side
branches, emergence of sandwich plates, hollow columns, hollow prism facets, and so forth. We
also explore dependence on the density of vapor, and the aforementioned effect of drift, and
inhibition of side branches by the semi-liquid layer. Varying meteorological conditions during
growth are considered very important [Lib6] so we include several examples, such as plates
with dendritic tips and capped columns, that are believed to arise due to sudden changes in
the weather. However, we will encounter snowfakes that grew in a homogeneous environment
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but give the impression that they did not. We will occasionally address dependence of the final
crystal on its early development, and conclude with a few eccentric examples that may be too
brittle to occur in nature. These typically arise near a phase boundary, when the dominant
direction of growth is precarious. A complete collection of snowfakes from our case studies (with
some additional information, such as simulation array sizes), a collection of movies, and a slide
show are available for download from:

http://psoup.math.wisc.edu/Snowfakes.htm

The first order of business, in the next section, is to describe the snowfake algorithm in detail.
Four subsequent sections discuss computer implementation and visualization tools, mathematical
foundations, parameter tuning, and extensions of the model. The remainder of the paper is then
devoted to the case studies.

2 The algorithm for three-dimensional snow crystal growth

Our basic assumptions are as follows:

A1. The mesoscopic (micron-scale) building blocks are (appropriately scaled) translates of the
fundamental prism, which has hexagonal base of side length 1/v/3 and height 1;

A2. Inits early stages of growth, from microscopic to mesoscopic, the crystal forms a hexagonal
prism, and then it maintains this shape until it reaches the size of a few microns across.

A3. Diffusion outside the crystal is isotropic except possibly for a small drift in the vertical
direction;

A4. Crystallization rates depend on the direction and local convexity at the boundary;

A5. Melting at the boundary creates a semi-liquid layer.

Note that the side (rectangular) faces of the fundamental prism are commonly referred to as
prism faces, while the top and bottom (hexagonal) ones are called basal faces.

The lattice for our model is T x Z, where T is the planar triangular lattice (see Fig. 2).
This is not precisely the crystalline lattice of hexagonal ice Ih, which is obtained by removing
certain edges and sites from T x Z, and then applying a periodic deformation [NR], but we are
constructing a mesoscopic model that should obscure such fine details. Therefore, each z € T xXZ
has 8 neighbors, 6 in the T-direction and 2 in the Z-direction.

At each discrete time t = 0,1,2,..., Ay C T X Z represents the snowfake, and with each site
x € T x 7Z we associate two varieties of mass:

bi(z) = the boundary mass at x at time ¢ (frozen if ai(z) = 1, semi-liquid if a;(xz) = 0),

di(z) = the diffusive mass at x at time ¢ (vapor).

The state of the system at time ¢ at site x is therefore (ai(z),bi(x),di(x)), where a; is the

attachment flag
1 ifreA
a(z) = { ne i

0 otherwise.
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Our dynamics assumes that the diffusive and the semi-liquid mass both change to ice when the
site joins the crystal, and stay in that state thereafter. The two types of mass can coexist on
the boundary of the snowfake, but only boundary mass persists inside the snowfake while only
diffusive mass occurs outside and away from the boundary.

The initial state will consist of frozen mass 1 at each site of some finite set, on which also
ap = 1, with ag and by = 0 and dy = p everywhere else. In keeping with assumption (A2), the
most natural choice for this finite set, a singleton at the origin, often does not work well, as its
Z-direction neighbors see 7 neighbors off the crystal’s boundary. This means that it is common,
even for low p, that the dynamics immediately triggers a rapid expansion in the Z-direction. To
prevent this singularity, our canonical initial state consists of a hexagon of radius 2 and thickness
1, consisting of 20 sites. Other non-symmetric initial states will be discussed later.

Let us now describe the update rule of our snowflake simulator, which performs steps (i)—(iv)
below in order every discrete time unit. The reader should observe that total mass is conserved
by each step, and hence by the dynamics as a whole.

Write V) = {z} U{y : y is a neighbor of z in the T-direction}, NZ = {z} U{y : y is a
neighbor of z in the Z-direction} for the T-neighborhood and Z-neighborhood of x, respectively.
We also let A, = NJ UNZ, and set the the (outside) boundary of the snowfake at time ¢ to be
0A; ={x ¢ Ay 1y € Ay for some y € NV} and Ay = A, U OA;.

The complement of a set A is denoted by A°. Also, we use ° (degree) and ' (prime) notation
to denote amounts of mass before and after a step or substep is completed. If there is more than
one intermediate step, we use double primes. This is necessary since some mass allocations may
change more than once during a single cycle of the steps. At the end of each cycle the time ¢
advances to t + 1.

Steps of the update rule:
1. Diffusion
Diffusive mass evolves on Af in two, or possibly three, substeps. The first substep is by

discrete diffusion with uniform weight % on the center site and each of its T-neighbors. Reflecting
boundary conditions are used at the edge of the crystal. In other words, for z € A¢f,

(12) d) =2 3 &)

yeNT

The second substep does the same in the Z-direction:

4 3
(1b) df(x) = @)+ 3 > i)
yeENZ y#z

For x € 0A; any term in the sum in (la) (resp. (1b)) corresponding to y € A; is replaced by
di (z) (resp, di(x)).

The reason for the weights in (1b) is as follows. Imagine we tessellate R with translates of
the fundamental prism and scale the lattice T x Z so that the lattice points are in the centers
of these prisms. The “bonds” in the top left frame of Fig. 2 thus all have unit length and we
eventually visualize the crystal by drawing prisms that are centered about sites of A;. Rule (1b)
ensure that diffusion on the scaled lattice is isotropic, in agreement with assumption A2.
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As mentioned in the Introduction, there is also good reason to consider the more general
case of diffusion with drift in the Z-direction, corresponding to downward (or upward) motion
of the snowflake. The third diffusion substep is thus:

(1c) d/'(x)=(1—¢- (1 —ay(z —e3)) -df(x)+ ¢ (1 —a¢(x +e3)) - df (x + e3),

where e = (0,0, 1) is the third basis vector. Parameter ¢ measures the strength of the drift,
and needs to be small for the dynamics to remain diffusion-limited.

1. Freezing

Assume that x € 0A;, and denote

(2a) ni(z) =#{y e Ny 1af(y) =1} A3, nf(z) =#{ye N} :aj(y) =1} AL

Proportion 1 — k(n} (x),n?(x)) of the diffusive mass at z becomes boundary mass. That is,

by(w) = b7 (z) + (1 — w(ny (), nf (x)))dg (x),
dy(x) = w(nj (), nf ())d; ().

The seven parameters (i, j), ¢ € {0,1}, j € {0,1,2,3}, i4+5 > 0, constitute one of the ingredients
that emulate the dynamics of the semi-liquid layer at the boundary of the crystal. The other
ingredient, p, appears in step v below. We assume that x decreases in each coordinate since
“more concave corners” at the boundary 04, i.e., those with more neighbors in A;, should catch
diffusing particles more easily.

(2b)

191, Attachment

Assume again that = € 9A; and define the neighborhood counts as in (2a). Then z needs

boundary mass at least 3(n] (z),n%(z)) to join the crystal:

3) If b5 () > B(nj (x),nf (x)), then aj(z) = 1.

Again, we have seven parameters (3(i, j), i € {0,1}, j € {0,1,2,3}, i+ > 0, and the assignment
only makes physical sense if 3 decreases in each coordinate.

In addition, we assume that a}(x) = 1 automatically whenever n} (z) > 4 and n’(z) > 1.
This last rule fills holes and makes the surface of the crystal smoother, without altering essential
features of the dynamics.

At sites 2 for which a}(x) = 1, the diffusive mass becomes boundary mass: b}(z) = bf(x) +
dg(x), dy(z) = 0. Attachment is permanent, and there are no further dynamics at attached sites.
Thus we do not model sublimation, although it may play a significant role in the last stages of
snow crystal evolution (cf. p. 27 of [Lib6]).

w. Melting

Proportion pu(nf (z),n?(x)) of the boundary mass at each boundary site becomes diffusive

mass. Thus, for x € 0Ay,

by(z) = (1 — ulng (x),nf (2)))b5 (),

(
4
W dy(x) = df (z) + p(ny (z), nf (2))b; (2).
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Again, p is decreasing in each coordinate.

Fig. 2 summarizes our model in three frames. At the upper left is a portion of the underlying
lattice T x Z. The central site represented as a larger black ball has its neighborhood indicated
in black, and a translate of the fundamental prism is centered at that site. In the upper right
detail, blue translates of the fundamental prism are drawn around each site of a small crystal.
Seven boundary sites are depicted in red and each is labeled by its boundary configuration.
For example, the “21” site has 2 horizontal (T-) neighbors and 1 vertical (Z-) neighbor, and
consequently needs boundary mass (21 to join the crystal. Finally, the lower panel shows a
flowchart for the algorithm. There are three epochs in the life of a site. Away from the crystal’s
boundary, it only exchanges diffusive mass d; with its neighbors. Once the crystal grows to reach
the site’s neighborhood, two additional effects, melting and freezing, promote exchange between
diffusive mass d; and boundary mass b;. Final changes occur once boundary mass exceeds the
threshold 3 (which depends on the neighborhood configuration): the site attaches and the two
types of mass merge into b;.

attached

diffusjon
dt I —
— ]
—1 ——=
diffugion| /
dy 1 K Iz when by > 3 by
when in contact
with the crystal L —
bt /
—

Fig. 2. The stacked triangular lattice T x Z (top left), coding of boundary configurations
(top right), and a flowchart for the growth algorithm (bottom).
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3 Notes on computation and visualization

Following the same strategy as for our previous two-dimensional model [GG3], the dynamics
actually run on the cubic lattice Z3, which can be mapped onto T? x Z. Our basic computa-
tional engine is written in C, but MATLAB is used for mapping and visualization. As mentioned
previously, the snowfakes are depicted by drawing visible boundaries of translates of the funda-
mental prism centered on sites of A;. Since this straightforward procedure makes jagged vertical
boundaries, we apply a smoothing algorithm at the boundary that enlarges the crystal by no
more than one mesoscopic unit. (This algorithm has no effect the dynamics and is not applied
to the small snowfake in Fig. 2.) MATLAB’s patch routine renders the faces. For better results
we then emphasize edges using the 1line routine.

MATLAB?’s visualization tools certainly provide adequate representations for detailed inves-
tigation of the resulting crystals. They do not, however, give a satisfactory comparison with the
best snowflake photographs [LR, Lib5, Lib6], typically taken from directly above the (predom-
inantly two-dimensional) crystal, which is in turn illuminated from below. This viewpoint can
be effectively simulated by ray-tracing, as implemented here by the POV-Ray software [POV].
Our program automatically outputs a file with a triangulation of the crystal’s boundary, which
is then used by the mesh2 command in POV-Ray.

We would like to point out that both the algorithm and visualization procedures require
considerable computing power and memory. At present (fall 2007), our simulations are very time
consuming, barely feasible on commercial personal computers. (In fact, an adaptive resolution
algorithm is necessary to make the boundary descriptions manageable.) Progress in studying
snowfakes is therefore quite slow, precluding systematic classification of the dynamics. Our
goal has been to find representative examples that seem to replicate physical snow crystals and
thereby shed light on their evolution.

When there is no drift (¢ = 0), the initial state is a hexagonal prism, and the space is a
finite lattice in the shape of hexagonal prism with appropriate periodic boundary conditions,
symmetry can be exploited for computational efficiency. In fact, in this case it suffices to
compute the dynamics on i of the whole space. However, there are two good reasons for giving
up complete symmetry of the rule. First, the initial state may not be symmetric, and second, the
diffusion may have a drift. For computations to still proceed at a reasonable speed, we only give
up reflectional symmetry around the zy-plane (recall that the drift is only in the Z-direction),
allowing the initial state to depend on the z coordinate, but retaining its hexagonal symmetry
in the x and y coordinates. This increases the space and time demands of the fully symmetric
program by a factor of 2.

The program stops automatically when the density at the edge of the lattice falls below a
given proportion of the initial density (typically 2p/3 or p/2), or when the crystal gets too close
to the edge (snowfake radius greater than 80% the radius of the system).
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4 Connection to pde, and size of the parameter space

For simplicity, we assume that ¢ = 0 until the last paragraph of this section. Mathematically,
our algorithm is a discrete space and time version of a free boundary, or Stefan, problem [Lib2,
Lib3, Lib4]. This is a partial differential equation (pde) in which the crystal is represented by
a growing set A; and the density (i.e., supersaturation) of vapor outside it as u = u(z,t). Then
u is 0 on the boundary dA;, and satisfies the diffusion equation outside the crystal

ou c
(1.1) i Au, x € Aj.

The velocity of the boundary at a point x € dA; with outside normal v is given by a function

dp
1.2 — .
(12 w ()
Considering the slow growth of A;, diffusion equation (1.1) may be simplified to its equilibrium
counterpart Au = 0 [Lib2, Lib3, Lib4|, which makes this into an anisotropic version of the

Hele-Shaw problem.

Presumably under diffusion scaling, in which space is scaled by €, time by € 2, and € — 0,

the density field and the occupied set in our model converge to a solution of the Stefan problem.
However, a rigorous justification for this connection, and identification of the limit w in terms
of model parameters, at present remain elusive.

The boundary velocity function w = w(\,v) > 0 is defined for A > 0 and three-dimensional
unit vectors v € S%. In order to develop a rigorous mathematical theory, the most conve-
nient assumptions are that w is continuous in both variables, nondecreasing in A, and satisfies
w(A,v) < CA for some constant C' independent of A and v. Under these conditions, the non-
isotropic melting version of the Stefan problem (1.1-1.2), which has w replaced by —w in (1.2),
has a unique viscosity solution at all times ¢ > 0, starting from any smooth initial crystal. This
is proved in [Kim)] for the isotropic case (when w is constant); assuming the listed properties of
w, the proof extends to our general setting. On the other hand, the freezing version (1.1-1.2)
considered here presents a much greater challenge. It has long been known that the crystal’s
boundary will not remain smooth [SB], and no general theory of existence and uniqueness of
generalized solutions is developed. The inherent difficulties will be no mystery once we present
our simulations, which feature a considerable variety of singularities and instabilities. These
may make direct numerical computation with the pde questionable, explaining why numerical
pde-based models for snow crystal growth have not been satisfactory (cf. [Sch]). For further
mathematical theory and references, we refer the reader to [Kim, CK].

For the sake of further discussion in this section, we posit that our scheme approximates an
appropriate generalized solution, presumably of viscosity type, of (1.1-1.2), and thus that the
macroscopic evolution of the crystal is uniquely determined by its initial state and the velocity
function w.
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For the model introduced in Section 2, w(\, u) will be linear in \, since the attachment and
melting rates are independent of the vapor density. This may not always be the case; in fact,
some of the literature even considers the possibility that w is non-monotone in A [Lib3, GG3].
Analysis of such cases would present new theoretical challenges, and from simulations of our
3d model it appears that nonmonotonicity is not needed for observed phenomena in nature.
Monotone nonlinearity, arising from monotone density dependent rates, is harder to dismiss and
worth further investigation — for instance, it is possible that w vanishes for very small A.

The function w is determined by very few physical parameters, perhaps just two: tempera-
ture and atmospheric pressure [Lib2, Lib3, Lib4]. Therefore, possible evolutions from a fixed
seed comprise a three-dimensional manifold (its coordinates being the supersaturation level,
temperature, and pressure) in an infinite-dimensional space of possible velocities w. Much of
the ongoing snow crystal research constitutes an attempt to understand the structure of this
manifold, a daunting task since the underlying (perhaps quantum) attachment physics is very
poorly understood, controlled homogeneous environments are hard to design, and crystal evolu-
tion is difficult to record. Our model does not have these problems. Instead, its main weakness is
the number of free parameters that need to be tuned to approximate w at a particular tempera-
ture and pressure. It helps that our parameters have intuitive meaning, but finding a particular
realistic snowfake involves approximating an a priori infinite-dimensional object w by one of
finite but high dimensionality. The challenge is compounded by very incomplete information —
all that is typically observable in nature is the final crystal, which may have been subjected to
numerous changes in conditions and orientation during growth, as well as sublimation and per-
haps even artifacts of the recording process. It is thus no surprise that our parameter selection
is an arduous and imprecise task.

In the next section we will describe some ad hoc rules that we have used to generate our case
studies, but the issue of parameter selection is in dire need of further investigation. What we can
say is that the best examples are quite sensitive to perturbations in w. Thus they require good
approximations and a large number of judicious parameter choices. In addition, the dependence
on the initial seed is often quite dramatic. These observations underscore both the marvel and
the fragility of natural snowflakes.

Fig. 3. A “failed” snowfake.
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At the same time, we wish to emphasize the conceptual simplicity of our model. The large
parameter space is a consequence of geometry rather than an excessive number of modeling
ingredients. Apart from the two scalar parameters — density p and drift ¢ — we have only three
vector parameters — attachment threshold 3, freezing rate 1 — k, and melting rate u — whose
high dimensionality arises from the many possible boundary arrangements. The parameter set
can be reduced, but some tuning will always be necessary, as illustrated by the “random” crystal
in Fig. 3. This was obtained by choosing x = .1, u = .001, p = .1, ¢ = 0, and all §’s equal to
1 except Bo1 = 1.73 and B1g = P29 = 1.34. These values are in a sensible neighborhood of the
parameter space, but the last two attachment rates were selected by chance. The result has some
physically reasonable features, but one immediately notices an excessive density of branches and
inordinately high ridges. In general, visual comparison with snow crystal photographs is the
only method we use to decide whether a snowfake is a “failure” or a “success.”

5 Effective choice of parameters for simulations

While realistic choices of parameters require considerable guesswork, there are a few guidelines
we have developed. Some come from mathematical arguments, others from experimentation;
both are described in this section.

We typically choose the drift parameter ¢ last, and on the order of .01. This keeps ¢ =
1/(array size), as required for a diffusion limit, and produces essentially one-sided markings.
The rest of this section is devoted to other parameters and assumes ¢ = 0.

Our simulator represents diffusion by discrete averaging in time ¢, which is also discrete.
The bulk effects of this operation expand at the rate /¢, although the extreme radius of its
influence, which is known as the light cone in cellular automata research, grows linearly in t.
If the initial density p of our discrete vapor field is too large, then the crystal may expand in
some direction as fast as the light cone, or perhaps fall behind it by O(v/t). We call parameter
sets leading to this behavior the Packard regime; it is clearly not physical, as it depends on the
discrete nature of the averaging. However, systems of this sort are able to generate fractal plates
reminiscent of Packard snowflakes [Pac, GG3| and exhibit one variety of faceting (cf. [NR]).
In our simulations we systematically avoid the Packard regime by keeping the density low. For
the extremal points of our snowfakes not to expand as fast as the light cone, the conditions are

(1 —ko1)p < Bo1, (1—Ki0)p < Pio,

as is easy to see from the description of the rule. Our densities are typically considerably smaller,
since large densities generate expansion that is too rapid to be realistic, at least in its initial
stages. As mentioned previously, a surprisingly important role is also played by the choice of
initial seed.

On the other hand, it is clear that a very large melting rate will stop growth altogether. This
happens if the flow out of the boundary mass exceeds the flow in just before that mass exceeds
the threshold for attachment. A sufficient condition for continual growth in all directions is
therefore

po1Bo1 < (1 —ko1)p,  p10Bio < (1 — K10)ps

since the 01 and 10 boundary arrangements always have the slowest potential growth. In the
great majority of examples we will present, parameters for the 20 and 10 arrangements agree.
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In this case, the last condition is necessary as well — if it does not hold, then the growth is
convex-confined in the T-direction.

Let us now describe a few rules of thumb when searching for snowfakes that emulate nature.
We commonly start with a reduced parameter set. Namely, we set the x’s to a common value,
say, k = .1. Then we select two different 8 parameters, Gp1 and B19 = B0 = (11, with all the
remaining 3’s fixed to 1. The size of B9 controls the strength of the convexifying mechanism,
assumed to be the same in both the xy and z directions. Indeed, if Gy is large, then the
crystal will remain a perfect hexagonal prism for a long time. The only other parameters are
the common value of all ©’s and the vapor density p. This is a more manageable four-parameter
space that encodes four essential elements of three-dimensional snowflake growth, each with a
single tunable parameter: diffusing supersaturation level (p), convexifying strength (329), semi-
liquid layer smoothing (u), and preference for the Z-direction over the T-direction (5p1/B20)-
This scheme is used to identify the neighborhood of a desired morphological type in phase space.
Then parameters are perturbed for added realism.

One of the most important lessons of our two-dimensional model [GG3] was that the melting
parameter g inhibits side-branching and is therefore important for dendrite formation. When
u = 0, it seems impossible to avoid an excessive density of branches. Indeed, this role of p is
easily understood. Namely, i creates a positive density at the boundary, due to flow out of
the boundary layer. This density has the effect of reducing the ambient vapor density by a
fixed amount, independent of location, and hence disproportionately affects regions of smaller
density. (To a very rough first approximation [Lib4], the expansion speed is proportional to
VP/ v/t when p = 0.) Since there is clearly less mass between branches than at the tips, growth
and side branching there gets stunted by increasing u.

Realistic “classic” dendrites occur for a relatively narrow range of choices for u, once the
other parameters are held fixed. Typically, though, the other parameters need to be perturbed
along with p; increasing p alone tends to erode all complex structure.

The markings seen on snow crystal plates are sometimes called hieroglyphs. These often
have fairly regular geometric forms, such as ridges, flumes, ribs, and circular shapes, but can
also exhibit more chaotic patterns. In photomicrograph collections [BH, LR, Lib5, Lib6] it
is usually unclear whether the marks are on the outside of the crystal or within what we call
sandwich plates. In our experiments, the inner structures are much more prevalent, so we are
glad to observe that they are abundant in nature [EMP]. To obtain nice outer markings, the
ratio Bo1/ 820 needs to be sufficiently large, but there is then a tendency for the crystal to become
too three-dimensional. Again, the correct choice is often rather delicate. Inner markings occur
generically for small values of this ratio.

Finally, different x’s may appear to be a more natural mechanism to enforce anisotropy
than different §’s, as they directly correspond to sticking, or killing, of particles at the crystal’s
boundary. However, for this effect to be significant, the killing at the boundary must be slow
and thus the x’s need to be very close to 1; this causes the already slow growth to proceed at
an even more sluggish pace. While less physically appealing, we view the 3’s as a reasonable
compromise for the sake of computational efficiency.
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6 Variants and extensions of the model

6.1 Uniform snowfakes

Since attachment thresholds ( vary, the mass of the final crystal is not uniform. There is
a variant of our algorithm that removes this defect with little change in observed morphology.
Assume that there is no automatic filling of holes; instead, boundary mass exactly 1 is needed for
attachment when n] (z) > 4 and n#(z) > 1. Then a uniform crystal is obtained by performing
the following additional step just after step 4ii in the simulator:

1i’. Post-attachment mass redistribution

To redistribute any excess mass from the attached site to its unattached neighbors, let

ni(z) = #{y € Np : af(y) = 0}

be the number of non-attached neighbors. Then, for every x with a7 (z) = 0,

/ o blcf} (y) -1
bi(w) = by (z) + E Tl
a1 W)

6.2 Simulation without symmetry

As explained in Section 3, at the cost of a 24-fold slowdown compared to our fully symmetric
model, implementation of the algorithm without exploiting symmetry makes it possible to study
the evolution from arbitrary initial seeds. Such an extension is necessary in order to produce
snowfakes corresponding to exotic forms such as triangular crystals, split stars, and bullets. We
have conducted a few experiments along these lines with our planar model [GG3], but in three
dimensions a simulator dramatically faster than our current one is needed. We have future plans
to develop a suitably high-performance parallel version.

6.3 Random dynamics

Our only three-dimensional snowfakes to date are deterministic, since randomness would also
require the just discussed simulation without symmetry. We propose to include an additional
parameter € representing residual noise on the mesoscopic scale, as we did in the two-dimensional
setting [GG3]. Again, ¢ would need to be quite small, say on the order 10~°. The random
perturbation of diffusive mass from [GG3| is not suitable in 3d since it is not physical to violate
mass conservation. Instead, a small random slowdown in the diffusion rate is more appropriate.
To this end, first denote the (linear) operation on the field dj in (1la—1c) by D; thus step i can
be written as d}” = D(dy). Next, let & (z), t > 0, z € T X Z, be independent random variables,
equal to € > 0 or 0, each with probability 1/2. Here the field £ represents the proportion of
particles that refuse to diffuse at position z and time t.
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The randomized step ¢ now reads
i =D((1—&)dy) + &dy = D(dy) + &dy — D(&dy).

In a natural way, this represents small random temperature fluctuations in space and time.

Similarly, one could introduce a small proportion of particles that refuse to freeze in (2b), or
melt in (4); e.g., (2b) would be replaced by

by(z) = b () + (1 — w(nf (), nf ())d; () (1 — &(2)),
dy(x) = £(ng (), nf (2))dg () (1 — &(x)) + df (2)& ().

7 Case study ¢ : ridges and plates

Our prototypical snowfake has p = .1 and the canonical initial state of radius 2 and thickness 1.
Fig. 4 depicts the crystal after 70000 time steps, when its radius is about 350. Its parameters

are Bo1 = 2.5, B0 = oo = 511 =2, B30 = P21 = B31 = 1, k = .1, p = .001, and ¢ = 0.

Fig. 4. The oblique (MATLAB-rendered) and top (ray-traced) views of the crystal.

We invite the reader to compare the simulated crystal with some of the photographs at
[Lib5] and especially with Fig. 1(h) in [TEWF], a snowflake obtained at temperature about
—13°C. We think of our length unit (the width of the fundamental prism) as about 1um, so
even the sizes of the two objects roughly match.



7 CASE STUDY I : RIDGES AND PLATES 14

Perhaps the most striking features shared by the snowfake in Fig. 4 and physical ones are
the ridges, elevations in the middle of each main branch, with less pronounced counterparts on
the side branches. We begin by illustrating how these ridges are formed and maintained. In the
process we also encounter the branching instability, when the initial growth of a thin hexagonal
plate is no longer viable and it gives birth to the six main branches.

As shown in Fig. 5, ridges are formed quite early in the evolution, by mesoscopic bumps
known as macrosteps that are near the center of the plate. This is how the ridges grow (very
slowly) in the vertical direction — compare with times 4044 and 7099, which also feature such
bumps. The ridges spread to a characteristic width, but sharpen to a point near the branch
tip. One can also observe the commonly observed flumes (called grooves in [Lib6]) that form
on both sides of a ridge.

Fig. 5. The crystal at times 820, 863, 1600, 4044, 5500, 7099, and 9500.

The small indentation that emerges, due to lower vapor density, in the middle of each prism
facet at time 5500, has appeared several times before. However, this is the first instance when
the growth is unable to repair it. Instead, the growth there virtually stops, while the six main
arms continue to grow and eventually produce two types of side branches: common, relatively
thick double-plated branches that we call sandwich plates, and more unusual thin plates with
their own ridges. The tip of each arm assumes its characteristic shape by the final frame of
Fig. 5.

Fig. 6. Oblique and side views of the crystal from a different initial state.
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It is perhaps surprising how dramatically this scenario depends on the initial (micron scale)
state. Keeping everything else the same, we change the initial prism to one with radius 2 and
thickness 3. The previous rather complex and aesthetically pleasing evolution is replaced by a
growing double plate (Fig. 6). (Remarkably, even adding a small drift does not help matters
much.) This dichotomy arises frequently in our model — within a neighborhood of the parameter
space that produces planar crystals there are two stable attractors: one with outside ridges and
the other a split plate with ridges on the inside. As much of the literature points out, split plates
are extremely common in physical crystals (cf. [Iwal]).

Finally, let us experiment with changing the density p. We exhibit five crystals, each with
the canonical initial condition and all other parameters of the prototype unchanged, but at
different densities and different final times. Dramatically lower density does promote faceting
([Lib6, LR]), but a moderate perturbation seems to mainly promote slower growth, without a
change in morphology.

Fig. 7. At density p = .15, the side branches have particularly well-defined ridges.
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Fig. 8. At density p = .09, the flumes are well-delineated.

Fig. 9. Density p = .05 results in sectored plates.

16
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Fig. 10. Density p = .045 results in sectored branches.

Fig. 11. Density p = .4 results in sandwich plates with inner ridges.

The example in Fig. 11 (pictured at time 120000) never undergoes the branching instability
illustrated in Fig. 5, although it does develop fairly standard ridges that persist until about time
40000. This is the time shown in the first frame of Fig. 12; subsequent frames show the evolution
in time increments of 10000. We observe that a completely different sandwich instability takes
place: first the tips and then the sides of the snowfake thicken and develop sandwich plates. It is
also clear from the time sequence that this morphological change is accompanied by a significant
slowdown in growth. We should emphasize that this slowdown is not due to the depletion of mass
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on a finite system: much larger systems give rise to the same sandwich instability well before
the edge density diminishes significantly. Neither is this slowdown accompanied by a significant
growth in the Z-direction — in the period depicted, the radius in the Z-direction increases from
6 to 7, whereas the radius in the T-direction increases from 67 to 87. Instead, much of the
growth fills space between the ridges, the remnants of which end up almost completely below
the surface.

Fig. 12. The crystal of Fig. 11 at earlier times.

Note that the snowfake of Fig. 10 is also experiencing the sandwich instability at about
the capture time. The difference in that case is that the growing crystal also experienced the
branching instability earlier in its development.

8 Case study 72 : classic dendrites

Fig. 13. p = .105 : a fern dendrite.

For this series of snowfakes, g1 = 1.6, B190 = P20 = 1.5, f11 = 1.4, B30 = P21 = B31 = 1,
k = .1, all p = .008, ¢ = 0, and growth starts from the canonical initial state. We will
again look at how morphology is affected by different vapor densities p. The simulations argue
persuasively that the frequency of side branches decreases with decreasing p. When p = .105,
the branches are so dense that the crystal is rightly called a fern, while the examples with p = .1
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and p = .095 have the classic look of winter iconography. These are our largest crystals, with
radii around 400. A more substantial decrease in p eliminates any significant side branching on
this scale, resulting in a simple star for p = .09. As should be expected from Section 7, further
decrease finally produces a sandwich instability at the tips, resulting in thick double plates.
In this instance, slow growth at the branch tips is accompanied by significant fattening in the
Z-direction.

Fig. 14. p = .1 : a classic dendrite.

Fig. 15. p = .095 : fewer side branches.
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Fig. 16. p = .09 : no significant side branches on this scale.

Fig. 17. p = .082 : the tip undergoes a sandwich instability.

The crystal in Fig. 17 is captured at about time 60000. The series of close-ups in Fig. 18
provides another illustration of the sandwich instability — snapshots of the same snowfake are
shown at time intervals of 1000, starting from time 37000.

Fig. 18. Close-up of the sandwich instability at p = .082.
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Our final example, with p = .081, demonstrates that a further decrease in density makes the
crystal increasingly three-dimensional.

Fig. 19. Fattening from the tip inward at p = .081.

9 Case study i1z : sandwich plates

When growth in the Z-direction is much slower than in the xy-plane, outer ridges never develop.
Instead, the dynamics grows a featureless prism, which, when sufficiently thick, undergoes a
sandwich instability producing inner ridges. Much later the crystal experiences the branching
instability, with plate-like branches that bear a superficial resemblance to Packard snowflakes
[Pac, GG2] during early stages.

Throughout the evolution the external surface of the crystal has few markings, whereas inside
features include ridges and ribs, which signify gradual thinning of the plates from the center
outward before the branching instability.

The sole surface designs are reverse shapes, which occur when the crystal grows in the Z-
direction from buds that arise close to the tips. These macrostep nuclei result in rapid growth of
a single layer in the T-direction until this layer outlines a nearly circular hole near the crystal’s
center; the hole then proceeds to shrink much more slowly.

We note that this observation provides a convincing explanation for the circular markings
seen on many snow crystal photographs [Lib6, LR]. It also suggests that ribs are predomi-
nantly inner structures. While outer ribs could occur due to instabilities or changing conditions
(cf. Fig. 11), there is scant evidence of them in electron microscope photographs [EMP], which
completely obscure inner structure. On the other hand, those photos reveal an abundance of
sandwich plates, which appear as the crystal centers, at the tips of the six main arms, and as
side branches.

We now present two examples. Both start from the canonical seed. In the first, depicted in
Fig. 20, Bo1 = 6, B0 = P20 = 2.5, 11 = 2, and the remaining (’s are 1. All k’s are .1, except
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that kg1 = .5, p = .0001, and p = .08. The final radius of the crystal at the capture time 100000
is about 150. Note that the main ridge is interrupted: while initially it connects the two plates
(and it has darker color in the ray-traced image as the background can be seen through it), it
later splits and each plate has its own ridge. There is a suggestion of this phenomenon in real
crystals (e.g., on p. 26 of [Lib6]).

Fig. 20. A sandwich plate.

Our second example (Figs. 21 and 22) has interrupted main ridges and a few ribs. The
parameter set now has Gg1 = 6.5, B19 = P20 = 2.7, and p = .15. The remaining values are as
before, and the final sizes (this one at ¢ = 36100) are comparable. We provide a few intermediate
stages and a detail of the inner structure. Observe the buds at times 25883 and 31671; also note
that the outermost rib at time 19000 later disappears.

Fig. 21. Another sandwich plate.
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Fig. 22. The plate of Fig. 21 at ¢ = 19000, 25883, 25900, 25950, 26000, 31671. The detail is
from the first time, obtained by cutting the crystal along the plane z = 0 and zooming in on
the bottom half of the upper portion.

10 Case study v: the roles of drift and melting

From some of the electron micrographs at [EMP], it appears possible that the basal facets may
have ridges and other markings on one side only, while the other side is nearly featureless. As
far as we are aware, no attempt has been made to “turn over” these specimens and confirm
the asymmetry, but [NK, Nel] offer a theoretical explanation. They suggest that the one-sided
structure is a consequence of early growth and that ridges are actually vestiges of the skeleton
of hollow prisms such as Fig. 31 in Section 11 (see Fig. 3 of [Nel]). In fact, it is widely held that
the micron-scale prism from which a prototypical snowflake evolves develops slight asymmetries
in the radii of its two basal facets, and that the larger facet acquires an increasing advantage
from the feedback effect of diffusion-limited growth. As a result many crystals have a stunted
hexagonal plate at their center. In [Nak] this effect is described on p. 206 and in sketch 15 of
Fig. 369.

Another potential source of asymmetry in the Z-direction is identified in Section 3.5 of [Iwal]
and on p. 18 of [ TEWF], based on cloud tunnel experiments in the laboratory. Planar snowflakes
evidently assume a preferred orientation parallel to the ground as they slowly fall, resulting in
a small upward drift of the diffusion field relative to the crystal.

We emulate these aspects of asymmetric growth by means of the drift ¢ in step (1c) of
our algorithm and asymmetry of the initial seed as mentioned in Section 3. Consider first the
snowfake of Fig. 1 and the closely related sectored plate in Fig. 23. The former starts from
our fundamental prism and never undergoes the sandwich instability, but develops ridges on
the bottom side and an almost featureless top due to the presence of ¢ = .01. The dynamic
parameters of the sectored plate below are identical, but growth starts from a mesoscopic prism
that is 5 cells high, with radius 7 at the top and 3 at the bottom. The idea here is to mimic
the situation where the upper basal plate has established an advantage over the lower basal
plate early in the evolution. As is clear from the side view, in contrast to Fig. 6, growth of
the lower facet stops completely due to diffusion limitation even though the small drift offers
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a slight advantage in the early stages. (According to [Iwa], falling snowflakes prefer the more
aerodynamically stable orientation of Fig. 23.) Very many photos of physical snow crystals
show evidence of such a stunted simple plate at the center; see [Lib6], pp. 75-76, for further
discussion.

Fig. 23. A sectored plate with a stunted double, from the top (left) and side (right).

Fig. 24. A fern dendrite for p19 = pgo = .005.

The remaining examples of this section also start from slightly asymmetric seeds, experience
a small drift, and have almost all their external markings on one side. Our goal is to explore
the role of the melting rate, in much the same way we studied density dependence in Section
7, by varying p in a series of snowfakes with all other parameters held fixed. In each instance,
the seed has height 3, lower radius 2, and upper radius 1. For the next four crystals, Gyp; = 3,
Bro=00=p11=14,030=01=031=1,k=.1, ¢ = .01, and p = .14. Moreover pg; = .002,
3o = p11 = po1 = p31 = .001 and we vary only the common value of 19 = pog. This value
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governs the speed of tips and — as explained in Section 5 — has more effect in regions of low
density, so an increase inhibits side branching.

Like the sectored plates just discussed, these are relatively rare snowfakes with outside ridges
on the main arms and most side branches. All our modeling experience suggests that crystal
tips tend to symmetrize with respect to the T-direction, managing to avoid the sandwich in-
stability only under quite special environmental conditions. We have seen little evidence in our
simulations for the mechanism of ridge formation proposed in [NK, Nel|, so we feel that drift
is a more likely explanation of one-sided structures in snowflakes.

Fig. 25. Reduced side branching for p19 = pog = .008.

Fig. 26. Further reduction in the number of side branches for p19 = p2g = .009.
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Starting with the classic fern of Fig. 24, the common prism facet melting threshold pu1g = pog
is gradually increased to twice the original value in Figs. 25-7. Stellar dendrites with fewer and
fewer side branches result, until the final snowfake has only a few short sandwich plates on the
sides of each arm.

Fig. 27. When pi19 = pag = .01, very few side branches remain.

The final example of this section is a classic simple star, a crystal with no side branches at all
and a characteristic parabolic shape to its tips (cf. [Lib6], p. 57 bottom). This elegant snowfake
required considerable tweaking of parameters; they are: [Bo; = 3.1, B0 = 1.05, B0 = 1.03,
P11 = 1.04, B3p = 1.02, B2y = 1.01, B3y = 1, K = .01, po1 = pzo = p11 = po1 = p31 = .01,
H10 = H20 = .03, gb = .005, and p = .16.

Fig. 28. A simple star.



11 CASE STUDY V : NEEDLES AND COLUMNS 27

11 Case study v : needles and columns

Let us now turn to the common but less familiar snow crystals that expand primarily in the Z-
direction. As one would expect, these have (3p; small compared to 819 and (29, but surprisingly
small advantage often suffices. We offer three snowfakes that emulate their physical counterparts
quite well. All start from the canonical seed. Our first example, with a substantial bias toward
attachment on the basal facets, is a (simple) needle. In Fig. 29, Bo1 = 2, (10 = P20 = P11 = 4,
B30 =01 =031 =1,k =.1, u=.001, ¢ =0, and p = .1. This snowfake reproduces structure
observed in nature and the laboratory: slender hollow tubes, often with cable-like protuberances
at the ends (cf. Fig. 135 of [Nak], pp. 67-68 of [Lib6]).

i
i

Fig. 29. A needle.

Fig. 30. A hollow column.
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Next, Fig. 30 simulates the common type of snow crystal known as a hollow column. Here
the bias toward attachment on the basal facets is not as pronounced. The parameter set is:
Bor =1, fio =P20 =203 =P =0 =501=1r=.1, p=.01,¢=0and p = .1.
Evidently, the hole starts developing early on. See pp. 64—66 of [Lib6]) for photos of actual
hollow columns and a qualitative description of their growth.

The final example of this section is a column whose facets are hollow as well. The morphology
of Fig. 31 occurs when the rates of expansion in the two directions are not very different. Photos
and a description of this sort of snowflake appear on pp. 35-37 of [Lib6]|. Here [y = 1.5,
Pro=pP0=16pB11=00=P01=01=1,k=.1,u=.015¢=0,and p=.1.

Fig. 31. A column with hollow prism facets.

12 Case study vi : change of environment

In his pioneering research, Nakaya [Nak] reproduced several of the most striking types found in
nature by subjecting the cold chamber in his lab to a precisely controlled schedule of temperature
and humidity changes, either sudden or gradual. Based on such experiments, he argued that
plates with dendritic extensions, for example, are formed when a snowflake’s early growth occurs
in the upper atmosphere and then it drops to another layer more conducive to branching ([Nak],
p. 16).

In this section we mimic such varying environments by consider the effect of an abrupt change
of parameters on some of our previous snowfakes. Let us begin with two examples of the type
cited in the last paragraph: plates with dendritic extensions. Both start from a prism that is
3 cells high with radius 2 at the top and 1 at the bottom. The first stage for both is a simple
plate similar to the snowfake of Fig. 1, but with a delayed branching instability. The initial
parameters are: [Gg1 = 3.5, 10 = [oo = P11 = 2.25, B30 = P21 = P31 = 1, k = .005, p = .001,
¢ = .01, and p = .12. The first stage runs until time 8000 in the first example, and until time
12500 in the second. At that time most parameters remain the same, but in order to promote
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branching we change 819 = f20 = (11 to 1.15 (resp. 1.4) and pi19 = p2o to .006 (resp. 004).
The results, once the two snowfakes have reached a radius of 200 cells, are shown in Figs. 32-3.
Predictably, the first example has more branching in its dendritic phase since the prism facet
attachment threshold is lower. The large image on the cover of [Lib6] shows a beautiful natural
example of this type.

Fig. 32. A plate with fern extensions.

Fig. 33. A plate with dendrite extensions.

A hybrid evolution at the opposite end of the spectrum is described in [Lib6], pp. 51—
53, and many of the most striking snowflakes in [LR] are of this type. As presumably in
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nature, conditions need to be just right for the corresponding snowfake to evolve. In this
vein, we present three snowfakes that begin as stellar dendrites with minimal branching and
later encounter an environment promoting plates. All start from a prism of height 5 with top
radius 6 and bottom radius 2. The first stage runs the simple star dynamics of Fig. 28 until
time 4000, 3000, or 2000, respectively. Then new parameters for the three experiments with
higher attachment thresholds are run until time, respectively, 24000, 20000, and close to 20000.
Common parameters are: O30 = 031 = 1, kK = .1, p = .16. In Fig. 34, the remaining parameters
are Bo1 = 3.0, Bio = P20 = 2.2, B11 = 2.0, Bo1 = 1.1, p = .01, ¢ = .005. Note that in this
instance the branches of the star broaden considerably after the change of environment, and the
tips form sandwich plates.

Fig. 35. A broad-branched stellar crystal with sectored-plate extensions.
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By raising the attachment thresholds somewhat we avoid the sandwich instability and obtain
instead the sectored-plate extensions with outside ridges seen in Fig. 35. Here g1 = 3.5,
Bro = Pao = 2.45, 11 = 2.25, o1 = 1.1, pig = poo = .002, u = .001 otherwise, ¢ = .015.

Our final broad-branched example interpolates between the previous two. The values of 3
are large enough to avoid the sandwich instability, but small enough that side branching leads
to sectored plate structure of the extensions. Here [y; = 3.0, Big = B20 = 2.25, B11 = 2.05,
Bo1 = 1.05, u = .001, ¢ = .015.

Fig. 36. Another broad-branched stellar crystal.

We conclude this case study with two crystals that combine a three-dimensional column
and two-dimensional plates. These are the tsuzumsi, or capped columns, described on pp. 69—
74 of [Lib6]. They are thought to arise when crystals are transported to higher and colder
regions of the atmosphere by a passing storm. Without a preferred orientation, it is most
reasonable to model these as driftless. Both our snowfakes use the canonical seed and evolve
with the parameters for the hollow column of Fig. 30 until time 20000. Then they run with
new parameters that promote planar growth, until time 80000 for the first example, 60000 for
the second. Common values for the two examples are: Bg1 = 5, O30 = P21 = O31 = 1, k = .1,
u=.001, ¢ =0, and p = .1. The difference is the common value 819 = P29 = S11, which is
2.4 in Fig. 37, and 2.1 in Fig. 38. Higher attachment thresholds delay the branching instability
in the first capped column so the caps are simple plates, as opposed to sectored plates in the
second.

The transition period from column to cap in lab tsuzumi is described in some detail by
Nakaya ([Nak], p. 221; see also the sketch on p. 222). We remark that our snowfake versions
evolve in the same way. Namely, for a considerable time after the change of environment,
outward growth occurs almost exclusively along the 18 edges of the hexagonal column. This is
a diffusion-limited effect similar to the hollowing in Fig. 31. Then, rather suddenly, growth in
the T-direction takes over.
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Fig. 38. A column capped with sectored plates.

13 Case study vii : eccentric crystals

This last section features snowfakes that result from a careful search through parameter space
and are quite sensitive to any change. They are close-to-critical, near the phase boundary
between dominant growth in the Z-direction and the T-direction. Consequently they may be
rare in nature, though variants of some of the forms have been observed, and even represent
morphological types in the Magono-Lee classification [ML]. All our final examples start from
the canonical seed.
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As mentioned in Section 2, starting from a single cell our algorithm has a strong tendency
to grow rapidly in the Z-direction due to the immediate onset of a needle instability. Even
if the initial mesoscopic prism is wider in the T-direction, it is still quite common for this
instability to arise later on if the dynamics are close to critical. After an initial phase of typical
planar growth, needles suddenly nucleate at concentric locations scattered over the central plate
or arms. Fig. 137 of [Nak| shows an excellent example of this type in nature, and our first
two examples illustrate a similar phenomenon in our model. The conventional explanation for
such hybrid types, called stellar crystals with needles in [ML], involves a sudden change in the
environment, but this is one of several cases where our algorithm suggests that homogeneous
conditions can sometimes produce the same effect.

Fig. 39 has features like a classic planar snowflake that has developed rime from attachment
of surrounding water droplets. In fact these protrusions are potential needle instabilities — the
two symmetric rings close to the center and the tips are stunted needles, whereas the intermediate
needles have successfully nucleated. The parameters of this snowfake are: (yp; = 1.58, B19 =
Bog =011 =15, 83 =01 =01=1,k=.1, u=.006, 9 =0 and p = .1. Partial symmetry
of bumps in many natural crystals, statistically unlikely to be the result of rime, often indicates
vestiges of rims and ribs after sublimation, but can also be due to nascent needles, as in the
middle specimen of Plate 116 in [Nak]. Since the locations where needles nucleate are quite
sensitive to changes in parameters, residual randomness in the mesoscopic dynamics is apt to
degrade the symmetry.

Fig. 39. A stellar dendrite with stunted and nucleating needles.

The next three examples have § = 1, p = .03, K19 = Koo = .1, K30 = .05, and K11 = K91 =
k31 = .01. The remaining parameters for Fig. 40 are x9; = .11 and p = .06. This snowfake is a
rather extreme instance of a stellar crystal with needles in which the planar portion is a thick
but very narrow simple star.
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Fig. 40. A simple star with needles.

Our next two examples seem never to have been seen at all, and it is clear why: even if
they managed to grow, their thin plates would be extremely brittle and susceptible to random
fluctuations. They are characterized by very small differences in the growth rates. After starting
as planar crystals, they suddenly nucleate thin structures extending into the third dimension.
In Fig. 41 ko1 = .12 and p = .057; in Fig. 42 ko1 = .116 and p = .06. For obvious reasons, we
call these butterflakes. They are idealizations of the stellar crystals with spatial plates in [ML];
chaotic snow crystals with thin plates growing every which way are relatively common.

Fig. 41. A butterflake with wings in the directions of the main arms.
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Fig. 42. A butterflake with side wings.

We conclude the paper with a family of five related examples. The first is a common sandwich
plate (cf. p. 44, lower right, in [Lib6]) with parameter values Gy; = 1.41, Bi190 = [20 = 1.2
fr1=Ps30 =021 =03 =1 k=.1, u=.025 ¢ =0, and p = .09.

Fig. 43. A sandwich plate with broad branches.

The remaining four are minor perturbations, which nevertheless look quite different. Namely,
even though their model parameters are constant over time, they undergo “exploding tips” quite
similar to crystals such as the one in Fig. 35 that results from inhomogeneous environmental
conditions. The principle behind all four variants is the same: eventually, the growing tip thick-
ens and slows down considerably. Usually this happens close to the beginning of the evolution
(as, in fact, occurred in the dynamics leading to Fig. 43), so the snowfake is unremarkable. But
with some experimentation we find cases when the onset of the sandwich instability is delayed
and the final picture can be quite dramatic. The complex inner patterns are the result of ex-
traordinarily intricate dynamics. Parameter values that differ from those of Fig. 43 are given in
the captions.
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13 CASE STUDY VII : ECCENTRIC CRYSTALS
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Fig. 47. Perturbed parameter: [By; = 1.25.

14 Summary and conclusions

We have presented a simple model of snow crystal growth that is based on a few physically
reasonable assumptions: a strong convexifying force up to pm size, diffusion of water molecules
off the crystal, exchange between attached and unattached molecules at the boundary, and non-
isotropic attachment rates that favor concave parts of the boundary over convex ones. The
variety of observed phenomena we are able to replicate strongly suggests that these are the
most important ingredients for the formation of physical snow crystals. Below we list further
conclusions from our experiments. We are confident they hold valid for our mathematical model,
but it remains to be seen to what extent they can be verified in the lab or in nature.

e In predominantly two-dimensional crystals, the velocity of expansion in the prism direction
does not need to be much larger than the one in the basal direction. In Section 8, for
example, this difference is less than 7%.

e The range of motion of a snow crystal has to be quite limited during most of its growth,
on the order of its final size. This motion is roughly equivalent to a small drift of water
vapor, which can affect the distribution of markings on the basal facets of the crystal but
otherwise has a limited effect on morphology. However, drift, along with early random
fluctuations, appears to play an important role in the evolution of double plates in the
case where one of them is stunted.

e Many, perhaps the majority of simple snow crystals are sandwich plates: two thin plates
with ridges, ribs and other markings between them. These are the result of a newly
identified sandwich instability that can occur either early in the evolution, or after the
crystal has reached a sizable diameter, perhaps even 100um or more. The latter scenario
may create the illusion of a sudden change in vapor density, temperature, or pressure.
The sole surface markings of sandwich plates are circular reverse shapes resulting from
nucleation near the tips.
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e Markings do appear on the surface (rather than between sandwich plates) of predominantly
planar snowfakes for a very narrow range of parameters, suggesting that the most attractive
snow crystals occur near a phase boundary. We are nevertheless able to replicate commonly
observed phenomena such as ridges, flumes, and side branches with and without markings.

e Changes in environmental conditions do result in changes in morphology. These correspond
well to experimental results for synthetic snow crystals [Lib5].

e In dendritic crystals, lower vapor density first leads to lower frequency of side branches,
then to sandwich instabilities and relatively thick plates.

e The melting rate regulates the ability of attached molecules at the boundary to detach. In-
creasing this rate is another mechanism to reduce side-branching, arguably more important
than reduced density.

e Three dimensional structures such as needles and columns are generically hollow, and form
easily when growth in the basal direction is much preferred. Prism faces of such crystals
also become hollow as this preference is diminished.

e Very interesting and completely new phenomena occur in our snowfake experiments when
the preference for growth in the prism direction is only slight. These include the needle
instability (nucleation of thin needles that grow in the basal direction), butterflake insta-
bility (thin plates that grow orthogonally to the main plane of growth), and exploding tips
(dramatic widening of a star-like crystal’s tips). Evidence for physical relevance of such
eccentric dynamics is inconclusive.
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