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2Since every site changes state at most once, there exists a limiting con�guration �1, whichassigns to every site x its �nal state �1(x).The standard bootstrap percolation rule is obtained by taking q = 0. It has been exten-sively studied, together with various related models (see ref. 1 for a nice survey). One ofthe fundamental properties of this case is that there is no phase transition: �1 � 1 for everyp > 0(14);(15);(16) . Many researchers have thus focused on studying the phase transition proper-ties of �nite systems(2);(11);(12), on metastability issues of in�nite systems(2);(7), and on rates ofconvergence towards occupancy(3);(4) . One important result(2) is that the bootstrap percolationrule on a large L� L square experiences a phase transition from very sparse �nal occupancy tofull �nal occupancy as p lnL changes from small to large. Our aim is to demonstrate that BPPEon the entire Z2 provides another natural context in which the bootstrap percolation dynamicsexperience a similar phase change, this time as q=p2 changes from large to small. To makethis more precise, we say that a set S � Z2 percolates if there exists an in�nite self{avoidingnearest{neighbor path contained in S. Then we de�ne, for every �xed q > 0,pc(q) = supfp : f�1 = 1g does not percolateg:We now state our main result.Theorem 1.1. There exists �nite positive constants c1 and c2 so that(1) If q < c1p2, then P (�1(x) = 1)! 1 as p! 0,(2) If q > c2p2, then P (�1(x) = 1)! 0 as p! 0.(3) c�1=22 � lim infq!0 q�1=2pc(q) � lim supq!0 q�1=2pc(q) � c�1=21 .Theorem 1.1 quanti�es how sensitive the bootstrap percolation rule is to the pollution ofspace by 2's. Assume that the density q of removed sites is �xed, and very low but positive,while p is the varying parameter. Then �1 is very far from total occupancy if p is relativelysmall; in fact �1 consists almost entirely of 0's if p is smaller than a constant times pq. On theother hand, the system hardly feels the pollution when p is larger than another constant timespq. We call the latter regime supercritical and the former subcritical . As the described phasetransition happens when p is on the order of pq, it should be readily detectable even for smallvalues of q, although appropriate simulations require huge arrays (of exponential size in 1=p)due to rare nucleation.We suspect that there exists a number c so that, for every � > 0, (1), (2) and (3) in Theorem1.1 hold with c1 = c � � and c2 = c + �. Proving this rigorously seems to be beyond ourcurrent techniques. Neither have we done enough statistical analysis of simulations to con�dently



3conjecture a precise value of c. However, Figure 1 does provide a \critical" picture of a 150�120system with 1 boundary conditions (which are chosen to sidestep nucleation issues). (Grey pixelsrepresent color 1, while black pixels represent color 2.) In the simulation, q = 0:01 was keptconstant, and p = 0:0238 was the largest density for which the �nal percentage of occupied siteswas below 1/2. While the size of this simulation is much too small to give a good estimate forc, it does illustrate how growth of 1's is stopped by 2's: the boundary of the �nal \frame" of 1'sis what we later call a blocking loop. It is not hard to �nd a mean �eld model for existence oflong blocking loops (see (3.1)), which gives an idea about where the q=p2 scaling comes from.
Figure 1. A �xated state of the BPPE dynamics.To provide an even more transparent explanation, we now give a simple argument whichshows that, for any � > 0, q < p2+� implies that P (�1(x) = 1) converges to 1 as p ! 0. LetN = b1=p1+�=3c, and call x 2 Z2 N{good if the (2N + 1) � (2N + 1) square Sx centered at(2N + 1)x contains no 2 and at least one 1 in each of its rows and columns. Let C be theconnected component of N{good sites which includes the origin and G the event that C includesa site x for which all sites in Sx are initially in the state 1. Then note that P (x is not N{good)� (2N +1)2q+2(2N +1)e�(2N+1)p ! 0 as p! 0. Therefore P (C is in�nite) converges to1. However, P (G) � P (C is in�nite) and G � f�1(0) = 1g (since 1's from the square �lled withthem spread to Sx for all x 2 C), thus P (�1(0) = 1) also converges to 1.In conclusion, we briey comment on two closely related models. The �rst one is usuallycalled the modi�ed bootstrap rule, and is de�ned by replacing (BPPE2) with(BPPE2') If �t(x) = 0, and there exist y1 and y2 so that jjx � y1jj1 = jjx � y2jj1 = jjy1 �y2jj1 = 1 and �t(y1) = �t(y2) = 1, then �t+1(x) = 1.



4 Since it is harder for 1's to grow in this case, a su�cient condition for the subcritical regimeis given by Theorem 1.1 (2). However, the methods from Section 2 do not apply so we have torely on the more robust argument in the previous paragraph to get a su�cient condition for thesupercritical regime. We suspect, but are currently unable to prove, that in this case the scalingdi�ers from q=p2 by a logarithmic correction.Although BPPE is interesting in its own right, our interest in it was sparked by our previouswork in competition of growth models(8) . A version of multitype threshold voter model (MTVM)�0t on state space f0; 1; 2gZ2 can be de�ned by making the rules (MTVM1) and (MTVM3)identical to (BPPE1) and (BPPE3) respectively, and(MTVM2) If �0t(x) = 0, and there exist a unique k 2 f1; 2g such that that there are y1 6= y2with jjx� y1jj1 = jjx� y2jj1 = 1, and �0t(y1) = �0t(y2) = k, then �0t+1(x) = k.The two non{zero colors of MTVM hence grow over 0's using the bootstrap percolation ruleand their competition leads to a stando� wherever they meet. Assume that the 1's and 2's starto� equally matched: the initial state is a product measure with P (�00(x) = 1) = P (�00(x) = 2) = pfor some small p > 0. In refs. 7 and 8, we have studied supercritical growth models extensively;we have shown that they have no trouble overcoming a low density of removed sites, and thatcompetition between them results in a tessellation of the available space. By contrast, the growthmodel studied here is critical ; although it shares some features of the supercritical ones, namelyrare nucleation and asymptotic shape(9);(10) , the results from ref. 8 fail to hold as testi�ed byTheorem 1.1 and its consequences, one of which is stated below.Corollary 1.2. As p! 0, P (�01(x) 6= 0)! 0.The rest of this paper contains the proof of Theorem 1.1. In Section 2 we prove (1) and theupper bound in (3), while Section 3 establishes the remaining bounds.2. THE SUPERCRITICAL REGIMEIn this section we assume that q = c1p2 for a very small c1. By obvious monotonicity, theresults will hold for all smaller q. We want to establish that 1's in the �nal state �1 havea very high density and percolate. To this end, it is necessary to identify the type of pathwhich can block the growth of a cluster of 1's. We call a loop a self{avoiding sequence of sites` : x0; x1; x2; : : : ; xn = x0 such that jjxi � xi�1jj1 = 1, i = 1; : : : ; n. Naturally, n will becalled the length of such loop, and we assume that xi are numbered so that we travel on it inthe counterclockwise direction. For technical reasons we will call a loop also a doubly in�nitesequence : : : ; x�1; x0; x1; : : : with some arbitrary choice of direction. The fattened loop fat(`)is obtained by adding a site to the right of the loop at every diagonal move: if jjxi+1 � xijj1 =



52, add y to the right of the loop with jjy � xijj1 = jjy � xi+1jj1 = 1 and expand the loopto : : : ; xi; y; xi+1; : : : A fattened loop hence ends up making no diagonal moves, but may nolonger be self{avoiding. A thick loop is a sequence of sites ` : x0; x1; x2; : : : ; xn = x0 suchthat jjxi � xi�1jj1 = 1, i = 1; : : : ; n and is such that makes no U-turns, i.e. xi 6= xi+2 fori = 0; : : : ; n� 2. We also require that a thick loop never crosses itself, although it can retrace apart of itself once (that is, some sites can be visited twice).Case 1. 1 � ( �" .1 �2 1 Case 7. 1 ( �2+ .�2 1.� 1Case 2. � ( � ( �- .1 �2 1 Case 8. � ( �+ .� 1#� 1Case 3. �2 ( 1 ( �2- .1 �2 1 Case 9. 1 ( �2+ .�2 1#� 1Case 4. � ( �2+ .�  �2 11 1 Case 10. � ( �+ .� 1& �Case 5. 1 ( �2+ .�  �2 11 1 Case 11. 1 ( �2+ .�2 1& �Case 6. � ( �+ .�2 1.� 1Figure 2. Eliminating diagonal turns of `.



6 A left (resp. right) blocking loop `0 is a thick loop such that(BL1) All sites on `0 which are 1 at time t = 0 are preceded by a 2 and succeeded by a2.(BL2) If `0 makes a left turn (resp. a right turn) at xi, i.e. xi+1�xi is a 90 degree (resp.a -90 degree) rotation of xi � xi�1, then there is a site y such that �0(y) = 2 andjjxi � yjj1 � 1.(BL3) All the 2's used in (BL2) are used only once; that is, there is a one to oneassignment of described sites y to every left turn (resp. right turn).We start with two geometric lemmas.Lemma 2.1. Assume that �0(x) = 1, and that the connected component of x in f�1 = 1g doesnot percolate. Then there exists a �nite right blocking loop surrounding x.Proof. Start by the loop ` which consists entirely of 0's and 2's in �1, includes x in its interior,is minimal with respect to the set of sites it contains inside, and is also of minimal length.Then arbitrarily pick a �rst site on ` and proceed to successively eliminate diagonal turns in thedirection of the loop. In this process, we may encounter one of the 11 cases, depicted in Figure2. The diagonal move to be eliminated is drawn, and all possible next moves. The symbol �denotes sites on the loop ` and the single arrows indicate the direction of `. The double arrowsindicate the direction of fat(`). Those sites which are labeled by a number must be in a speci�edstate in �1, and � indicates that a site can either be a 0 or a 2. For example, in Case 1, thethree 1's are there because the number of sites inside ` cannot be reduced, and this forces a 2between the two 1's. (Note how this argument breaks for the modi�ed bootstrap rule down inCases 1 and 2.) Right turns may be created by this procedure, but in every case there is a 2su�ciently close to satisfy (BL2). Also, as we can see from Cases 3, 5, 7, 9 and 11, (BL1) issatis�ed.Furthermore, in the case ` itself makes a right turn, the local con�guration must be as inFigure 3. �"1 �2  �1 � -1 �2  �1Figure 3. Right turns of `.



7The elimination of diagonal turns may result in creating a non{self avoiding loop. Even more,a U{turn may be created in the three cases depicted in Figure 4 (other cases are rotation ormirror images of these).� �- #1 �2 1 � �- .1 �2 1 1 � �% .�2 �1Figure 4. Local con�gurations at U{turns.In these cases, we just throw away the \dangling end" in the loop. Again, a right turn maybe created this way, but in all such cases again there is a 2 su�ciently close. Finally, (BL3) isclearly satis�ed. �We omit the similar proof of the next lemma.Lemma 2.2. Assume that f�1 = 1g percolates and that �1(x) = 0. Then either there existsa �nite left blocking loop around x or there exists an in�nite blocking loop somewhere in Z2.From now on, we denote by C the \generic constant," a positive number whose value is notimportant and changes from one appearance to another. We will also assume, without loss ofgenerality, that 1=p is an even integer.Lemma 2.3. For all N � p�3, P (there exists a right blocking loop surrounding 0 and containedoutside [�N;N ]2) � e�CpN .Proof. Assume that a right blocking loop `0 surrounding 0 and contained outside [�N;N ]2 exists.Now let r be the number of right turns this loop makes. Then it must make r+4 left turns (sinceit is a loop with winding number 1). We identify the turn by the site at which it is made. Thecost of a right turn is at least 9q. Now take a site on `0 which is at jj � jj1 distance at least 2 fromthe set of right turns of `0. The cost of such a site together with the preceding and succeedingsite is at least 1 � p+ 2q < 1 � p=2. Of course, we have to take into the account the fact thatany such site may be visited twice. Using the fact that, for any � � 0, sup0�k�n �nk��k � e�n,



8we then get that the probability that such an ` exists is bounded above byXn�N n � nXr=0�nr�� nr + 4�9rqr(1� p=2)n=6�25r= Xn�N n � nXr=0�nr�� 9q(1� p=2)25 �r=2� nr + 4�� 9q(1� p=2)25 �(r+4)=2 (9q)�2(1� p=2)n=6+50� Xn�N Cn2q�2e10pqne�pn=12� CN2p�5e�(1�120pc1)pN=12;which ends the proof. �We omit the proof of next lemma, as it is an easy adaptation of the one above.Lemma 2.4. With probability one there are no in�nite blocking loops.Lemma 2.5. The probability that there is a �nite left blocking loop around the origin isbounded above by Cp.Proof. Again, if such a loop exists, it must make r right turns and r + 4 left turns for somer � 0. As in the proof of Lemma 2.3, we can bound the probability that such a loop exists byXn�4 n � nXr=0�nr�� nr + 4�9r+4qr+4(1� p=2)n=6�25r�4�Xn�4Cn2q2e(120pq�p)n=12� Cp4Xn�4 n2e�(1�120pc1)pn=12� Cp4 � p�3;which ends the proof. �Proof of (1) and the upper bound in (3) in Theorem 1.1. Let H be the event that �0(x) = 1 forall x 2 [�p�3; p�3]2 and that there is no �nite right blocking loop surrounding the origin. ByLemma 2.3, P (H) > p(2p�3+1)2(1� e�Cp�2 ) > 0. By Lemma 2.1, H � ff�1 = 1g percolatesg.Finally, by the ergodic theorem, P (f�1 = 1g percolates) = 1.Furthermore, by what we have proved so far, and Lemmas 2.2, 2.4 and 2.5, P (�1(x) = 0) �Cp. �



93. THE SUBCRITICAL REGIMEIn this section, we assume that q = c2p2 for a large c2 and demonstrate that, for small enoughp, 1's in �1 have a very low density and do not percolate. Hence we need to show that blockingloops of previous section are quite likely to exist. As is usual in problems of this type, we resortto a comparison with an oriented percolation model. Roughly, the idea is then to use the leftblocking loops to prevent the 1's from reaching a typical site from the outside, and in additionwe make these loops short enough so that the dynamics inside them is unlikely to add many 1's(in this part of the argument, we use methods from ref. 2).To de�ne the percolation model, �x a positive integer a > 0 (which at this point should bethought of as a parameter, although we later set a = 200). As usual, B1(x; r) will stand for thediscrete (2r + 1)� (2r + 1) box centered at x. Call a sequence x0; x1; x2; : : : ; xn an NE{path ifthe following conditions hold:(NEP1) For every i � 0 either xi+1 = xi + e1 or xi+1 = xi + e2.(NEP2) xi+1 = xi + e2 for i = 0; : : : ; a and xi+1 = xi + e1 for i = n� a; : : :n.(NEP3) If xi+1 = xi + e1 and xi = xi�1 + e2 (i = 1; 2; : : :), then �0(xi) = 2.(NEP4) For every i � 0, 1 =2 B1(xi; a).Such path can be either �nite or in�nite. The existence of an in�nite (or a very long) NE{path is equivalent to the survival of the following two{particle oriented percolation model: labelparticles u and r, a u gives birth to another u at the site immediately above, a r gives birth totwo particles: a u immediately above and an r immediately to the right. In addition a u alsogives birth to an r immediately to the right if it happens to be on top of a 2, while both typesof particles die as soon as they come within `1{distance a of a 1. A mean{�eld approximationof such model would be governed by the following linear system(3.1) U 0 = �(2a+ 1)2pU + R;R0 = qU � (2a+ 1)2pR:In this system, U and R both converge to in�nity as time progresses as soon as q > (2a+1)4p2.As usual in proving survival of interacting particle systems, an appropriate rescaling argumentwill be a decisive step in completing the proof of Theorem 1.1; this is the key point in the proof ofour next lemma. In its statement, x0 is the point (12p�2; 0), y0 is the point (p�11; 34p�11� 12p�2),S is the convex hull of the 4 points: (0; 0), p�2e1, y0 + p�2e2 and y0, and its interior inter(S)are those points in S without any nearest neighbors outside S.Lemma 3.1. The probability that there exist a NE{path connecting x0 and y0 which is, apartfrom x0 and y0, entirely included in inter(S) is at least Cp2.



10Proof. Fix a small � > 0 and let L = b�=pc. We will call a site x 2 Z2 a rescaled open site if:(ROS) There exists a site z 2 [Lx + ae2; Lx + (L � 1 � a)e2] and a sequence of sitesx0; x1; : : : ; xn = z so that (NEP1), (NEP2) and (NEP3) hold, and 1 =2 B1(xi; a)for i = 0; : : : ; n� a.Claim. Fix an � > 0. Then � can be chosen small enough, and then c2 large enough so thatthe conditional probability P (both x+ e1 and x+ e1+ e2 are rescaled open sites jx is a rescaledopen site) � 1� �.To prove the Claim, let z 2 [Lx + ae2; Lx+ (L � 1 � a)e2] be a site which satis�es (ROS).Notice that the condition does not involve sites with �rst coordinate larger that that of Lx.Therefore, we can make sure that x+ e1 is a rescaled open site simply by demanding that thereis no 1 in [Lj=0 �B1(z + je1; a) \ (Lx+ [0; L]2) �. This happens with probability at least 1��=4if � is small enough. Let zk = z+ k(2a+1)e1, k = 1; : : : ; bL=(2a+ 1)c. and let Hk be the eventthat there are no 1's in [zk; zk + 2Le2] + B1(0; a). Again, if � is small enough, P (Hk) � 3=4,and Hk are independent so that the probability that more than L=(3a) of them happen is atleast 1� �=4 for small p. Let K be the random set of indices k such that Hk happens. Let H 0kbe the event that there is a 2 in [Lx + k(2a + 1)e1 + (5L=4)e2; Lx + k(2a + 1)e1 + (7L=4)e2],and that Hk happens. If the cardinality of K is at least L=(3a), then there are at least L2=(6a)sites where a 2 would make [k2KH 0k happen. If c2 is large enough, then, P ([k2KH 0k) � 1� �=4.Finally, assume that k0 is the smallest k so that H 0k happens, and assume that a site y 2[Lx+k0(2a+1)e1+(5L=4)e2; Lx+k0(2a+1)e1+(7L=4)e2] has �0(y) = 2. Then the probabilitythat there is no 1 in [Lj=0 �B1(y + je1; a) \ (L(x+ e2) + [0; L]2) � is again at least 1��=4. Thisconstruction makes both x+e1 and x+e1+e2 rescaled open sites with probability at least 1� �and thus proves the Claim above.The Claim essentially says that rescaled open sites form a 1{dependent oriented site per-colation process in which sites are open with probability very close to 1. Now let Sr be theset of all sites x so that Lx + [0; L � 1]2 � S. Moreover, let x0r = (b12p�2=Lc + 1; 0) andy0r = (bp�11=Lc � 2; b(34p�11 � 12p�2)=Lc � 1). Assume that x0r is a rescaled open site. Let Gbe the event that x0r is a rescaled open site and that there exists a sequence of rescaled opensites x0r = w0; w1; : : : ; wm = y0r 2 Sr such that either wi+1 = wi + e1 or wi+1 = wi + e1 + e2for every i = 0; : : : ; m � 1. A standard contour argument along the lines of ref. 5 (see alsoref. 6) then establishes that, for a small enough �, P (G jx0r is a rescaled open site) � 0:5.However, the probability that x0r is a rescaled open site is at least C � P (at least one 2 inx0 + [L=4; 3L=4]e2 � Cp. Finally, conditioned on G, the probability that y0 is connected to x0by a NE{path described in the statement is again at least Cp. This ends the proof. �



11Lemma 3.2. Let Gx be the event that set B1(x; p�11) nB1(x; 18p�11) contains a left blockingloop ` which includes no site in f�0 = 1g+ B1(0; a). Then P (Gx) � 1� e�C=p.Proof. We can assume that x = 0. Take the convex hull of the following 4 points: (12p�11; 0),(p�11; 0), (0; 14p�11), (0; 34p�11), and add its reections across the two axes and across the originto obtain an annular region A. This region can be chopped into Cp�9 concentric annular regionsof width p�2, each of which (by Lemma 3.1) independently contains a left blocking loop withprobability Cp8. �Take a set A � Z2 and �x a realization of �0. Switch all the sites in Ac to 2 and all the 2'sin A to 0. Then run the BPPE dynamics on such a con�guration, and let �(A) be the set ofall sites in A which ever become 1. As in ref. 2, a set A will be called internally spanned if�(A) = A.Lemma 3.3. Let G0x be the event that x =2 �(B1(x; p�11)) and that �(B1(x; p�11)) containsno site outside f�0 = 1g+B1(0; 100). Then P (G0x) � 1� Cp.Proof. Again, assume that x = 0. LetH1 = fthere is an y 2 B1(0; 200) with �0(y) = 1gH2 = fthere exists an internally spanned rectangle inside B1(0; p�11)with its longest side in [50; 100]gIn ref. 2 it is proved that (G00)c � H1 [H2. However, a necessary condition for a rectangle tobe internally spanned is that every second row and every second column must contain at leastone 1, and thereforeP (H2) � Cp�22 � P (at least 25 sites with color 1 on 1002 �xed sites) � Cp3:Moreover, P (H1) � Cp, and these two estimates end the proof. �Proof of (2) and the lower bound in (3) of Theorem 1.1. Let a = 200. Then, if both Gxand G0x happen, no site from the outside of the blocking loop guaranteed by Gx can inuencethe dynamics inside it, but G0x ensures that the dynamics inside it do not occupy x. HenceGx \G0x � f�1(x) 6= 1g, thus P (�1(x) = 1) � Cp, proving (2).Let M = 18p�11 and this time call x 2 Z2 a rescaled closed site if G(2M+1)x \ G0(2M+1)xhappens. Then P (x is a rescaled closed site) � 1 � Cp and any x, y with jjx � yjj1 � 16 arerescaled closed sites independently. Hence, for a small enough p, the complement of the set ofrescaled closed sites does not percolate. Therefore, if f�1 = 1g were to percolate, an in�nite
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