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Threshold Growth is a cellular automaton on an integer lat-

tice in which the occupied set grows according to a simple

local rule: a site becomes occupied if and only if it sees at

least a threshold number of previously occupied sites in its

prescribed neighborhood. We study the minimal number of

sites that these dynamics need for persistent growth in two di-

mensions.

1. INTRODUCTIONOne of the simplest imaginable cartoons for thespread of a \droplet" in space posits that a va-cant site should join the occupied region if it seesenough occupied sites around it. This rule distillssome key features of cellular automaton models forexcitable media and crystallization, which were thesubject of our previous empirical and theoreticalresearch [Durrett and Gri�eath 1993; Fisch et al.1991; 1993; Gravner and Gri�eath 1997]. The re-sulting dynamics, called Threshold Growth, werestudied in detail in [Gravner and Gri�eath 1993;1996], where we established asymptotic shape and�rst passage results in both the discrete and con-tinuous space settings. Here we continue our in-vestigation of Threshold Growth, focusing on thesize, geometry, and abundance of minimal seedsneeded for persistent nucleation. We feel that thisstudy provides some modest insight into the mech-anism for such nucleation in deterministic spatialinteractions, a decidedly murky subject. Let usbegin, then, by briey summarizing some basic in-gredients of the theory; readers are referred to ourearlier work for additional background.
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208 Experimental Mathematics, Vol. 6 (1997), No. 3Discrete Threshold Growth has two parameters:the neighborhood N and threshold �. Here � is apositive integer, and N is a �nite subset of Z2 thatincludes the origin; we say that x+N is the neigh-borhood of site x. Given A � Z2, de�neT(A) = A [ fx : j(x+N) \Aj � �g:Start from an initial A0 � Z2 and compute Tn(A0),for n = 0; 1; 2; : : : , to generate the dynamics. Also,write T1(A0) = Sn�0 Tn(A0).We say that a �nite initial set A0 generates per-sistent growth if jT1(A0)j =1. The dynamics areomnivorous if, for every A0 that generates persis-tent growth, T1(A0) = Z2. Nucleation parameters and � are de�ned as follows. Let  = (N; �)be the smallest i for which there exists an A0 thatgenerates persistent growth and such that jA0j =i. Also, let � = �(N; �) be the number of setsA0 of size  that generate persistent growth andhave the leftmost of their lowest sites at the ori-gin. Call a Threshold Growth model voraciousif Tn(A0) = Z2 for any of the � initial sets A0described above. We believe that dynamics in-duced by nice neighborhoods|for example, neigh-borhoods that are obese in the sense of [Gravnerand Gri�eath 1993]|are always voracious (and, in-deed, omnivorous), but have not been able to showthis. Recently, T. Bohman devised a remarkablecombinatorial argument to prove [Bohman � 1997,Theorem 1] that Threshold Growth dynamics areomnivorous for any threshold in the box neighbor-hood case, where N is the (2� + 1) � (2� + 1) boxcentered at the origin, that is, N = N� = fx :kxk1 � �g. For this reason, and for the sakeof simplicity, we will restrict our analysis to boxneighborhoods throughout this paper. However,many of our techniques can easily be adapted tomore general settings.As already mentioned, our principal aim here isto study the size, geometry and abundance of thesmallest initial con�gurations that generate per-sistent growth. See [Gravner and Gri�eath 1997]on convergence to Poisson{Voronoi tessellations for

a concrete instance of the role of  and � in theexact asymptotics of some self-organizing randomcellular automata. The \engineering" approachwe will adopt is somewhat analogous to the SPOrecipes of [Durrett and Gri�eath 1993], althoughour task here is rather more di�cult because per-sistent growth involves in�nitely many time steps.We conclude this Introduction by briey summa-rizing our results.Section 2 begins by establishing the threshold{range convergence of : we show that there existsa right continuous function E : (0; 2) ! (0;1)such that, for each � 2 (0; 2),(N�; �(�+ 1)2) � E(�)�2 as �!1.It is not di�cult to see that there exists a c > 0such that E(�) = � on (0; c) but not on (c; 2).We proceed to combine geometric arguments withlarge{neighborhood experiments in order to deter-mine that c 2 (1:61; 1:66). The way we obtainthese rather accurate upper and lower bounds of-fers some insight into the geometry of the moste�cient growing droplets, at least if size is deemedthe ultimate measure of e�ciency. The remainderof Section 2 deals with the behavior of E closeto 2. It is clear that E goes to 1, but howfast? The question remains open, though we areable to show that E(�) lies between C1(2��)�1=2and C2(2 � �)�1 for suitably chosen constants C1and C2.Section 3 continues our investigation of the sizeof the smallest growing seeds, but in contrast toSection 2 we impose a severe constraint on theirgeometry, dealing only with square seeds. Thisrestriction makes it possible to study experimen-tally a critical size rc = rc(N�; �), the smallestr for which an r � r square grows. Our mainrigorous result in this section concerns ThresholdGrowth at the largest threshold for which  <1:� = �(2�+1). For this extremal �, and for � large,we show that rc is of order �2.The paper concludes with a section devoted tosome computational and asymptotic aspects of the
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Gravner and Griffeath: Nucleation Parameters for Discrete Threshold Growth on ZZ2 209\abundance" parameter �. Not surprisingly, itsanalysis is vastly more di�cult, so we have manymore questions than answers at this point.The main notational conventions of the paperare as follows. As is customary, de�ne the normsk(x1; x2)k1 = jx1j+ jx2j;k(x1; x2)k2 =pjx1j2 + jx2j2;k(x1; x2)k1 = maxfjx1j; jx2jg;and the balls Bp(a; r) = fx : kx � akp � rg.Also, let R(a; b) be the (2a + 1) � (2b + 1) rect-angle centered at the origin. Context will make itclear whether these are subsets of the lattice Z2 orthe plane R2 . The Euclidean version of ThresholdGrowth (to be introduced in Section 2) is denotedby TE, and the function E mentioned above turnsout to be the smallest area those dynamics need togrow. Finally, rc is de�ned above to be the smallestside of a growing square for the discrete ThresholdGrowth, while ~rc is the analogous quantity for theEuclidean dynamics.
2. THE SIZE OF  FOR LARGE NEIGHBORHOODSThis section provides some estimates on the size of and � for range � box neighborhoods. Our resultsmake use of the Euclidean space version of Thresh-old Growth from [Gravner and Gri�eath 1993]. Allsubsets of R2 that we introduce will be assumed tobe measurable. Fix a �E > 0 and NE � R2 . GivenB � R2 , de�neTE(B) = B [ fx : area((x+NE) \B) � �Eg:As before, denote T1E (B) = S1n=0 TnE(B). A Eu-clidean set B is extensible if it is compact andfor every bounded F � R2 there exists an n withF � TnE(B). De�ne E = E(NE; �E) as the in�-mum of a � 0 such that there exists an extensibleB with area(B) = a; this is, roughly speaking, thesmallest area needed for growth.(A technical remark is in order here. The re-quirement that an extensible set be compact mayseem unnecessarily strict; boundedness might be a

more natural assumption. In fact, these variantsgive the same value of E. The proof is left to thereader.)Since our analysis will focus on the square neigh-borhood with radius 1, that is, NE = B1(0; 1), letus abbreviate E(�E) = E(B1(0; 1); �E).
Lemma 2.1. E is a strictly increasing function on(0,2). In fact , for �1 < �2, we have E(�2) �E(�1)+�2��1. Moreover , E is right continuous.
Proof. To prove the �rst assertion, assume that itis not true, i.e., there exists a set B0, extensiblefor TE(NE; �2), with area(B0) < E(�1) + �2 � �1.Construct a set B00 by removing any subset of area�2 � �1 from B0. Then B00 must be extensible forTE(NE; �1), but area(B0) < E(�1), a contradic-tion.We now proceed to check right continuity. Tothis end, �x � < 2, a > E(�), and choose anextensible B0 with area(B0) < a. Pick a positive" < 0:01 small enough so that �+ " < 2 and takean integer R so large that the square B1(0; R)is an extensible set for TE(NE; � + "), and thatB0 � B1(0; R). (The choice of 0.01 will becomeclear in the next paragraph.) Then there exists a�nite n such that B1(0; R) � TE(NE; �)n(B0) �B1(0; R + n).Now construct a slightly larger set B00 � B0 asfollows. Divide B1(0; R+n+2) into 12� 12 squares.Let Sj be one of those squares, and kj the smallestk for which area(TE(NE; �)k(B0) \ Sj) � 0:23. Ifkj = 0 make B00 agree with B0 on Sj . Otherwise,pick a set S0j � Sj such that S0j\Tkj�1E (B0) = ? andarea(S0j) = ", and then choose B00 so that B00\Sj =(S0j [B0) \ Sj . Since, for every x 2 B1(0; R + n),x+NE includes at least 9 such squares, area((x+NE) \ TiE(NE; �)(B00)) � maxf2; area((x + NE) \TiE(NE; �)(B0)) + "g for any i � n. This clearlyimplies thatTE(NE; �+ ")n(B00) � B1(0; R):Finally, note that area(B00) � area(B0) + 4"�(R + n+ 2)2, which �nishes the proof. �
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210 Experimental Mathematics, Vol. 6 (1997), No. 3For noninteger � and �, let us interpret T(N�; �) =T(Nb�c; d�e). Before proving a proposition that es-tablishes E as the threshold{range limit of , weneed two observations that help connect discreteand Euclidean versions of the dynamics. The �rstlemma below assumes that the two versions usethe same threshold, that the radius of the discretegrowth is slightly larger, and that the initial setof the Euclidean growth dominates (in a naturalway) the initial set of the discrete dynamics. Theconclusion is that this last property holds for theiterates of the two dynamics as well. The secondlemma then reverses the roles of the two versionsand proves a similar statement.
Lemma 2.2. Pick an integer �, a � 2 (0; 2) andlet � = d(� + 12)2�e. Assume that B0 � R2 andA0 � Z2 have the property that B0 � A0+B1(0; 12).Then, for every n � 0,TE((�+ 12)NE; (�+ 12)2�)n(B0)� T(N�+1; �)n(A0) +B1(0; 12)� T(N�; � � 8(�+ 1))n(A0) +B1(0; 12): (2–1)

Proof. The second inclusion follows from the factthat jN�+1nN�j = 8(�+1). To prove the �rst inclu-sion, assume that y 2 TE((�+ 12)NE; (�+ 12)2�)(B0)and let x 2 Z2 be such that ky � xk1 � 12 . Sincearea((y+(�+ 12)NE)\B0) � (�+ 12)2�, there mustexist at least � sites xi 2 Z2 such that the inter-section: interior(B1(xi; 12)) \ (y + (� + 12)NE)) \B0 is nonempty; assume this set contains a pointyi 2 R2 . The triangle inequality, and the fact thatkx � xik1 is an integer, imply that kx � xik1 ��+ 1. Moreover, interior(B1(xi; 12)) \B0 6= ? im-plies that xi 2 A0. Hence x 2 T(N�+1; �)(A0), andthe statement of the lemma holds for n = 1. Nowiterate to �nish the proof. �
Lemma 2.3. Pick integers � and �, and sets A0 � Z2and B0 � R2 such that A0+B1(0; 12) � B0. Then,for every n � 0,T(N�; �)n(A0)+B1(0; 12) � TE((�+1)NE; �)n(B0):

Proof. Assume that x 2 T(N�; �)n(A0) and y 2 R2are such that ky�xk1 � 12 . If xi 2 x+N�, then bythe triangle inequality, B1(xi; 12) � y+(�+1)NE.Therefore, area(B0 \ (y + (� + 1)NE)) � � andy 2 TE((�+ 1)NE; �)n(B0). This veri�es the claimfor n = 1, which, again, is clearly enough. �
Proposition 2.4. For � 2 (0; 2),lim�!1 (N�; �(�+ 1)2)�2 = E(�): (2–2)

Proof. It is useful to note that the scale invarianceof the Euclidean dynamics yields, for every r > 0,E(rNE; �E) = r2E(�E=r2): (2–3)First �x integers � and �, and take an A0 � Z2 thatgenerates persistent growth, with jA0j = i. PutB0 = A0+B1(0; 12) � R2 . Then area(B0) = i, andB0 is extensible for TE((�+1)NE; �) by Lemma 2.3.(Note that we have used Theorem 1 from [Bohman� 1997] here.) It follows from (2{3) thatE � �(�+ 1)2� � (N�; �)(�+ 1)2 : (2–4)Now �x �0 > �, a > E(�0), choose an extensibleB0 for TE(NE; �0) with area(B0) < a, and de�neA0 = fx 2 Z2 : B1(x; 12) \ (� + 12)B0 6= ?g. If �is large enough that (�+ 12)2�0 � 8(�+ 1) > ��2 +1, then, by Lemma 2.2, A0 generates persistentgrowth for T(N�; �2�), and therefore(N�; �2�) � jA0j = area(A0 +B1(0; 12))� (�+ 12)2 area(B0 +B1(0; 1=(�+ 12)))� (�+ 12)2a; (2–5)as soon as � is large enough.Abbreviate the limit in (2{2) as lim, and simi-larly for lim inf and lim sup. It follows from (2{4)and (2{5) that for any � < �0,E(�) � lim inf � lim sup � E(�0);and hence lim = E(�) by Lemma 2.1. �
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Gravner and Griffeath: Nucleation Parameters for Discrete Threshold Growth on ZZ2 211We make two remarks before proceeding. First,whether E is continuous remains an open prob-lem. We suspect that the regularity of ThresholdGrowth should ensure continuity, but have no com-pelling argument. A second observation concernsvoracity of the Euclidean dynamics. Namely, calla compact set B weakly extensible if T1E (B) is un-bounded. Assume for a moment that an extensibleset is replaced by a weakly extensible set in the def-inition of E . As the proof of Lemma 2.3 shows,convergence result (2{2) still holds, and hence thetwo de�nitions are equivalent.Having established the existence of the threshold-range limit E, let us turn to the question of its size.One easily veri�es that E(�) = � for relativelysmall �, e.g., for � < 1, in which case a p� �p�square is extensible. It is natural, then, to askwhich thresholds admit an omnivorous \droplet"of the smallest possible size, so we de�nec = supf� > 0 : E(�) = �g:One of our main objectives in this paper is to de-termine c within two percent.
Theorem 2.5. 1:61 < c < 1:66.
Proof. We start with the upper bound, for whichthe following estimates will be applied.
Proposition 2.6. (i) Fix an � 2 [0; 1). If TE(NE; �)1of a 2� (2� �) Euclidean box is bounded , thenc � �+ 4�2.(ii) Fix an integer a 2 [0; �]. If T(N�+1; �)1 of a(2� + 1) � (2� + 1 � a) box is bounded , thenc � 4(� + 4a2)=(2� + 1)2.
Proof of of Proposition 2.6. Let us denote the Eu-clidean box from (i) by ~B� and the discrete onefrom (ii) by Ba. Let � + " < c, for some " > 0.We start by proving that there exists an extensibleB00 � NE for TE(NE; �) with area(B00) < �+ ". Tosee this, take �0 2 (� + "=2; � + "). Then thereexists an extensible B0 for TE(NE; �0) such thatarea(B0) < � + ". Find an x so that area((x +NE)\B0) � �0, and take B00 = ((x+NE)\B0)�x.

Then B00 � NE is extensible for TE(NE; �) andarea(B00) < �+ ".Denote by F1; : : : ; F4 the four 2 � � rectanglesthat can be removed from NE to leave a 2� (2��)box. We claim that area(B00 \ Fi) � 4�2 + " forat least one i. If this were not true, then no siteoutside the 2��2� Euclidean box around 0 wouldbe added by the dynamics since the area such asite could see would be then less than 4�2+�+"�(4�2 + ") = �; thus, B00 would not be extensible.Therefore, if � < c, then for any " > 0 thereexists a set ~B0�, obtained by adding to the full ~B�a set of area at most 4�2+", which is extensible forTE(NE; �). Consequently, ~B� itself is extensible ifthe threshold is lowered to � � 4�2 � ". This isequivalent to statement (i) of the Proposition.To prove (ii), �x a and set � = a=(� + 12). As-sume that � � (�+ 12)2�. Under the hypothesis, weclaim that TE((�+ 12)NE; (�+ 12)2�)1((�+ 12) ~B�) isbounded, and therefore so is TE(NE; �)1( ~B�). Tothis end, observe that Ba+B1(0; 12 ) is a Euclidean(2�+1)�(2�+1�a) box, and (�+ 12) ~B� is a box ofthe same dimensions. Therefore, Lemma 2.2 showsthat if Ba does not generate persistent growth forT(N�+1; �), then (�+ 12) ~B� cannot be extensible forTE((�+ 12)NE; (�+ 12)2�), and hence c � �+4�2.This completes the proof. �Our bounds for c in Theorem 2.5 are virtuallyimpossible to derive by hand. To obtain them werelied heavily on the the Windows-based CA simu-lation program WinCA [Fisch and Gri�eath 1996].To demonstrate that experiments on �nite boxes,such as the one displayed in Figure 1, prove (ordisprove) persistent growth, we rely on the follow-ing simple proposition. Denote R(a; b) = f(x; y) :jxj � a; jyj � bg, and let TjS be the dynamicsrestricted to set S � Z2, with zero boundary con-ditions. That is, (TjS)(A) = T(A)\ S.
Proposition 2.7. Assume that A0 � R(a; b).(1) If R(a+1; b+1) � (TjR(a0; b0))1(A0), for somea0 > a, b0 > b, then T1(A0) = Z2.
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212 Experimental Mathematics, Vol. 6 (1997), No. 3(2) If R(a; b)c \ (TjR(a0; b0))1(A0) = ?, for somea0 > a, b0 > b, then T1(A0) � R(a; b).
Proof. To prove (1), note that R(a; b) � T1(A0),and that R(a + 1; b + 1) � Tn0(R(a; b)), for some�nite n0. Hence, by translation invariance of T,R(a+2; b+2) � Tn0(R(a+1; b+1)) � T2n0(R(a; b)).Continuing in this manner, we conclude that arbi-trarily large rectangles are contained in T1(A0).To prove (2), note �rst that if n0 is the �rst timen at which Tn(A0) \R(a; b)c 6= ?, thenTn0(A0) \ (R(a+ 1; b+ 1) n R(a; b)) 6= ?;and thus(TjR(a0; b0))n0(A0)\ (R(a+1; b+1) nR(a; b)) 6= ?:Under the assumptions in (2), then, the restrictedand unrestricted dynamics agree on A0, that is,Tn(A0) = (TjR(a0; b0))n(A0);hence Tn(A0) � R(a; b) for all n. �Propositions 2.6 and 2.7 now reduce the upperbound to a large, judiciously chosen computation.Namely, WinCA shows that T(N161; 42736)1 of a321 � 319 box is bounded, and soc < 1:6597: (2–6)For a lower bound we use (2{4). That inequalityimplies that if a set A0 with jA0j = � generatespersistent growth for T(N�; �), then c � �=(�+1)2.Hence the challenge is to �nd the most e�cientshape for such an A0 that grows, with the largestpossible �. An example of our best design to date,and its �rst 500 iterates, is shown in Figure 1.The initial con�guration (shaded dark gray) �tssnugly into N�. If the octagonal hole in the centerwere �lled the set would consist of the square N�0,where �0 � b(1 +p5)�=4c � 0:809�, to which pro-truding triangles with slopes � �2�3=2 are addedat the corners. The octagonal hole is cut so thatthe ratio of the length of its 90� sides to its heightis approximately p2 � 1. Finally, the size of the

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

FIGURE 1. A growing \hole" for � = 150, � = 36760.hole is chosen so as to make the number of sites inA0 exactly �.A few words are in order about how we deter-mined these characteristics. Start from a \squareannulus" (1��)NE n (1��)NE , where 0 < � < �,with area �. Let x < 1 � � and add xNE to thehole. The dynamics then �lls in at least the square(�+�(x))NE inside the hole, where � = �(x) =2(1��)�2p(1� �)2 � x2. The iteration given byx0 = �, xn+1 = �+�(xn), generates an xn > 1��if � > (3 � p5)=4, suggesting �0 � (1 � �)�. Atthis point, we know that if � is such that N�0 grows,then there is a set A0 of � sites (in fact, a squareannulus), such that T(N�; �)1(A0) = Z2.Using a similar argument, one can add sites (andsimultaneously increase �) outside N�0. Assumethat their number if sites in the n'th vertical stripof N�, starting with the leftmost one, increases lin-early as �n. Consider an occupied set of octagonalshape in the middle, with the ratio of the length ofits 90� sides to its height given by �, that is, theconvex hull of f(�n;��n); (��n;�n)g. This set
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Gravner and Griffeath: Nucleation Parameters for Discrete Threshold Growth on ZZ2 213will grow if its area 2(2� (1��)2)n2 is larger thanthe maximal area a point on its boundary doesnot see, which is �2 (1+�2)n2. This determines thelargest possible � to be 4p2, and the corresponding� then is p2 � 1. A little experimentation showsthat the proper placement of the extra sites is atthe outside corners; in this case there is room forsome sites to be added inside the hole. We havechosen the �nal shape of the hole to be octagonalsupposing that the greatest number of sites can beadded if the resulting shape matches the describedgrowing octagon. (An octagonal shape is merelyone that works, and most likely is not optimal.)Using this architecture, and a substantial amountof interactive optimization at the pixel level, wehave designed a growing set of size � for � = 150and � = 36760 (the one in Figure 1), hencec > 1:612: (2–7)(Actually this con�guration was obtained by �rst�nding analogous shapes for range 50, and thenrange 100, optimizing interactively in each case,and then rescaling with a paint program to boostthe range.) Since the upper bound (2{6) and thelower bound (2{7) are so close, we conclude thatthe suggested design is not too far from being anoptimal one. This completes the proof of Theorem2.5. �We now turn to the study of E(�) near � = 2. Letus begin by determining how large R should be sothat B2(0; R) is extensible. An easy computationshows this as soon as R � (2 � �) > 2. But thenB2(0; R) nB2(0; R�p2) grows, proving the upperbound E(�) � C � 12� �; (2–8)for some constant C > 0.The issue of lower bounds is much trickier. Westart with a relatively simple argument that showsthat E(�) � �C log(2� �): (2–9)

The argument begins with the elementary obser-vation that there exists a large enough R0 so thatarea((x + NE) \ B2(0; R)) < 2 � 1=(4R) for anyx =2 B2(0; R) and R � R0. Next, start with anextensible set A0, tessellate the plane R2 into 2�2squares, and call such a square S R{occupied ifarea(S\A0) � 0:1=R. Assume now that 100 �R0 �R � 1=(4(2� �)). Then we claim that the numberof R{occupied squares is at least 0:01 � R. Giventhis, the logarithmic lower bound (2{9) follows eas-ily.To prove the claim above, assume that it is nottrue for an R in the speci�ed range. This impliesthat there exist a �nite set of balls B1; B2; : : : withradii r1; r2; : : : , which are at least distance 4 apart,cover all R{occupied squares, and are such thatr1 + r2 + : : : � 0:04 � R. The �nal observation isthat the dynamics cannot add even one new pointoutside the union V = B1 [B2 [ : : : . To see this,note that any point x =2 V has area((x + NE) \V ) � 2 � 1=(0:04 � R) and moreover x + NE hasnonempty intersection with at most 4 squares fromthe tessellation, so that area((x+NE)\(V [A0)) �2� 1=(0:04 �R) + 0:4=R < �. This contradicts theassumption that A0 is extensible.Which bound is closer to the correct order, (2{8)or (2{9)? In fact, our next proposition indicatesthat E(�) obeys a power law close to � = 2. Adetailed proof of this result would be exceedinglytechnical, so we will merely sketch the argument.We suspect, but are presently unable to prove, that(2{8) gives the correct exponent.
Proposition 2.8. For some constant C > 0,E(�) � C � 1p2� �: (2–10)

Proof. In this proof, C will be a \generic constant,"possibly changing value from one appearance tothe next.We start by introducing the comparison dynam-ics TEl, a \local" version of TE. In this part ofthe argument, a set B0 � R2 will remain �xed,and is not the starting state for TEl, but rather
7 September 1997 at 10:13



214 Experimental Mathematics, Vol. 6 (1997), No. 3consists of \helpful" points. Let's de�ne TEl(B) asthe union of B with the set of x 2 R2 such that(x+NE)\B 6= ? and area((x+NE)\(B[B0)) � �.The following estimate gives a lower bound on theadditional area TEl needs to see in order to adda shell of width 2 to a ball of radius R. We be-lieve that the order 1=pR is optimal; integrationthen yields (2{10). This suggests that substantialimprovement on (2{10) is impossible without in-troducing variable shapes into the argument.
Claim. There exists a small enough constant C > 0so that TEl1(B2(0; R)) � B2(0; R + 2) as soon asarea(B0 nB2(0; R)) < C=pR, and5 � R � C(2� �)�1:To prove the claim, pick an M > 0 and divide theannulus A(R) = B2(0; R + 2) n B2(0; R) into Msmall radial sectors S0; S1; : : : ; SM = S0 of equalshape (see Figure 2). M should be chosen so thatSi \ B2(0; R + 12) � x + NE for every x 2 Si \B2(0; R + 12) (hence it is of the order O(R)). As-sociate every sector Si with an angle �i de�nedso that the following holds. Let W (xi; �i) be anywedge with opening �i based at a point xi 2 Si \B2(0; R + 12) so that B2(0; R) � W (xi; �i). Then,for every x 2 (Si \ B2(0; R + 12)) nW (xi; �i), wehave area((x+NE)\ (B2(0; R)[B0) < �. A shortcomputation shows that that ���i can be chosento be C � i+mXj=i�m area(Sj \B0);where m is some �xed number. Another observa-tion is that the two tangents to B2(0; R) at a pointz with kzk2 = R + 1 form an angle ' such that� � ' �p2=R, when R is large.With some work one can show that if Pi(� ��i) < C=pR for some small enough C, then thereexists a piecewise linear closed curve `, such asthat partly shown in Figure 2, which encloses theboundary of T1El(B2(0; R)). To illustrate how thecurve is constructed, imagine that only one of thesectors, say S0, has nonempty intersection with A0

(we believe this is the worst case). Start with thedescribed wedge (with angle opening on the order1=pR) inside S0 and \bend" it at angles of or-der 1=R in the other sectors. The general case isconsiderably messier, since it is then necessary tocombine many bends of di�erent magnitudes. Weomit the remaining details of the proof of the Claimfrom our sketch.
S0S1S2SM�1R
`

FIGURE 2. Proof of the Claim.For the second part of the argument, �x an ex-tensible set A0. We will use the Claim to �nd alower bound on area(A0) for � close to 2. Sites inA0 will be \helpful" for the local dynamics com-parison. The initial step is to cover all \nucleationcenters" (sets that are able to start growing imme-diately) with well separated balls.To accomplish this task, choose any x1 such thatarea((x1 + NE) \ A0) � �. Let �B01 = B2(x1; 8). Ifthere is an x2 =2 B2(x1; 4) with area((x2 + NE) \A0) � �, let �B02 = B2(x2; 8). If there is an x3 =2B2(x1; 4)[B2(x2; 4) with area((x3+NE)\A0) � �,let �B03 = B2(x3; 8). Continue until no more stepsare possible. After this is done, �nd two sets �B0iand �B0j at distance less than 4, and replace them bythe smallest `2 ball containing both. Continue thisprocedure until all the balls are at distance at least4. The �nal outcome is a set of balls B01 ; B02 ; : : :with radii r01 � r02 � � � � and r0 = r01 + r02 + � � � .
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Gravner and Griffeath: Nucleation Parameters for Discrete Threshold Growth on ZZ2 215(Note how this procedure is quite similar to partof the argument that establishes (2{9).)We now present an iterative scheme that �rstenlarges any ball that has the potential to grow,and then forms a well-separated covering of balls asin the previous paragraph. (Enlargement mimicsgrowth, while the covering mimics coalescence, ofnucleating droplets in the underlying dynamics.)More precisely, assume that there is a collectionof balls Bk1 ; Bk2 ; : : : at distance at least 4 from oneanother, with radii rk1 � rk2 � � � � and rk = rk1 +rk2 + � � � . If A0 has area at least C=prki (whereC is the constant in the statement of the Claim)in the annulus (Bki +B2(0; 2)) nBki ), then �Bk+1i =Bki + B2(0; 2). Otherwise �Bk+1i = Bki . Then usethe same procedure as in the initial step to getnew balls separated by distance at least 4, and callthem Bk+1i .Stop this procedure when it either leads to acollection of balls that are una�ected by the �rststep described in the previous paragraph, or elserk � C(2��)�1. In the �rst case, the Claim guar-antees that A0 cannot be extensible. Therefore, to�nish the proof, we have to �nd a lower bound onarea(A0) in the second case.In the k ! k+1 step described above, any i suchthat �Bk+1i 6= Bki requires at least area C=prki �C=prk in A0. It follows that the entire step re-quires A0 to have area at least C(rk+1 � rk)=prkin SiBk+1i n SiBki . Another observation is thatrk+1 � rk + 3�(number of balls Bki ) � 4rk. Theproof is �nished immediately if r0 � C=(2 � �).Otherwise,area(A0) � Cr0 + C Xk�0;rk�C=(2��) rk+1 � rkprk� Cr0 + C Z C=(2��)r0 drpr� Cp2� �;as required. �

3. THE SMALLEST GROWING SQUARESThus far, while studying the smallest sets thatgrow forever, we have imposed no restrictions ontheir geometry. However, when doing computer ex-periments one typically starts with simple shapesfor the con�guration of occupied sites, since it istedious to initialize the dynamics with sets such asthat shown in Figure 1. In this vein T. Bohmanrecently posed a question, which arose in [Bohman� 1997], concerning the size of the smallest squarebox that grows forever if � is the largest supercrit-ical threshold, i.e., � = �(2�+ 1).Bohman's problem has motivated us to studythe size of the smallest r � r squares that gener-ate persistent growth. We start this analysis byproving that the iterates must have a high degreeof regularity in this case. To this end, we use theconcept of an obese set, a strong form of convex-ity introduced in our paper [Gravner and Gri�eath1993]. Let us briey review the de�nitions here.A set A � Z2 is called completely symmetric ifit is symmetric with respect to switching sign ofeither coordinate and switching the coordinates.Moreover, A is obese if the two{part cone conditionis satis�ed:
(i) If x 2 A and the �rst coordinate x1 > 0, thenx� e1 2 A.
(ii) If x 2 A and x1 > x2 > 0, then x� e1 + e2 2 A.If A is obese, then Proposition A1 of [Gravner andGri�eath 1993] guarantees that so is T(A); obeseinitial sets thus eliminate nightmares associatedwith irregular growth. In addition, obesity enablesus to prove the following simple proposition, usefulin deciding whether a square grows. In its state-ment, the set S0 consists of the four points: (0; 0),(0; 1), (1; 0) and (1; 1) (note that by adding S0 toa square of odd side length one obtains a square ofeven side length).
Proposition 3.1. Fix an integer k � 0.(1) Either T1(B1(0; k)) � B1(0; 2k) or elseT1(B1(0; k)) = Z2:
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216 Experimental Mathematics, Vol. 6 (1997), No. 3(2) Either T1(S0 + B1(0; k)) � S0 + B1(0; 2k) orelse T1(S0 +B1(0; k)) = Z2.
Proof. We will only prove the �rst statement, theproof of the second being quite similar. IfTn0(B1(0; k)) \B1(0; 2k) 6= ?;then, by obesity, Tn0(B1(0; k)) must include thepoints (k+1; k) and (k+1;�k). For the same rea-son, Tn0(B1(0; k)) includes all of e1+B1(0; k), andhence by symmetry B1(0; 1) +B1(0; k). Thus, forevery n � 1, B1(0; n)+B1(0; k) � Tn�n0(B1(0; k)).�De�ne rc = rc(N; �) as the least value of r suchthat an r � r square generates persistent growth,and de�ne ~rc(�) as the in�mum of R � 0 suchthat B1(0; R=2) square is extensible for TE(NE; �).Then the same argument as in the proof of Propo-sition 2.4 yields thatlim�!1 rc(N�; ��2)� = ~rc(�)at all points � 2 (0; 2) for which ~rc(�) is contin-uous. Unfortunately, it turns out that continuityof ~rc is even more di�cult to establish than con-tinuity of E . So far, we have been able to proveonly that ~rc is continuous on the interval (0; 0c),where 0c is the largest threshold � for which NE isextensible (or, equivalently, for which ~rc(�) < 2).Methods developed in Section 2, together with thefact that T1(N161; 42837)(N161) = Z2, imply that0c � 42837=1622 > 1:63. We will not present thecomplete argument for continuity below 0c (whichuses the Euclidean version of obesity quite heav-ily), but merely indicate the main idea. Fix an R <2 and " < 2 � R. Then every point z 2 B1(0; R)sees a protruding corner of the "{enlarged box, i.e.,area((z+NE)\(B1(0; (R+")=2)nB1(0; R)) � "2=2.This property (which fails to hold for R > 2), al-lows one to show that there exists a � = �(") > 0 sothat if B1(0; R=2) is extensible for T(NE; �), thenB1(0; (R + ")=2) is extensible for T(NE; �+ �).Exploiting Proposition 3.1, rc(N�; �) is easy tocompute for rather large ranges. We have used a

0:2 0:4 0:6 0:8 1 1:2 1:402
46
8

FIGURE 3. Graph of rc(N�; �)=� versusp�=�, for � = 20.computer program and some WinCA experimen-tation to determine rc(N�; �)=� for � = 20 and� = 1; : : : ; 820: Figure 3 shows a plot of this func-tion vs. p�=�. The graph should approximate wellthat of the function ~rc(�) versus p�; the emergingmessage seems to be that this graph is not onlycontinuous, but even convex. What is clear fromthe arguments in Section 2 is that ~rc(�) = p� ifand only if � 2 [0; 1] and that ~rc(�) diverges like(2��)�1 as � " 2. Note that Figure 3 also suggestsdiscontinuous derivatives at the two values p� = 1and p� = p0c � 1:28.To conclude this section, we provide an answerto Bohman's question mentioned earlier. As a con-sequence of the argument below,rc(N�; �(2�+ 1))lies between (p2=16)�2 and 2p2�2, ignoring lowerorder corrections in �. Figure 4 shows the largestbox that stops, together with its iterates, in thecase � = 20, � = 820. Its side has 322 sites; thusrc=� = 16:1 and rc=�2 = 0:8075 in this case.
Proposition 3.2. There exist constants C1 and C2such that for every �,rc(N�; �(2� + 1)) 2 [C1�2; C2�2]:
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Gravner and Griffeath: Nucleation Parameters for Discrete Threshold Growth on ZZ2 217It seems di�cult to prove that rc(N�; �(2�+1))���2converges, as there is no threshold{range limit inthis regime and so a straightforward comparisonwith Euclidean dynamics is unavailable. Instead,we make use of the transformation �T, which oper-ates on subsets of R2 and is conjugate to T [Gravnerand Gri�eath 1996]. We will also use the standardnotation for half{spaces: for a unit vector u 2 S1,H�u = fx 2 R2 : hx; ui � 0g.
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FIGURE 4. Growth from a square of side 322 for� = 20, � = 820.
Proof. It is enough to show that �T1(B2(0; R)) isunbounded if R � C2�2 and bounded if R � C1�2,for suitably chosen constants C1 and C2.To prove the �rst assertion, assume R is so largethat, for every u 2 S1,j(Ru+N) \ (Ru+H�u ) \ (interior(B2(0; R)))cj� 2�+ 1:Then there is an " such that B2(0; R + ") is con-tained in �T(B2(0; R)) and thus �T1(B2(0; R)) = R2 .How large must R be so that the preceding con-dition is true? A simple geometric argument shows

that the worst case is when u is a 45 degree vector,in which case the lower bound for R (up to order�2) is given by the following equation:qR2 � (�p2)2 = R�p2=2:Therefore, if R > p2�2 + o(�2), then the ball willgrow forever.To prove the second assertion, assume R is smallenough so that, for every u 2 S1, we havej(Ru+N) \B2(0; R)j < �; (3–1)in which case T(B2(0; R)) = B2(0; R).To see when (3{1) is true, assume without lossof generality that the direction of u is between 45and 90 degrees. Then for any integer i 2 [��; �],the vertical line fx + ie1 + ae2; a 2 Rg (where e1,e2 are the standard basis vectors) intersects(Ru+N) \ (Ru+H�u ) \ (Ru� 2e2 +H��u) (3–2)in at least two integer points. Hence the set (3{2)intersects fx + be1 + ae2 : a 2 R; jbj � �=2g in atleast � points. We are done once we make sure thatB2(0; R) leaves out these points. The worst casesituation is now when u is the 90 degree vector,which, up to order �2, requires R to be smallerthan the one given bypR2 � (�=2)2 = R� 2:Thus we conclude that B2(0; R) does not grow forR � �2=16 + o(�2). �
4. COMPUTATION OF � FOR SMALL AND LARGE

NEIGHBORHOODSRecall that � measures the abundance of persistentseeds of minimal size. Thus, in order to compute�, we need to determine those A0 with jA0j = for which T1(A0) is bounded, and those for whichT1(A0) = Z2. Bohman's Theorem ensures thatthese are the only two possibilities, although ourapproach will end up checking voracity anyway. At�rst glance, this task seems formidable, even insmall cases, since T1(A0) depends on arbitrarily
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218 Experimental Mathematics, Vol. 6 (1997), No. 3large times (and we cannot assume that iteratesbecome obese). Fortunately, Threshold Growth isso well-behaved that Proposition 2.7 allows us tocompute � and check voracity in all cases we havetried. In fact, if we chose a0 and b0 about 2� largerthan a and b, respectively, then either (1) or (2) ofthat Proposition always occurred. In any case, acomputer program can set a ag whenever neither(1) nor (2) happens, and those cases can then bechecked separately.We remark that Proposition 2.7 is formulatedin terms of rectangles to facilitate the computa-tion of �. Suppose  = �, so that all A0 with sites that generate persistent growth are includedin a translate of N. To determine � one does notcount translations of a set A0 as distinct. An easyimplementation translates any prospective A0 sothat its leftmost lowest site is at the origin. Suchan A0 has all its other sites in ([�2�; 2�]� [0; 2�])n([�2�; 0]�f0g). Thus one must check all subsets ofsize ��1 within a set of 4�(2�+1) sites, a consider-able but easily automated task. Interested readerscan download the program c4.c, which was used togenerate the Table below, by anonymous ftp fromcam8.math.wisc.edu. Only the � = 2 case of thisalgorithm is easy to enumerate.
Proposition 4.1. If � = 2, then  = 2 and � =4�(2�+ 1).
Proof. We only need to show that every pair ofsites inside N �lls Z2. This is clearly true for ahorizontally adjacent pair. However, such a pairmust exist at time 2. �Let us conclude the paper with a brief and ratherspeculative discussion of the behavior of � for largerange. One expects 1� log � to have a threshold{range limit, i.e.,lim�!1 log �(N�; ��2)��2 = �E(�) (4–1)should exist and be �nite for � 2 (0; 2). At present,however, we do not know techniques to show con-vergence, or even to give reasonable estimates on

�E(�) for general �. This section contains a cou-ple of simple preliminary results indicating onlythat minimal seeds are e�ectively random when �is small.
Proposition 4.2. Let � be such that(N�; �) = � for any � � ��2: (4–2)Then �E(�0) 2 (0;1) for any �0 < � (meaning thatlim inf of the expression in (4{1) is strictly positive,and lim sup is �nite).
Proof. If � satis�es (4{2), then there exists a set A0of size � = b��2c that generates persistent growth.Let �0 < � and A00 � A0 with jA00j = �0. Then A00grows inde�nitely for the dynamics with threshold�0, and therefore �(N�; �0) � 1jN�j� ��0�. This gives�E(�0) � � ��0 � 1� log� ��0.� ��0 � 1��:On the other hand, �(N�; �) � �(2�+1)2� �, whichgives �E(�0) � � 4�0 � 1� log� 4�0.� 4�0 � 1��: �
Proposition 4.3. Assume that � ! 1, � ! 1,1� log �! 0, and � = �=�2 ! 0. Then1� log � � log 4e� ! 0:Moreover �E(�) � log 1� as � ! 0 (meaning thatboth lim inf and lim sup of the expression in (4{1)satisfy this asymptotic formula).
Proof. Fix an " > 0. Then, for large enough �,4"2�2 > �, so N"� grows. Therefore any subset ofN� of size � will grow as soon as it has no sitesoutside N(1�")�. However, if n = (2� + 1)2 anda = (1 � ")2, �an� � � a� � �n��; which reduces theproof to showing that1� log �� � n(n� 1) : : : (n� � + 1)e� � �! � n� ! 0;
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Gravner and Griffeath: Nucleation Parameters for Discrete Threshold Growth on ZZ2 219�(N�; �) � = 2 � = 3 � = 4 � = 5 � = 6 � = 7� = 1 12 42 | | | |� = 2 40 578 4683 24938 94050 259308� = 3 84 2602 46704 574718� = 4 144 7702 241151� = 5 220 18038
TABLE 1. Values of � for small range.an easy consequence of Stirling's formula. The lastassertion of the proposition is even easier to check.�To our annoyance, we are not able to prove eitherthat (4{2) holds for all � < c, or that �E is always�nite. Let us however assume these \facts" for thesake of some speculative discussion. It seems clearthat �E(�), which is in�nite at � = 0 by Propo-sition 4.3, should decrease as � increases from 0to c, since there is less and less room for distri-bution of sites inside N. Is �E(c) = 0? We donot hazard an answer to this intriguing question.Neither do we o�er a plausible scenario for the be-havior of �E(�) when � > c. On the one hand, thenumber of available sites grows in this regime sincethe most e�cient seeds no longer need be subsetsof N. On the other hand, the severe optimizationconstraints inherent at c should remain in e�ect.A likely scenario would be for �E to have a strictminimum at c, but it is conceivable, for instance,that �E might be constant on [c; 2).
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