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We study 2-neighbor one-dimensional cellular automata with a large number n of states and randomly
selected rules. We focus on the rules with weakly robust periodic solutions (WRPS). WRPS are global
configurations that exhibit spatial and temporal periodicity and advance into any environment with at least
a fixed strictly positive velocity. Our main result quantifies how unlikely WRPS are: the probability of
existence of a WRPS within a finite range of periods is asymptotically proportional to 1/n, provided that
a divisibility condition is satisfied. Our main tools come from random graph theory and the Chen-Stein
method for Poisson approximation.
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1 INTRODUCTION

The mechanisms that cause global coordination in an evolving system of locally interacting agents have long attracted
interest in diverse fields of science [14]. Cellular automata (CA) are convenient models of such phenomena, resulting
in dynamics such as predator-prey oscillatory wave dynamics [12], firefly CA [9] that exhibit synchronization, and
excitable media rules with periodic invariant states [2]. In the last-mentioned models, the source of periodicity are
stable periodic objects that spread their influence until they entrap the states of every site into a periodic cycle. A
general investigation of expanding periodic structures is therefore of interest and a natural starting point is in the
simplest setting, that of one-dimensional CA. The concept of robust periodic solutions (RPS) was thus developed
in [4], after it was briefly introduced in [3]. As these papers address behavior of finite seeds within a quiescent state,
it is important that an RPS is a finite periodic structure, so that it can emerge within a seed.

In the present paper, we continue our study of one-dimensional cellular automata (CA) with random rules, initiated
in [7]. In that paper, we focused on the probability of existence of (global) periodic solutions with given spatial and
temporal periods. Here, we narrow our focus and estimate how likely it is that a random rule has a periodic solution
that is able to “repair” itself after it is replaced by an arbitrary configuration on the right half-line. By preserving the
periodic solution on the entire left half-line, we sidestep its emergence and are able to focus solely on its ability to
expand. The desired property is thus weaker than robustness; see the formal definition below.

As in [7], we investigate CA rules with n states and one-sided neighborhood with 2 neighbors. To be precise, we
consider one-dimensional CA with state space encoded by Zn = {0, . . . , n−1}, and with the dynamics determined by
a 2-neighbor rule f : Z2

n → Zn as follows. The (spatial) configuration of the CA at time t is a function ξt : Z→ Zn,
giving every x ∈ Z its state ξt(x) ∈ Zn at time t. Given an initial configuration ξ0, the evolution of the CA is generated
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iteratively by the parallel application of the local rule f :

ξt+1(x) = f(ξt(x− 1), ξt(x)), for all x ∈ Z.

Thus, ξ0 and f together determine the trajectory ξt, t ∈ Z+ = {0, 1, . . .}. The trajectory is commonly visually
presented as a picture of its space-time configuration, the map (x, t) 7→ ξt(x) from Z × Z+ to Zn, in which sites
(x, t) are squares, each painted a color according to its state ξt(x); by convention, the temporal axis is oriented
downward and the spatial axis is oriented rightward.

Assume that a CA given by the rule f starts from a periodic global configuration ξ0 : Z → Zn that satisfies
ξ0(x) = ξ0(x + σ), for all x ∈ Z. If we also have ξτ = ξ0, and τ and σ are both minimal, then we have found a
periodic solution (PS) under rule f , with spatial period σ and temporal period τ . We will not distinguish between
spatial and temporal shifts of a PS. Therefore, each configuration ξt ∈ ZZ

n, t ≥ 0, characterizes the PS and is called
a PS configuration. Within the resulting space-time configuration, any rectangle with τ rows and σ columns also
characterizes the PS, and we call any such rectangle the tile of the PS. Thus we do not distinguish between tiles which
are spatial or temporal rotations of each other.

Before we formally define the expansion property of PS under study, we first illustrate it by a few examples and
provide some motivation. As in [7], we name a rule f by listing its values f(a, b) for all pairs in reverse alphabetical
order, from (n − 1, n − 1) to (0, 0). Thus, the 3-state rule 102222210 has f(2, 2) = 1, f(2, 1) = 0, f(2, 0) = 2,
. . . , f(0, 0) = 0. Figure 1(a)(b)(c) exhibits three pieces of the space-time configurations under the this rule. In these
examples, the PS is given by the tile

0 2 2 2 1 1

2 2 1 1 0 2

1 1 0 2 2 2

and is seen to expand after the PS configuration is replaced by three different configurations to the right of some site
in Z. In fact, given any such replacement, with an arbitrary configuration, the periodic configuration will advance
to the right with at least a minimal velocity v > 0 as time increases, uniformly over the perturbed environment. By
contrast, the rule 102122210 differs by a single assignment f(1, 2) = 1, has the same PS, but now there is a perturbed
environment, say the one given in Figure 1(d), which stops the advance of this PS.

Proceeding to the formal definition, let ξ0 be a PS configuration under a CA rule, and η0 be any initial configuration
that agrees with ξ0 on all x ≤ y, for some y ∈ Z; by default, y = 0. Adapting the definition from [4], we call such
initial configurations proper for the PS ξ0. Let ξt and ηt be the configurations obtained by running f starting with ξ0
and η0, respectively. Let

st = st(η0) = sup{x ∈ Z : ηt(z) = ξt(z) for all z ≤ x}

be the rightmost location up to which ηt and ξt agree at time t. Then the expansion velocity in the initial environment
η0 is

v(η0) = lim inf
t→∞

st
t
,

which describes the rate at which spatial periodicity expands. The expansion velocity

v = inf{v(η0) : η0 is proper for ξ0}

then measures uniformity over all environments. If v > 0, then the PS ξt is weakly robust (WRPS). With this
terminology, we distinguish this property from the more restrictive robustness from [4], which, as already mentioned,
requires that η0 transitions to a background state at finite distance to the left of the origin. In Figure 1(a)(b)(c), we see
the behavior of a WRPS in three different environments: in the environment (a), the expansion velocity is 1; in the
environment (b), it is 4/7; and we conjecture (but do not have a proof) that the expansion velocity in the environment
(c) is again 1, almost surely. See Section 3 for a brief discussion on estimation of v for WRPS; in particular, we are
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(a) (b)

(c) (d)

FIGURE 1: Panels (a), (b), and (c): pieces of the space-time configuration of the 3-state rule 102222210. The starting
configuration is (022211)∞ on (−∞, 0], while on [1,∞) it is (a) 0∞, (b) (02122)∞, and (c) an independent and
uniformly random selection of states. Observe that the PS expands in these three cases, as required by weak robustness.
Panel (d): started from the same initial state as in (a), but now under the 3-state rule 102122210, the expansion of the
same PS eventually terminates, therefore the PS is not weakly robust. The rightmost site of agreement st is outlined
in green. The random case (c) is run twice as long as others, as the convergence is less apparent.

able to prove that for this example v ∈ [9/17, 4/7]. By contrast, Figure 1(d) provides an example of a PS which has
v = 0 and is therefore not weakly robust.

From a theoretical standpoint, the importance of PS with the described expansion property also stems from their
relation to the stable limit cycles in continuous dynamical systems. Limit cycles, also known as isolated closed tra-
jectories, are such that neighboring trajectories either spiral toward or away from them. In the former case, when a
perturbation of a limit cycle converges back, the limit cycle is called stable [13]. Thus we consider an analogous sta-
bility property for CA: after a one-sided perturbation of a periodic configuration, the dynamics make the configuration
converge back. In keeping with the terminology from [4], we refer to such stability as robustness. We remark that the
minimal velocity v gives the minimal exponential rate of convergence to the PS in the standard metric, by which the
distance between ξ, η ∈ ZZ

n is m(ξ, η) = 2−n, where n = inf{|x| : ξ(x) 6= η(x)}.
As in [7], we choose an n-state 2-neighbor rule f uniformly at random, that is, with each of nn
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choices having
equal probability. To formulate our main result on the probability of existence of WRPS, we introduce the following
notation. For two sets T ,Σ ⊂ N = {1, 2, . . .}, letRT ,Σ be the (random) set of WRPS of a randomly selected n-state
rule f , with temporal period τ and spatial period σ satisfying (τ, σ) ∈ T ×Σ. While our results for existence of PS [7]
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are valid for arbitrary finite T × Σ ⊂ N× N, we impose a divisibility restriction for our result on WRPS.

Theorem 1.1. Select a two-neighbor CA rule f uniformly at random among all nn
2

rules. Let T × Σ ⊂ N × N be
fixed and finite. If there exists (τ, σ) ∈ T × Σ such that σ | τ , then P(RT ,Σ 6= ∅) = c(T ,Σ)/n + o(1/n), where
c(T ,Σ) is a constant depending only on T and Σ.

We give the explicit formula for c(T ,Σ) in equation (1) in Section 5.
In addition to [7], we have investigated periodic solutions for cellular automata in [5, 6] with the emphasis on

maximal temporal periods; some further results and conjectures on robustness are in [8]. As already indicated, much
of the motivation for the present paper came from [4], where all the 64 one-dimensional binary 3-neighbor edge CA
rules and their RPS are studied. To our knowledge, robustness of PS is first addressed for the Exactly 1 rule, i.e., the
elementary CA Rule 22, in [3].

The rest of the paper is organized as follows. In the next section, we recall some preliminary results from [7]. While
we summarize major definitions and tools, we omit the proofs and refer the reader to [7] for a more detailed discussion.
In Section 3, we introduce the property of a tile that distinguishes a WRPS from a PS, i.e., the decidability of labels
in a tile. We establish the probability that a label exhibits such property for a randomly selected rule in Section 4 and
give the proof of Theorem 1.1 in Section 5. In the final section, we discuss the possible directions and methods to
extend and generalize our results.

2 PRELIMINARIES

The main purpose of this section is to gather the relevant definitions and results from [7]. All lemmas are restatements
of results in [7], where the proofs are provided.

2.1 Tiles of PS
We may express a tile with periods τ and σ as T = (ai,j)i=0,...,τ−1,j=0,...,σ−1, once we fix an element in T to be
placed at the position (0, 0). We use the notation rowi(T ) and colj(T ) to denote the ith row and jth column of a tile
T and use ai,j to denote the element at the ith row and jth column of T , where we always interpret the two subscripts
modulo τ and σ, respectively.

Let T1 and T2 be two tiles and ai,j , bk,m be the corresponding elements. If (ai,j , ai,j+1) 6= (bk,m, bk,m+1) for
i, j, k,m ∈ Z+, then T1 and T2 are called orthogonal, denoted by T1 ⊥ T2. In this case, we observe that two
assignments (ai,j , ai,j+1) 7→ ai+1,j+1 and (bk,m, bk,m+1) 7→ bk+1,m+1 occur independently for a uniformly chosen
random CA rule. We say that T1 and T2 are disjoint, and denote this property by T1 ∩ T2 = ∅, if ai,j 6= bk,m, for
i, j, k,m ∈ Z+. Clearly, every pair of disjoint tiles is orthogonal, but not vice versa.

The following quantities associated with a tile play a important role in the sequel. We define the assignment
number of T to be p(T ) = |{(ai,j , ai,j+1) : ai,j , ai,j+1 ∈ T}|, i.e., the number of values of the rule f specified by T .
Also, let s(T ) = |{ai,j : ai,j ∈ T}| be the number of different states in the tile. Clearly, p(T ) ≥ s(T ), so we define
` = `(T ) = p(T )− s(T ) to be the lag of T .

The following lemma from [7] lists two immediate properties of the tile of a PS.

Lemma 2.1 (Lemma 4 in [7]). Let T = (ai,j)i=0,...,τ−1,j=0,...,σ−1 be the tile of a PS with periods τ and σ. Then T
satisfies the following properties:

1. Uniqueness of assignment: if (ai,j , ai,j+1) = (ak,m, ak,m+1), then ai+1,j+1 = ak+1,m+1.

2. Aperiodicity of rows: each row of T cannot be divided into smaller identical pieces.

We remark that for a tile of a PS that is not weakly robust, there may exist periodic columns; see Figure 2(d) in [7]
for an example of a tile of a PS with τ = 4, whose first column has period 2. However, in Section 3, we will show
that, if T is a tile of a WRPS, its columns are necessarily aperiodic.
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2.2 Circular Shifts
We also recall the concept of circular shifts operation on Zσn (or Zτn), the set of words of length σ (or τ ) from the
alphabet Zn, which will be used in Section 2.5.

Definition 2.2. Let Zσn consist of all length-σ words. A circular shift is a map π : Zσn → Zσn, given by an i ∈ Z+ as
follows: π(a0a1 . . . aτ−1) = aiai+1 . . . ai+σ−1, where the subscripts are modulo σ. The order of a circular shift π is
the smallest k such that πk(A) = A for all A ∈ Zσn, and is denoted by ord(π). Circular shifts on Zτn will also appear
in the sequel and are defined in the same way.

Lemma 2.3 (Lemma 6 in [7]). Let π be a circular shift on Zσn and let A ∈ Zσn be an aperiodic length-σ word from
alphabet Zn. Then: (1) ord(π) | σ; and (2) for any d | σ,

| {B ∈ Zσn : A = π(B) for some π with ord(π) = d} | = ϕ(d).

Two words A and B of length σ are equal up to a circular shift if B = π(A) for some circular shift π.

2.3 Directed Graph on Labels
In our study of PS in [7], we extended the notion of label trees from [4] to define the label digraph. As this object is
also of relevance to WRPS, we recall its definition in this subsection.

Definition 2.4. Let A = a0 . . . aτ−1 and B = b0 . . . bτ−1 be two words from alphabet Zn, which we call labels of
length τ . (While it is best to view them as vertical columns, we write them horizontally for reasons of space, as in [4].)
We say that A right-extends to B if f(ai, bi) = bi+1, for all i ∈ Z+, where (as usual) the indices are modulo τ , and
we write A→ B. We form the label digraph associated with a given τ by forming an arc from a label A to a label B
if A right-extends to B.

To give an example, in the PS presented in Figure 1, the label 021 right-extends to the 221 under both rules. We
also remark that only right-extension is considered because the rules being investigated are one-sided, i.e., only left
neighbors are taken into account in the evolution. The right extension relation is the basis for the Algorithm 2.5 below
for finding all the PS with temporal period τ .

Algorithm 2.5.

input : Label digraph Dτ,f of f with temporal period τ
output: The set of all PS tiles

Find all the directed cycles in Dτ,f

for each cycle A0 → A1 → · · · → Aσ−1 → A0 do
form the tile T by placing labels A0, A1, . . . , Aσ−1 on successive columns.
if both spatial and temporal periods of T are minimal then

print T as a PS
end

end

Proposition 2.6 (Proposition 12 in [7] ). All PS of temporal period τ of f can be obtained by the Algorithm 2.5.

2.4 Chen-Stein Method for Poisson Approximation
The most useful tool in proving Poisson convergence is the Chen-Stein method [1]. The local version stated below
(Theorem 4.7 from [10]) was instrumental in [7] and continues to play a similar role in the present paper.
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Let Poisson(λ) be a Poisson random variable with expectation λ, and let dTV be the total variation distance between
measures on Z+. Assume that Ii, i ∈ Γ, are indicators of a finite family of events, pi = E(Ii), W =

∑
i∈Γ

Ii,

λ =
∑
i∈Γ

pi = EW , and Γi = {j ∈ Γ : j 6= i, Ii and Ij are not independent}.

Lemma 2.7. We have

dTV (W, Poisson (λ)) ≤ min
(
1, λ−1

)∑
i∈Γ

p2
i +

∑
i∈Γ,j∈Γi

(pipj + E (IiIj))

 .
2.5 Simple Tiles
If a tile T has zero lag, we call T simple. In [7], we show that while a tile for PS may not be simple, the leading term
in the asymptotics of probability of existence of PS is given by simple tiles. In Section 5, we show that simple tiles
also dominate the probability of existence of WRPS.

Lemma 2.8 (Lemma 15 in [7]). Suppose that we have a CA and T is a tile of its PS. Assume that

T = (ai,j)i=0,...,τ−1,j=0,...,σ−1

is a simple tile. Then

1. the states on each row of T are distinct;

2. if two rows of T share a state, then they are circular shifts of each other;

3. the states on each column of T are distinct; and

4. if two columns of T share a state, then they are circular shifts of each other.

Let T = (ai,j)i=0,...,τ−1,j=0,...,σ−1 be a simple tile. Let

i(T ) = min{k = 1, 2, . . . , τ − 1 : rowk(T ) = π(row0(T )), for some circular shift π : Zσ → Zσ}

be the smallest i such that rowi(T ) is a circular shift of row0(T ), and let i = 0 if and only if T does not have circular
shifts of row0 other than this row itself. Then this circular shift satisfies row(j+i) mod τ (T ) = π(rowj(T )), for all
j = 0, . . . , τ − 1 we denote this circular shift by πrT . We denote by πcT the analogous circular shift for columns.

Lemma 2.9 (Lemma 16 in [7]). Let T be a simple tile of a PS, and let d1 = ord (πrT ) and d2 = ord (πcT ). Then d1

and d2 are equal and divide gcd(τ, σ).

Lemma 2.10 (Lemma 17 in [7]). An integer s ≤ n is the number of states in a simple tile T of PS if and only if there
exists d | gcd(τ, σ), such that s = τσ/d.

The above lemma gives the possible values of s(T ) for a simple tile T and the next one enumerates the number of
simple tiles of PS containing s different states.

Lemma 2.11 (Lemma 18 in [7]). The number of simple tiles of PS with temporal periods τ and spatial period σ
containing s states is

ϕ(d)

(
n

s

)
(s− 1)! ,

where d = τσ/s.
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Consider two different simple tiles T1 and T2 under the rule. The following lemma provides a lower bound on the
combined number of values of the rule f assigned by T1 and T2, in terms of the number of states.

Lemma 2.12 (Lemma 19 in [7]). Let T1 and T2 be two different simple tiles for the same rule. If T1 and T2 have at
least one state in common, then there exist ai,j ∈ T1 and bk,m ∈ T2 such that ai,j = bk,m and ai,j+1 6= bk,m+1.

As a result, if s(T1) = s1, then p(T1) ≥ s1, i.e., there are at least s1 values assigned by T1. If there are s′2 states
in T2 that are not in T1, then there are at least s′2 additional values to assign. With the above lemma, a lower bound of
the number of values to be assigned in T1 and T2 is s1 + s′2 + 1.

3 DECIDABILITY AND WRPS

In order for a PS to be weakly robust, we need one more condition on the directed cycle in the label digraph, which
requires that each label decides its unique child. To be more accurate, let A and B be two labels. Assume that at a
site k ∈ Z the temporal evolution of the states, arranged vertically, is the repeated label A: a0 . . . aτ−1a0 . . . aτ−1 . . . .
Suppose that the states at site k + 1 eventually converge to repetition of B: b0 . . . bτ−1b0 . . . bτ−1 . . . , regardless of
the initial state at site k + 1. In this case, we say that A decides B, and then it is clear that A does not decide C for
any other length-τ label C that is not equal to B up to a circular shift. We now provide a more formal definition.

Definition 3.1. Let A = a0 . . . aτ−1 and B = b0 . . . bτ−1 be two length-τ labels. We call that label A decides B,
denoted as A⇒ B, if the following two conditions are satisfied:

1. label A right-extends to B, i.e., A→ B;

2. for an arbitrary c0 ∈ Zn, recursively define cj+1 = f(aj mod τ , cj); then there exists a j ≥ 0 such that
cj mod τ = bj mod τ .

The following proposition, analogous to Proposition 2.2 in [4], provides an algorithm to verify whether a PS is
weakly robust.

Proposition 3.2. A tile is a WRPS if and only if each column decides the column to its right.

Proof. Assume that a tile T = (ai,j) is a WRPS with columns Aj , j = 0, . . . , σ − 1. Let η be the initial con-
figuration formed by doubly infinite repetition of a0,0 . . . a0,σ−1. If Aj = a0,j . . . aτ−1,j does not decide Aj+1 =

a0,j+1 . . . aτ−1,j+1, for some j = 0, . . . , τ − 1, then there exists a c0 ∈ Zn such that in the position to the right of Aj ,
the states do not converge to a repetition of Aj+1. Now, construct an initial configuration η′ by replacing one a0,j+1

by c0 in η. Then η′ is proper for η, but the advance of the spatial period is stopped, thus v(η′) = 0 and T cannot be
weakly robust.

Conversely, note that if label Aj decides Aj+1, then for any c0 ∈ Zn to the right of a0,j , the label converges to
Aj+1 within nτ iterations. Thus the expansion velocity must be at least 1/(τn).

Recall that by Lemma 2.1, a tile of a PS does not have periodic rows. The following lemma concludes that a
periodic label cannot be a part of WRPS tile, since otherwise the temporal period of the WRPS is reduced.

Lemma 3.3. If T is a tile of WRPS of period τ , then every column has minimal period τ .

Proof. Assume that A is a label of length τ that is formed by concatenating shorter label A′ that has length τ ′. It
is clear that if A ⇒ B = b0 . . . bτ−1, A also decides the circular shift bτ ′bτ ′+1 . . . bτ b0 . . . bτ ′−1. This implies that
b0 = bτ ′ , b1 = bτ ′+1, etc. That is, B is also periodic with period τ ′. By induction, every label in T is periodic with
period τ ′, thus T is temporally reducible.

In a label digraph Dτ,f , we call an arc A → B deciding arc if A ⇒ B and a directed cycle deciding cycle if all
the arcs contained in this cycle are deciding arcs. Algorithm 3.4 finds all WRPS of temporal period τ for rule f .
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Algorithm 3.4.

input : Label digraph Dτ,f of f with temporal period τ
output: The set of all WRPS tiles

Find all deciding cycles in Dτ,f

for each deciding cycle A0 ⇒ A1 ⇒ · · · ⇒ Aσ−1 ⇒ A0 do
form the tile T by placing labels A0, A1, . . . , Aσ−1 on successive columns.
if both spatial and temporal periods of T are minimal then

print T as a WRPS
end

end

Decidability of a label can be interpreted as a property of a certain τ -partite graph. Specifically, we construct label
assignment digraph (LAD) Gτ,n(f,A) of a label A under a rule f in the following manner.

An LAD Gτ,n(f,A) is a τ -partite digraphs with the ith part denoted by (i, ∗) = {(i, j) : j = 0, . . . , n − 1},
i = 0, . . . , τ − 1, so that its vertex set is ∪τ−1

i=0 (i, ∗). The arcs of the digraph Gτ,n(f,A) are determined as follows:
for all i = 0, . . . , τ − 1 and j = 0, . . . , n− 1, there is an arc (i, j)→ (i+ 1, j′) if f(ai, j) = j′. In particular, every
node in a LAD has out-degree 1 since it represents a deterministic (local) CA dynamics. As usual, we identify i = τ

with i = 0, i = τ + 1 with i = 1, etc. We next state the conditions for Gτ,n(f,A) that characterize when A→ B and
when A⇒ B.

Definition 3.5. Let A = a0 . . . aτ−1 and B = b0 . . . bτ−1 be two labels. Consider the following conditions on a
τ -partite graph G:

1. G contains the cycle (0, b0)→ (1, b1)→ · · · → (τ − 1, bτ−1)→ (0, b0);

2. there is a directed path in G from (i, j) to (0, b0) for all i = 0, . . . , τ − 1 and j = 0, . . . , n− 1.

Let E(A,B) be the set of all τ -partite digraphs G, which satisfy condition (1) and let D(A,B) be the set of all such
digraphs G that satisfy both conditions (1) and (2).

Lemma 3.6. Let A = a0 . . . aτ−1 and B = b0 . . . bτ−1 be any two labels. Then A → B if and only if Gτ,n(f,A) ∈
E(A,B) and A⇒ B if and only if Gτ,n(f,A) ∈ D(A,B).

We skip the proof as it follows immediately from the definitions, and instead give two examples for different rules
by Figure 2. For the reader’s convenience, we denote a node (i[ai], j) instead of (i, j) as in the definition. The two
labels are A = 12 and B = 00 in both cases, where n = 3 states are assumed and the states are 0, 1 and 2. Under
the rule that generates the left LAD, A → B, but A 6⇒ B, i.e., Gτ,n(f,A) ∈ E(A,B) \ D(A,B); under the rule that
generates the right LAD, A⇒ B, i.e., Gτ,n(f,A) ∈ D(A,B).

A WRPS tile gives σ successive pairs of columns and thus σ LADs. In each of these LADs, count the number of
vertices on the longest path from a vertex to the unique oriented cycle, which are not on the cycle. (In the example on
the right of Figure 2, this number is 4.) Then let ` be the largest such number among all LADs. Then

v ≥ 1/` ≥ 1/((n− 1)τ).

This straightforward lower bound on v is typically rather poor and computing v precisely appears to be a highly
nontrivial task. As a result, we do not attempt to study the distribution of expansion velocities in random rules.
However, with the aid of the computer, we can often get quite good bounds on v for a particular WRPS. For illustration,
we estimate the WRPS in Figure 1(a)(b)(c), by a variation of the method introduced in [4]. Fix a WRPS, and choose

8



(0[1], 0)

(0[1], 1)

(0[1], 2)

(1[2], 0)

(1[2], 1)

(1[2], 2)

(0[1], 0)

(0[1], 1)

(0[1], 2)

(1[2], 0)

(1[2], 1)

(1[2], 2)

FIGURE 2: Two LADs of label A = 12 under two different rules. We use (i[ai], j) to represent a node for the reader’s
convenience. In the left one, A→ 00 but A 6⇒ 00; in the right one, A⇒ 00.

an integer a ≥ 1. Consider the set I of all proper initial configurations η0 for this PS, in which we replace the PS by
an arbitrary configuration on [1,∞). We let Ta to be the smallest time t such that st(η0) ≥ a for all η0 ∈ I. For any
η0 ∈ I, iteration gives s`Ta(η0) ≥ `a for any integer ` ≥ 0, and then

st(η0)

t
≥
sbt/TacTa(η0)

t
≥ bt/Taca

t
→ a

Ta
.

We conclude that
v ≥ a/Ta.

Computation of Ta is finite, albeit costly: we need only compute the states in the interval [1, a], therefore the number
of initial configurations that need to be checked is στ · na. (We need to choose the tile rotation with the upper right
corner at the origin, and the states in [1, a].) In our example, a computer verification gives T9 = 17 and therefore
v ≥ 9/17 ≈ 0.5294. To obtain nontrivial upper bounds, we consider proper configurations η0 which are periodic on
[1,∞), and in addition are such that the dynamics keeps the interface between the two spatially periodic configurations
uniformly bounded in time (and thus periodic), so that v(η0) is computable. An upper bound is simply the smallest of
the resulting v(η0) over all such η0 we manage to find. For our example, the best η0, obtained by a computer search,
is the one in Figure 1(b), which gives v ≤ 4/7 ≈ 0.5714.

4 DECIDABILITY PROBABILITY

We call a label A = a0 . . . aτ−1 simple if ai 6= aj for i 6= j. We next prove the main result regarding the probability
of the decidability of simple labels.

Theorem 4.1. Fix a number of states n and a τ ≤ n. Let A = a0 . . . aτ−1 be a simple label with length τ and
B = b0 . . . bτ−1 be any other label (not necessarily simple) of length τ . Then

P (A⇒ B) =
nτ − (n− 1)τ

nτ
· 1

nτ
.

The theorem is proved in three lemmas below. At the heart of the argument is a calculation of the probability that
a random τ -partite graph LAD, introduced in the previous section, is a directed pseudo-tree, i.e., a weakly connected
directed graph that has at most one directed cycle.

Fix a label A = a0 . . . aτ−1. The LAD Gτ,n(f,A) becomes a random graph if the rule f is selected randomly and
we are interested in P (Gτ,n(f,A) ∈ E(A,B)) and P (Gτ,n(f,A) ∈ D(A,B)). The case that A is simple is easier
as we can take advantage of independence of assignments of f . To be precise, let A be a simple label with length
τ and B be an arbitrary label with the same length. We clearly have that P (Gτ,n(f,A) ∈ E(A,B)) = 1/nτ , as the
assignments on (aj , bj)’s are independent.

Next, we find P (Gτ,n(f,A) ∈ D(A,B)) for simple label A thus complete the proof of Theorem 4.1. We start by
the following observation, which follows from symmetry.
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Lemma 4.2. If A and A′ are simple labels with the same length, P(A⇒ B) = P(A′ ⇒ B) for any label B; if B and
B′ are labels with the same length, P(A⇒ B) = P(A⇒ B′) for any simple label A.

To find P (Gτ,n(f,A) ∈ D(A,B)), we adapt the counting techniques in [11] to enumerate D(A,B). We start by
proving the following combinatorial result.

Lemma 4.3. Let Ak,` =

(
n− 1

k

)
(`+ 1)k(n− 1− `)n−1−k , and assume that km+1 is a non-negative integer. Then

Sm :=

n−1∑
km=0

Akm,km+1 . . .

[
n−1∑
k2=0

Ak2,k3

[
n−1∑
k1=0

Ak1,k2(k1 + 1)nn−2

]]
= n(m+1)(n−2) [Pm+1 + km+1(n− 1)m] ,

where Pm = nm − (n− 1)m.

Proof. We use induction on m. Assume m = 1. Observe that

Ak,` = nn−1P
(

Binomial
(
n− 1,

`+ 1

n

)
= k

)
.

Therefore,

n−1∑
k1=0

Ak1,k2(k1 + 1)nn−2

= nn−2 · nn−1 ·
[
1 + (n− 1)

k2 + 1

n

]
= n2(n−2) [P2 + k2(n− 1)] .

Now, by the induction hypothesis

Sm =

n−1∑
km=0

Akm,km+1
Sm−1

= nm(n−2)
n−1∑
km=0

(
n− 1

km

)
(km+1 + 1)km(n− 1− km+1)n−1−km

[
Pm + km(n− 1)m−1

]
= nm(n−2)

[
nn−1Pm + (n− 1)m(km+1 + 1)nn−2

]
= n(m+1)(n−2) [nPm + km+1(n− 1)m + (n− 1)m]

= n(m+1)(n−2) [Pm+1 + km+1(n− 1)m] ,

which is the desired result.

Now, we are ready to prove the key combinatorial result.

Lemma 4.4. Let A and B be labels with length τ and let A be simple. Then |D(A,B)| = nτ(n−2)(nτ − (n− 1)τ ).

Proof. The argument we give partly follows the proof of Theorem 1 in [11]. Applying Lemma 4.2, we may assume
that B = 0 . . . 0, without loss of generality. Observe that the LAD then has a cycle (0, 0) → (1, 0) → · · · →
(τ − 1, 0)→ (0, 0). We need to count the number of LADs such that every other vertex has a direct path to this cycle.

In the first half of the proof, we assign arcs from (τ − 1, ∗) to (0, ∗), (τ − 2, ∗) to (τ − 1, ∗), . . . , (1, ∗) to (2, ∗).
In the second half, we assign arcs from (0, ∗) to (1, ∗). As any cycle must go though all the parts, it is the second half
that guarantees the uniqueness of the cycle.
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First, choose a kτ−1 ∈ {0, . . . , n− 1}, pick kτ−1 nodes in (τ − 1, ∗) \ {(τ − 1, 0)}, and form kτ−1 arcs from those

nodes to the node (0, 0). There are
(
n− 1

kτ−1

)
choices for a fixed kτ−1. Denote this subset of (τ − 1, ∗) together with

(τ − 1, 0) as (τ − 1, ∗)′; thus, (τ − 1, ∗)′ ⊂ (τ − 1, ∗) are the nodes in (τ − 1, ∗) that are mapped to (0, 0). Assign the
images of the nodes in (τ − 1, ∗) \ (τ − 1, ∗)′ to (0, ∗) \ {(0, 0)}, for which there are (n− 1)n−1−kτ−1 choices. So,
for a fixed kτ−1 to assign the image of nodes in (τ − 1, ∗), there are(

n− 1

kτ−1

)
(n− 1)n−1−kτ−1

choices.
Second, we need to assign the image of the nodes in (τ − 2, ∗) to (τ − 1, ∗). Choose a kτ−2 ∈ {0, . . . , n − 1},

pick kτ−2 nodes in (τ − 2, ∗) \ (τ − 2, 0), and form kτ−2 arcs from those nodes to the nodes in (τ − 1, 0)′. There are(
n− 1

kτ−2

)
choices to choose those nodes for a fixed kτ−2 and (kτ−1 + 1)kτ−2 choices to assign the images. Denote

this subset of (τ − 2, ∗) together with (τ − 2, 0) as (τ − 2, ∗)′. Now, the images of the nodes in (τ − 2, ∗) \ (τ − 2, ∗)′
should be in (τ − 1, ∗) \ (τ − 1, ∗)′, for which there are (n− 1− kτ−1)n−1−kτ−2 choices. Hence, for fixed kτ−1 and
kτ−2, to assign the image of the nodes in (τ − 2, ∗) to (τ − 1, ∗), there are(

n− 1

kτ−2

)
(kτ−1 + 1)kτ−2(n− 1− kτ−1)n−1−kτ−2

choices.
Repeat the above steps for (τ−3, ∗), . . . , (1, ∗). To complete the construction, we assign the images of the nodes in

(0, ∗) \ {(0, 0)}. We choose a t ∈ {0, . . . , n− 2}, and add t arcs from (0, ∗) \ {(0, 0)} to (1, ∗) \ (1, ∗)′ consecutively
as specified below, making sure to avoid creating a cycle that does not include (0, 0).

In the evolving digraph, a component is a weakly connected component, obtained by ignoring the orientation of
edges. First note that there are n components in the current digraph; more precisely, each node of (0, ∗) belongs to a
different component (possibly consisting of a single node).

To select the first arc, pick a b ∈ (1, ∗) \ (1, ∗)′ (n− 1− k1 choices). There is one component that contains (0, 0)

and one other component containing b. As a result, there are n−2 other components and among each of them, there is
a node in (0, ∗)\{(0, 0)} with zero out-degree. Among these n−2 nodes, we select one and connect it to b. Therefore,
there are (n − 2)(n − 1 − k1) choices for the first arc. The addition of this arc decreases the number of components
by one.

To assign the second arc, again pick a b ∈ (1, ∗) \ (1, ∗)′ (again n− 1− k1 choices). Now there are exactly n− 3

components, among which there is a node in (0, ∗) \ {(0, 0)} with zero out-degree. We again select one and connect
it with this b, leading to (n− 3)(n− 1− k1) choices.

In subsequent steps, we add an arc from a to b, where b ∈ (1, ∗) \ (1, ∗)′ is arbitrary, while a ∈ (0, ∗) \ {(0, 0)} is a
unique node with zero out-degree in any component not containing b in the graph already constructed. The algorithm
guarantees that the number of components decreases by one after each arc is added, i.e., that a cycle not including
(0, 0) is never created.

In the above steps we add t arcs, with the number of choices, in order: (n − 2)(n − 1 − k1), (n − 3)(n − 1 −
k1) . . . , (n− t− 1)(n− 1− k1). As any order in which they are assigned produces the same digraph, there are

(n− 2)(n− 1− k1)(n− 3)(n− 1− k1) · · · (n− t− 1)(n− 1− k1)

t!

=

(
n− 2

t

)
(n− 1− k1)t

choices. Finally, we assign the remaining n− 1− t arcs to (1, ∗)′, for which we have (k1 + 1)n−1−t choices. Hence,
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for a fixed k1, to assign the arcs originating from (0, ∗) \ {(0, 0)}, there are

n−2∑
t=0

(
n− 2

t

)
(n− 1− k1)t(k1 + 1)n−1−t = (k1 + 1)nn−2

choices, in total. Lastly, we use Lemma 4.3 to get

|D(A,B)| =
n−1∑

kτ−1=0

(
n− 1

kτ−1

)
(n− 1)n−1−kτ−1

·

 n−1∑
kτ−2=0

Akτ−2,kτ−1 · · ·

[
n−1∑
k2=0

Ak2,k3

[
n−1∑
k1=0

Ak1,k2(k1 + 1)nn−2

]]
· · ·


= n(τ−1)(n−2)

n−1∑
kτ−1=0

(
n− 1

kτ−1

)
(n− 1)n−1−kτ−1 [Pτ−1 + kτ−1(n− 1)τ−2]

= n(τ−1)(n−2)
[
nn−1Pτ−1 + (n− 1)τ−1nn−2

]
= nτ(n−2)Pτ ,

as claimed.

Now, proof of Theorem 4.1 is straightforward.

Proof of Theorem 4.1. It is clear that the number of LADs Gτ,n(f,A) is nτn. Then, by Lemma 4.4,

P(A⇒ B) = P(Gτ,n(f,A) ∈ D(A,B)) =
nτ(n−2)[nτ − (n− 1)τ ]

nτn
=
nτ − (n− 1)τ

nτ
· 1

nτ
,

as claimed.

By Theorem 4.1, assuming that A is simple and B is any label of the same length τ , we have

P(A⇒ B
∣∣ A→ B) =

nτ − (n− 1)τ

nτ
=
τ

n
+ o

(
1

n

)
.

The case when A is not simple is much harder, since the parts of Gτ,n(f,A) are no longer independent from each
other for a random rule f . While it is possible to obtain the deciding probability for a specific label using a similar
method as in Theorem 4.1, it is hard to find a general formula or even to prove this probability is always O(1/n). We
are, however, able to obtain the following weaker result that the probability goes to 0.

Theorem 4.5. Let A = a0 . . . aτ−1 and B = b0 . . . bτ−1 be two fixed labels (not necessarily simple) with length τ .
Then

P
(
Gτ,n(f,A) ∈ D(A,B)

∣∣ Gτ,n(f,A) ∈ E(A,B)
)

= o(1).

Equivalently, we have
P
(
A⇒ B

∣∣ A→ B
)

= o(1).

Proof. Again, we assume that B = 0 . . . 0. We remark that, unlike Theorem 4.1, label B here does affect the deciding
probability. However, the case of general B does not significantly alter the proof but it makes it transparent, so we
choose this B for readability.
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Let a′0, . . . , a
′
`−1 be the different states in A and mi be the repetition numbers of ai’s, for i = 0, . . . , `− 1. Clearly,

`−1∑
i=0

mi = τ . Let ζ be the cycle (0, 0)→ (1, 0)→ · · · → (τ − 1, 0)→ (0, 0). It suffices to show that

P(there are no other cycles in Gτ,n(f,A)
∣∣ ζ ∈ Gτ,n(f,A)) = o(1).

To accommodate the conditional probability, our probability space will be a uniform choice of a digraph from E(A,B)

for the remainder of the proof.
Fix an integer K ≥ 1. Call a cycle ζ ′ = (0, j0)→ (1, j1)→ · · · → (0, j0) simple with respect to ζ if:

1. ζ ′ contains no parallel arcs, i.e., if (i, j) and (i′, j) are nodes in ζ ′, then ai 6= ai′ ; and

2. if (i, j) is on ζ and (i′, j′) on ζ ′, then (ai′ , bj′) 6= (ai, bj).

Let Yk be the random number of simple cycles with respect to ζ with length exactly τk and ZK =

K∑
k=1

Yk be the

random variable that counts the number of such cycles with length less than or equal to τK. We will show that, for

any K, lim
n→∞

P(ZK ≥ 1) = 1 − exp

(
−

K∑
k=1

1/k

)
, converging to 1 as K → ∞. As a consequence, the LAD has

another simple cycle asymptotically almost surely (in n), and this will conclude the proof.
We first compute the expectation of Yk:

EYk =
(n− 1)m1k · · · (n− 1)m`k

k
· 1

nτk
→ 1

k
, as n→∞.

Here and in the sequel, we use the falling factorial notation (x)n = x(x − 1) · · · (x − n + 1). The first factor counts
the number of simple cycles with respect to ζ and the second factor is the probability that a fixed simple cycle with
length τk is formed.

Now, let λK = EZK =

K∑
k=1

EYk. We use the notation Γk to denote the set of all possible simple cycles with length

τk and define Γ =
⋃

1≤k≤K

Γk as set of such cycles with length less than or equal to τK. The set Γi consists of cycles

in Γ that has at least one node in common with the cycle i. The random variable Ii is the indicator that the cycle i ∈ Γ

is formed and pi = EIi.
We use Lemma 2.7 to find an upper bound for dTV(ZK ,Poisson(λK)). For the first term

∑
i∈Γ

p2
i , we have

∑
i∈Γ

p2
i =

K∑
k=1

(n− 1)m1k · · · (n− 1)m`k
k

1

n2τk
= O

(
1

nτ

)
.

To obtain an upper bound for
∑
i∈Γ

∑
j∈Γi

pipj , we note that if i is the index of a simple cycle of length τr, then we may

count the number of length-τk simple cycles that have no common vertex with the cycle i, that is

|Γk \ Γi| =
(n− 1− r)m1k · · · (n− 1− r)m`k

k
.

It immediately follows that,

|Γk ∩ Γi|

=
(n− 1)m1k · · · (n− 1)m`k − (n− 1− r)m1k · · · (n− 1− r)m`k

k

= O
(
nτk−1

)
,
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as the highest powers of n in the numerator cancel. Hence, for a fixed r and k, we have∑
i∈Γr

∑
k∈Γi∩Γk

pipj

=
(n− 1)m1r · · · (n− 1)m`r

r
· |Γk ∩ Γi| ·

1

nτr
· 1

nτk

= O
(

1

n

)
.

Therefore, the total sum ∑
i∈Γ

∑
j∈Γi

pipj = O
(
K2

n

)
.

For the last term in the upper bound in Lemma 2.7 , we observe that EIiIj = 0 if two cycles have shared vertices.
Now, by Lemma 2.7,

P (ZK = 0) ≤ e−λK +O
(
K2

n

)
≤ 1

K + 1
+O

(
K2

n

)
.

Sending n→∞ and noting that K is arbitrary conclude the proof.

5 PROOF OF THEOREM 1.1

Let T be a tile with τ rows and σ columns. Define the rank of T to be the largest x such that there exist x columns of
T with distinct xτ states. We denote the rank of a tile as rank(T ). For example, the tiles

T1 =
0 1 2 3

2 3 0 1
, T2 =

0 1 2 1

2 1 0 1
.

have rank(T1) = 2 and rank(T2) = 1.
Analogously to the notation in [7], we denote by R(`)

τ,σ,n as the set of tile of WRPS that has lag `. Thus the set of
simple WRPS is R(0)

τ,σ,n. We also use the notation R(0,y)
τ,σ,n ⊂ R(0)

τ,σ,n to denote the set of WRPS whose tile is simple
and has rank y. We use Tτ,σ,n to denote the set of all PS tiles; to be more precise, this is the set of all τ × σ arrays T
with state space Zn that satisfy properties 1 and 2 in Lemma 2.1, so that there exists a CA rule with a PS given by T .
We also use T (0)

τ,σ,n and T (0,y)
τ,σ,n to denote the tiles in Tτ,σ,n that are simple, and that are simple with rank y, respectively.

Our first step is to study the probability that R(0,x)
τ,σ,n is not empty, where x = σ/ gcd(τ, σ). Before we advance, we

state two lemmas on simple tiles.

Lemma 5.1. Let T be a simple tile. Then

1. rank(T ) ≥ σ/ gcd(σ, τ);

2. rank(T ) = y if and only if s(T ) = τy. In particular, rank(T ) = σ/ gcd(σ, τ) if and only if s(T ) =

τσ/ gcd(σ, τ) = lcm(σ, τ).

Proof. By Lemma 2.8, the states on each column of T are distinct and two columns either share no common states
or are circular shifts of each other. As a result, rank(T ) ≥ s(T )/τ . Together with Lemma 2.10, this proves (1) and
implication (=⇒) of (2). The reverse implication in (2) follows from s(T ) ≥ τ · rank(T ).

In the sequel, we write
d = gcd(τ, σ), k = lcm(σ, τ), x = σ/d.
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By Lemma 5.1, k is the number of distinct states in a simple tile with rank x. As before, ϕ is the Euler totient function.
We index the tiles in T (0,x)

τ,σ,n in an arbitrary way. Let

Tm =
{

(Ti, Tj) ⊂ T (0,x)
τ,σ,n × T (0,x)

τ,σ,n : i < j and Ti, Tj have m states in common
}
.

The following lemma gives the cardinality of these sets.

Lemma 5.2. The following enumeration results hold:

1. the set T (0,x)
τ,σ,n has cardinality ϕ(d)

(
n

k

)
(k − 1)!;

2. if m < k, the set Tm has cardinality

1

2
ϕ(d)

(
n

k

)
(k − 1)!ϕ(d)

(
k

m

)(
n− k
k −m

)
(k − 1)! = O

(
n2k−m) ;

3. if m = k, the set Tm has cardinality

1

2
ϕ(d)

(
n

k

)
(k − 1)! (ϕ(d)(k − 1)!− 1) = O

(
nk
)
.

Proof. Part (1) follows directly from Lemma 2.11. Then, part (2) follows from (1). Part (3) also follows from (1),
after we note that once we select Ti, we have all k colors fixed and we are not allowed to select Tj equal to Ti.

We will also need the following consequence of Theorem 4.1.

Lemma 5.3. Let T be a simple tile and rank(T ) = y. Let A0, . . . , Aσ−1 be the labels in T . Then we have

P
(
Ai ⇒ Ai+1, for i = 0, . . . , σ − 1

∣∣ Ai → Ai+1, for i = 0, . . . , σ − 1
)

=

(
τ

n
+ o

(
1

n

))y
.

Proof. Assume that the y columns with yτ states have indices in I ⊂ {0, . . . , σ−1} and let those columns have labels
Ai, i ∈ I . As Ai’s do not share any states, the events {Ai → Ai+1}, i ∈ I are independent, and so are {Ai ⇒ Ai+1},
i ∈ I . We use Lemma 2.8 and Theorem 4.1 to get

P
(
Ai ⇒ Ai+1, for i = 0, . . . , σ − 1

∣∣ Ai → Ai+1, for i = 0, . . . , σ − 1
)

=
P (Ai ⇒ Ai+1, for i ∈ I)

P (Ai → Ai+1, for i ∈ I)

=

∏
i∈I P (Ai ⇒ Ai+1)∏
i∈I P (Ai → Ai+1)

=

(
nτ − (n− 1)τ

nτ
· 1

nτ

)y/(
1

nτ

)y
=

(
τ

n
+ o

(
1

n

))y
,

as desired.

Theorem 1.1 will now be established through next three propositions, the first one of which deals with existence of
WRPS with zero lag and minimal rank x = σ/d.
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Proposition 5.4. Recall that x = σ/ gcd(τ, σ). We have

P
(
R(0,x)
τ,σ,n 6= ∅

)
=
c(τ, σ)

nx
+ o

(
1

nx

)
,

where

c(τ, σ) =
ϕ(gcd(τ, σ))τσ/ gcd(τ,σ)

lcm(τ, σ)
.

In particular, when τ and σ are coprime, c(τ, σ) = τσ−1/σ.

Proof. We first find an upper bound by Markov inequality.

By Lemma 5.2, we have that |T (0,x)
τ,σ,n | = ϕ(d)

(
n

k

)
(k− 1)!. The probability that a tile in T (0,x)

τ,σ,n forms a PS is 1/nk

and the probability that the desired decidability, thus weak robustness, holds is (τ/n+ o(1/n))
x by Lemma 5.3. As a

result, we have

E
(
|R(0,x)

τ,σ,n|
)

= ϕ(d)

(
n

k

)
(k − 1)!

1

nk

(
τ

n
+ o

(
1

n

))x
=
c(τ, σ)

nx
+ o

(
1

nx

)
,

as an upper bound.
To find an asymptotically matching lower bound, we use the Bonferroni’s inequality

P

(⋃
i

Ai

)
≥
∑
i

P(Ai)−
∑
i<j

P (Ai ∩Aj) .

Here, Ai is the event that Ti ∈ T (0,x)
τ,σ,n is formed as a simple WRPS, for i = 1, . . . , ϕ(d)

(
n

k

)
(k − 1)!. Clearly,∑

i

P(Ai) = E
(
|R(0,x)

τ,σ,n|
)

. Then it suffices to show that
∑
i<j

P(Ai ∩Aj) = o (1/nx).

Recall the definition of Tm given before Lemma 5.2. For a pair of tiles (Ti, Tj) ∈ Tm, there are 2k −m different
colors in Ti∪Tj . By Lemma 2.12, there is at least one additional restriction on the number of maps. Using this lemma,
the enumeration result Lemma 5.2, and Lemma 5.3, we have

∑
i<j

P(Ai ∩Aj) =

k∑
m=0

∑
i<j

P (Ai ∩Aj ∩ {(Ti, Tj) ∈ Tm})

=
k∑

m=0

O
(
n2k−m) 1

n2k−m+1

(
τ

n
+ o

(
1

n

))x
= O

(
1

nx+1

)
.

Next, we consider all simple tiles and show that among simple tiles, the WRPS with rank x provide the leading
order in the probability of existence of WRPS.

Proposition 5.5. We have

P
(
R(0)
τ,σ,n 6= ∅

)
=
c(τ, σ)

nx
+ o

(
1

nx

)
,

where c(τ, σ) is defined in Proposition 5.4.
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Proof. First, we note the following bounds for P(R(0)
τ,σ,n 6= ∅),

P
(
R(0,x)
τ,σ 6= ∅

)
≤ P

(
R(0)
τ,σ,n 6= ∅

)
≤ P

(
R(0,x)
τ,σ,n 6= ∅

)
+
∑
y

P
(
R(0,y)
τ,σ,n 6= ∅

)
,

where the last sum is over y = σ/d′ for d′ | gcd(τ, σ) and d < gcd(τ, σ). As x < y, we have from Lemmas 5.1–5.3,

P
(
R(0,y)
τ,σ,n 6= ∅

)
≤ E

(
|R(0,y)

τ,σ,n|
)

= ϕ(dy)

(
n

ky

)
(ky − 1)!

1

nky

(
τ

n
+ o

(
1

n

))y
= o

(
1

nx

)
,

where, ky = τy is the number of states in a tile in R(0,y)
τ,σ,n and dy = σ/y. The conclusion now follows from

Proposition 5.4.

Lemma 5.6. If ` > 0, then

P
(
R(`)
τ,σ,n 6= ∅

)
= o

(
1

n

)
.

Proof. For a fixed `, let gτ,σ,`(s) count the number of tiles of lag ` with periods τ and σ, and s different fixed states.
For a fixed such tile, 1/ns+` is the probability that it is a tile of a PS, as there are s + ` assignments to make by a
random map, and each assignment occurs independently with probability 1/n. After we know it is a tile of a PS,
Theorem 4.5 implies that it is a tile of a WRPS with probability o(1). Thus,

P
(
R(`)
τ,σ,n 6= ∅

)
≤ E

(
|R(`)

τ,σ,n|
)

=

τσ∑
s=1

(
n

s

)
gτ,σ,`(s)

1

ns+`
· o(1)

= o

(
1

n`

)
= o

(
1

n

)
.

Next, we extend Proposition 5.5 to cover non-simple tiles. It is here that we impose the condition that σ | τ .

Proposition 5.7. If σ | τ , then

P (Rτ,σ,n 6= ∅) =
c(τ, σ)

n
+ o

(
1

n

)
.

Proof. First, note that σ | τ implies that x = σ/ gcd(τ, σ) = 1 and as a result of Proposition 5.5, we have

P
(
R(0)
τ,σ,n 6= ∅

)
=
c(τ, σ)

n
+ o

(
1

n

)
.

The desired result now follows from the bounds

P
(
R(0)
τ,σ,n 6= ∅

)
≤ P (Rτ,σ,n 6= ∅) ≤

τσ∑
`=0

P
(
R(`)
τ,σ,n 6= ∅

)
and Lemma 5.6.

Let
c(T ,Σ) =

∑
(τ,σ)∈T ×Σ

c(τ, σ), (1)

where c(τ, σ) is defined in Proposition 5.4.
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Proof of Theorem 1.1. If σ - τ , then x = σ/ gcd(τ, σ) > 1, and by Proposition 5.5 and Lemma 5.6,

P (Rτ,σ,n 6= ∅) ≤ P
(
R(0)
τ,σ,n 6= ∅

)
+

τσ∑
`=1

P
(
R(`)
τ,σ,n 6= ∅

)
=
c(τ, σ)

nx
+ o

(
1

n

)
= o

(
1

n

)
.

These bounds, together with Proposition 5.7, now give the desired result:

c(T ,Σ)

n
+ o

(
1

n

)
=
∑
σ|τ

P(Rτ,σ,n 6= ∅)

≤ P(RT ,Σ,n 6= ∅)

≤
∑
σ|τ

P(Rτ,σ,n 6= ∅) +
∑
σ-τ

P(Rτ,σ,n 6= ∅) ≤
c(T ,Σ)

n
+ o

(
1

n

)
.

6 DISCUSSION

Inspired by [4], we prove that the probability that a randomly chosen CA has a weakly robust periodic solution with
periods in the finite set T × Σ is asymptotically c(T ,Σ)/n, provided that T × Σ contains a pair (τ, σ) with σ | τ . A
natural first question is whether the divisibility condition may be removed.

Question 6.1. LetRτ,σ,n be the set of WRPS with periods τ and σ from a random rule f . Do we have

P(Rτ,σ,n 6= ∅) =
c(τ, σ)

nx
+ o

(
1

nx

)
,

where x = σ/ gcd(τ, σ)?

A possible strategy to answer Question 6.1 affirmatively is through proving the following two conjectures, the first
of which provides a lower bound of the rank of a tile. Recall that x = σ/ gcd(τ, σ).

Conjecture 6.2. Let T be a tile of a WRPS of period τ and σ and ` = p(T )− s(T ). Then rank(T ) ≥ x− `.

We recall that a tile of a WRPS satsifies the properties stated in Lemmas 2.1 and 3.3. The next conjecture presents
an asymptotic property similar to the one in Theorem 4.5. In its formulation, we assume validity of Conjecture 6.2:
for a tile T of a WRPS, we let I = I(T ) ⊂ {0, . . . , σ − 1} be the index set with |I| = x − `, such that the labels
indexed by I are the leftmost x− ` labels without a repeated state.

Conjecture 6.3. Assume that T is a tile of a WRPS. Then there exists a label Aj with index j /∈ I so that

P
(
Aj ⇒ Aj+1

∣∣ {Ai ⇒ Ai+1 for all i ∈ I}
)

= o(1).

If there exists a label j that does not share any state with Ai, for any i ∈ I , the conjecture can be proved in the same
way as Theorem 4.5. To see how Question 6.1 is settled in the case that both of the conjectures are satisfied, use again
the bounds

P
(
R(0)
τ,σ,n 6= ∅

)
≤ P (Rτ,σ,n 6= ∅) ≤ P

(
R(0)
τ,σ,n 6= ∅

)
+
∑
`

E
(
|R(`)

τ,σ,n|
)
,

and then, with gτ,σ(s) as in the proof of Lemma 5.6, and using Lemma 5.3,

E
(
|R(`)

τ,σ,n|
)

=

τσ∑
s=1

(
n

s

)
gτ,σ(s)

1

nm
· O
(

1

nx−`

)
· o(1) = o

(
1

nx

)
.

To provide some modest evidence for the validity of Conjecture 6.2, we prove that it holds when σ = 2 or τ = 2.
Conjecture 6.3 remains open even in these cases. We begin by the following lemma.
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Lemma 6.4. Let T be a tile of a WRPS with σ = 2 and odd τ . Fix an arbitrary row as the 0th row. Let Mt =

{maps up to t th row}, St = {states up to t th row} and `t = |Mt| − |St|, for t = 0, 1, . . . , τ − 1. Assume the
(t+ 1)th row of the tile is ab. Then:

1. if a ∈ St and b ∈ St, `t+1 − `t = 2;

2. if exactly one of a and b is in St, then `t+1 − `t = 1; and

3. if a /∈ St and b /∈ St, `t+1 − `t = 0.

Proof. Write `t+1 − `t = (|Mt+1| − |Mt|)− (|St+1| − |St|). Observe that a 6= b, as otherwise the spatial period of
the tile is reducible. In addition, (a, b) /∈ Mt, as otherwise T is temporally reducible, and (b, a) /∈ Mt, as otherwise
τ is even. Hence, |Mt+1| − |Mt| = 2, which implies the claim.

Proof of Conjecture 6.2 when σ = 2. If τ is even, we need to show that rank(T ) ≥ 1− `. This is trivial if ` ≥ 1, and
follows from Lemma 2.8 when ` = 0.

If τ is odd, we must show that rank(T ) ≥ 2− `. We may assume ` = 1 as otherwise this is immediate (as above).
Then there exists exactly one t ∈ {0, . . . , τ − 1} at which Case 2 of Lemma 6.4 happens, and otherwise Case 3
happens. If a ∈ St, then column with b has no repeated state, and vice versa.

Proof of Conjecture 6.2 when τ = 2. We will prove this for any tile that satisfies the properties stated in Lemmas 2.1
and 3.3. We assume that no two different labels of T are rotations of each other; otherwise the argument is similar.

We use induction on the lag. If `(T ) = 0, T is simple and Lemma 2.8 applies. Suppose now the statement is true
for any tile T with `(T ) = ` ≥ 0. Now, consider a tile T with `(T ) = ` + 1. As `(T ) ≥ 1, there is at least one
repeated state, say a. Consider two appearance of a and its neighbors:

bac and b′ac′.

As τ = 2 and T has no rotated columns, b 6= b′ and c 6= c′. Now replace the a in bac by an arbitrary state not
represented in T , say z, and denote the new tile by T ′. Note that T ′ also satisfies the properties in Lemmas 2.1
and 2.8. Moreover, p(T ′) = p(T ) and s(T ′) = s(T ) + 1 imply that `(T ′) = `. By inductive hypothesis, rank(T ′) ≥
σ/ gcd(σ, τ) − `. Among rank(T ′) labels of T ′ without a repeated state, at most one has the state z. Excluding this
label, if necessary, we conclude that rank(T ) ≥ σ/ gcd(σ, τ)− (`+ 1).

Besides the above two special cases, we are also able to prove Conjecture 6.2 for a special class of tiles, which
may give a hint about the general case. Within T , fix an arbitrary row as the 0th row and find the smallest τ̃ such that
rowτ̃ is a cyclic permutation of row0. It is likely that such τ̃ does not exist, in which case define τ̃ = τ . We call T
semi-simple if p(T ) = τ̃σ; i.e., within the first τ̃ rows in T , there are no repeated states. We omit the proof of our last
lemma, as it is very similar to the argument above.

Lemma 6.5. A semi-simple tile T has rank at least σ/ gcd(τ, σ)− `.
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