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Abstract.  Over the past 40 years, it has been observed that many of the simplest random and deterministic local

growth dynamics expand at a linear rate in each radial direction, and attain an asymptotic geometry. Shape theorems

to this effect have been proved in several instances. In a similar manner, initially very large holes within

supercritical local dynamics may be expected to attain a characteristic shape as they shrink, a while before

disappearing. We describe a general theory of  which formalizes this phenomenology, and then applyreverse shapes

it to first-passage percolation and related deterministic and stochastic growth models. As an application, we analyze

the last holes of such models started from sparse product measures.
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1. Introduction

 Since the pioneering work of Broadbent and Hammersley  and Eden  in the late 1950s,[BH] [Ede]

there has been a steady stream of research on shape theory, ��� ���������	 
������ 
���	���	� ������

from many of the simplest spatial growth algorithms attain an asymptotic geometry as they spread.

Starting from a bounded set  of occupied sites, if the dynamics are local, homogeneous andE

supercritical, then one typically finds that the occupied crystal  at time  satisfiesE �>

(1.1) � E � ��� >
L _

( �L  denotes convergence in the Hausdorff metric), for some   which is independentasymptotic shape _

of the initial seed . The first rigorous result of type (1.1) was obtained by Richardson , usingE [Ric]

subadditivity arguments, for various random growth models on the -dimensional integers  The. ���

subadditivity approach to shape theory was subsequently extended to a variety of stochastic interacting

particle systems (IPS) in [BrG1-2] [DL], [DG] [Lig] [Dur], and . See  and  for authoritative accounts of

subadditivity and its application to additive growth models, and for an extension to some random[BoG] 

systems which are not additive. In the context of first-passage percolation , if  denotes[HW], [CD] 7Ð��

the passage time from the origin to site , then under quite general conditions � E � �� � Ð�� � � > 7 obeys

the limit (1.1). Indeed, some of Richardson's processes may be viewed as special cases of first-passage

growth, having passage times which are geometric with parameter while Eden's original crystal model:�

can be interpreted as the asynchronous limit of such systems as . Recent results for first-passage: � !

growth appear in .[NP]

 Shape theory for cellular automata (CA) and related deterministic dynamics was initiated by Willson

[Wil] [GG1-4], and more recently has been studied in considerable detail by the authors . Some

particularly simple growth rules evolve recursively, and subadditivity applies as in the random case, but

the most illuminating route to (1.1) for cellular automata is based on a polar transform representation of
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_ �� ����	 �� ����#	���� $��������	, ��� 	�#������ 
%&��� ���	��&�����' (��) *) +� ��� ��&�	� �� �&�[TCH]

earlier work on Excitable CA systems  and in the study of various first-passage and dynamic[FGG1-2],

tiling problems , it became evident that rare nucleating crystals pass through three stages as they[GG2-3]

fill space: initially individual droplets spread with characteristic shape ; later on large droplets collide_

to create wedge-shaped interstices often governed by new forces; and then eventually the last isolated

empty pockets are filled. An analysis of convex corners and their complements, as in , is crucial to[GG2]

understanding the intermediate time regime. One goal of this paper is to formulate a general reverse

shapes approach to the final process of filling in large but bounded holes.

 Although the Wulff recipe for asymptotic shape also seems quite broadly applicable to IPS models,

only in a few cases (cf. ) are there techniques currently available to handle the difficult issue of[Sep]

stochastic interface fluctuations, and thereby establish the polar representation of  rigorously. For_

Richardson models which admit a first-passage representation, as for a large class of well-behaved first-

passage percolation models, Kesten's groundbreaking work supplies the needed large deviation[Kes2] 

estimates. The polar formula is well-suited for Monte Carlo simulation (cf. , Section 7), but[GG4]

otherwise offers little advantage over subadditivity unless half-space velocities can be computed

effectively, which is virtually never the case with random dynamics. However, subadditivity does not

seem directly applicable to the second and third stages of crystallization described above, in which case

half-space analysis can provide genuinely new insights. As motivating examples, we consider two

problems reverse shapes  and last holes for the following one parameter family of systems.- -

 Synchronously, at each discrete update, if  is any empty site which has at least one of eight nearest�

neighbors ( ) occupied, then  becomes occupied with probability , independently ofC � /C - �/ � 0 � :1

all other sites. This is , as studied in , , except that we choose theRichardson's model [Ric], [DL] [Dur]

box instead of diamond  neighborhood, since we will also briefly discuss   rulesÐ/ 2 / �1 Threshold Growth

�� 
���� 
��� �� ��i��' �	 �������� �� 
�
� �� ��i��,' 
����� �� ��i��,' �� 
��&� �� ��i��)'

 The problem of reverse shapes starts such dynamics from a large hole of prescribed shape, i.e.,

E � Ð3E� E 34 5  for some fixed  and large . We will establish a reverse limit shape  for the shrinkinge

hole,  time units before it vanishes, as  and then . An important feature distinguishes6 63 3 � 8 � !

��$��	� �����	 ���� ��� 
���
���' ��	&�� (r)r*9 	���� ��� ������� ���� ������	 ����������� ���i�,3E e

typically depends on the geometry of . E

 For the last holes problem, begin by populating  according to Bernoulli product measure , with� ;� <
density  of occupied sites. For small , the vast majority of initially occupied sites are isolated= =

singletons which spawn autonomous spreading crystals that approximate the shape  of (1.1) as they_

grow. Later, on a time scale of ,  these droplets interact and combine, leaving isolated pockets of=��  



" "3

unoccupied sites which eventually shrink and disappear. What, then,  is the  of the last remainingshape

holes a while before they vanish? To be precise, fix attention on the origin, say, denote the occupation

time of by and let  be the connected cluster, in the usual site percolation sense, of unoccupied? , X V@

sites containing . Thus  Denote the law of  under the conditional measure? � � Ö � �X � A �V V@ B� @�
@D D

T Ð 2 F X G A� as  . Then a random set  with associated distribution  is called the ifH I H< D < Jß ß@ K last hole 

(1.2) .lim lim sup
MÄN OÄP

.Ð � � � !H H< D Jß ß@ K

(Here  is the Prohorov distance between random compact sets corresponding to the Hausdorff metric.

.Q R on compact subsets of .)�

 Using the reverse shapes formalism, we will see that for symmetric additive deterministic dynamics,

and for any     of (1.1) with probability one. For example, this= I _­ Ð!� 0�� < equals the forward shape

result applies to the deterministic Richardson model above with , in which case the forward shape: � 0

and last holes are squares . Our analysis will also show that for certain quasi-additive systems (to be

������� �����*, ������	 �� �&� ���$��i�	 �� �	 ) d�� ��	�����, ��� 
�
� �� ��i��'I = _ =< � !

solidification CA has last holes which are approximately diamond shaped for small . More generally,=

�)i), ��� SU �&��	 	&�� �	 W���	���� Y���������� , �� 
����� �� ��i��' 	�������������, ��	� ��Z���[AL] I<
consists of a random assortment of holes, possibly nonconvex or with volume 0. In additive random

models, the last hole as defined in (1.2) turns out to be { }, but for first passage times  with?  A

= = _� �[ [\ \][¥ A ¥ � holes of shape  are observed. The nature of  for general random dynamicsI<
remains an enigma, as the event seems very difficult to understand in detail.�X G A 

 The rest of the paper is organized as follows. Section 2 begins with an abstract framework in ���

convenient for development of the basic theory of deterministic growth. Then we formulate precisely the

general problem of reverse shapes, state and prove two reverse limit theorems, give corresponding

formulas for the limit, and derive various consequences of those formulas. In Section 3 we offer six

examples of Threshold Growth automata, on box neighborhoods of various ranges , and with various^

thresholds , to illustrate some of the subtleties of reverse shape theory. These CA rules are chosen for`

their relative ease of computation, but the reader should understand that many of the same phenomena

can be expected to arise in stochastic growth models. Section 4 applies the results of Section 2 to the

problem of last holes for  deterministic growth started from random seedings . Finally, Section 5;<
details the modifications to our arguments which are needed to prove reverse shape and last hole results

for additive stochastic solidification dynamics such as Richardson's model and first-passage percolation.



" "4

2. Reverse Shape Theory for Deterministic Growth

 Let  denote the -algebra of Borel subsets of A map :  is a  a b � c a a�� � crystal growth

transformation (CGT) if it satisfies the following five properties:

( ) :  a absorption c Ö � Ö g

( ) : for all  and , b translation invariance E ­ � ­ Ð� f E� � � f E ga �� c c

( ) : there exists a  so that for every ,c locality neighborhood radius h G ! E ­ a

c cE � �� ­ � � ­ ÐE j k Ð��h�� g�� R

(We use the standard notation for Euclidean balls: When ,k Ð�� l� � �C ­ � /C - �/ � l � . � mn n��

we will refer to the shapes and   as , , and , respectively.)k Ð!� 0�� k Ð!� 0�� k Ð!� 0�1 R � box circle diamond

( ) : for every ,  d monotonicity E�k ­ E o k p E o k ga c c

( ) : for every , e solidification E ­ E o E �a c

 The iterates of a  crystal growth transformation, given by  for a fixed initial set  are calledc @ 4 4E E

crystal growth dynamics supercritical . Write . Such dynamics are  ifc c1 @4 4E � q E
s t u

c c1 � 1 5 �R Rk Ð �h� � h� k Ð �h� v0  for a sufficiently large   if 0 for a sufficiently large� �subcritical

h, and  otherwise.  sets are invariant with respect to permutation ofcritical Completely symmetric

coordinates and switching signs of coordinates. Also,  is  if it commutes with allc completely symmetric

such operations on coordinates.

 , with parameters , where  is a measure on  with compact support,Threshold growth dynamics H ` H �� �

and 0  is the threshold, are given by   with` � H `  E � �� ­ � ÐE - ��    �c � Additive dynamics

parameter a bounded set , are defined simply by  These are the two basic classes ofw wc E � Ef �

crystal growth transformations we have in mind, but many other examples may be obtained by taking

unions and intersections  Indeed, if  have the same neighborhood radius, then one can define� � �Þc c� R

new CGTs  and   byq js sc c@ @

Ð q �E � q Ð E�� Ð j �E � j Ð E�s s s sc c c c@ @ @ @  .

 Note that any crystal growth transformation  must translate half-spaces: if  is a unit vectorc x ­ y���

and then there exists a z � �� ­ � {�� x| � ! �� �
} � speed ~Ðx�   !  such that either

c cz � z f �!� ~Ðx��x� z � z f �!� ~Ðx��x�} }} }
� � or   Now, introduce the (possibly unbounded) set

� � q �!� ~Ðx��x o ~ � y ���� � ���
� � �. Locality of  implies that  is Lipshitz continuous.c
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Conversely, it is not hard to show that any such Lipshitz  is the speed function of a CGT, and that if~

���� is completely symmetric, then  can be chosen  completely symmetric as well.c

 Continuity of  immediately implies that supercriticality is equivalent to  ( ). On the~ ~ G ! [GG1]

other hand, subcriticality is not so easy to characterize. To see this, note that threshold growth with H

uniform on  and  is critical, while it has . On the other hand, we have proved in box ` � m ~ � ! [GG2]

that the two-dimensional  threshold model, in which  is a counting measure on a finite subset ofdiscrete H

�R is subcritical if and only if .~ � !

 In the supercritical case, assuming that the iterates of a bounded initial  eventually cover anyE4

compact set, the  states that(Forward) Shape Theorem [GG1] 

( 1)    as m� E � � � A � 8�
0
A
c @ �

���_

where  for every  is the polar transform of the set � � �C � {�� C| � 0 � ­ � ���

 We now proceed to the formulation and proof of two , beginning with theReverse Shape Theorems

simpler case. Since we will be concerned, in part, with infinite limit sets, let us specify precisely what is

meant by convergence. In the present context, it is most convenient to say that  converges to a� �@ �o

closed set  if   converges in the Hausdorff metric  to  for all� � � �o jk Ð!�h� . j k Ð!�h�� @ R Q R

sufficiently large  For notational convenience, we write  if for every h G !� � h�lim lim
D

D
�4

ß�
�ÄP

� �

lim lim sup
D

D
�4

Q ß� R R�ÄP
. Ð j k Ð!�h�� j k Ð!�h�� � !�� �

Throughout the paper,  will be denote a prescribed compact set which contains a neighborhood of . AsE ?

in Section 1, set  for some large . Let  be the first time the origin is occupiedE � Ð3E� 3 X � XÐ3�4 5

by the dynamics:

X � �A � ­ ÐÐ3E� � �inf ? c @ 5

Our first result establishes a reverse limit (  in the case of  .e E� Econvex

Theorem 2.2. Assume that  is not identically 0 on , and that  is convex. Then there is a~   ! y E���

unique nonempty convex proper subset  of  such thate �ÐE� �

(2.3) .lim lim
D

D
�4

B� � 5 5
�ÄP

0
3

Ð3E � � ÐE�
6

ec

If  and  are completely symmetric, then  is bounded.c E ÐE�4 e
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Remark.  The weak double limit formulation in (2.3) for the reverse shape property holds quite generally

for CGTs, and also for stochastic growth models, as we shall see in Section 5. In deterministic lattice

dynamics the rapid convergence methods developed by  imply that  can be replaced by a large� 3 [Wil] 6

� � and the double limit by lim lim
��1 �ÄP

Proof. If the boundary of  has small curvature, then 3E c @ 5ÐÐ3E� � is well-approximated by the union

of iterates over all exterior half spaces . Hence, for  and  large, [GG1-2] 3 A

Ðm� � ÐÐ3E� � � q Ð3 Ðx� - A �x f z � x� � ­ y � � ­ Ðx� �
~Ð��
{x� �|

4 c @ 5 � ���� ����� � �� �

Here and  is the set of exterior normals to  at .� � � � � � � ¡ ¢ £ ¤ ¤ ¦�§¨¢ ¦�§ � ¦�§ �© © � � �ª«¬ ® ® ®

The right side of (2.4) defines a transformation  For , , define
°̄ ¦±²³ �§´ � � ¡ µ � ¦�§ª«¬ ®�

¶ �
�

¦�¢ µ§ � � ·¦µ§ ¦µ§¢
·¦µ§
¦�§¸�¢ µ¹® ®*

º � ¦�¢ µ§´
�¢ µ
max¶

Then, if one chooses  in ( . ), one gets» � ¦º ° §¼ ½ ½«¬ ¾

lim
³¿À

Á¦¼§ Â
¼ º

� ,     and 

¦½´ § ¦�§ � Ã �º ¦�§� ÅÆ � µ � ¦�§¢ ¦�¢ µ§ � º¨´5 Ç � � ¶® ®«
È

The proof of (3.2) in shows that  is invariant for [GG2] Ç¦�§ °̄
±²³, i.e.,

¯ Ç° ¦ ¦±²³ �§§ � ¦¼ °º»§ ¦ ¦�§ §Ç É ,

and so a good candidate for the reverse shape.

 Rigorous justification of (2.5) hinges on three observations. First, the  inclusion in (2.4) followsÊ

from monotonicty. Secondly, one can approximate  the of iterates all
°̄
±²³ by sets of uniformly small

curvature uniformly within . AË» s in Section 4 of  this implies that  is well-approximated by[GG1], ¯
°̄

. Thirdly,

lim lim
Ì¿Í

É
ÎÏÑ

°̄ ¦
¢Ì³²³ �§

¼
� ¦�§

Ë
Ç

by direct computation, since only  which maximize  determine either side. �¢ µ ¶ Ò
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 Another characterization of  follows from (2.5).Ç¦�§

Corollary 2.6. Let

Ô � �Ô � Ô� Õ × ¨´Í Ø ¬ÙÚmax

Then

¦½´ § ¦�§ � Ô � Ã Û× ´7 Ç Ü ÝÍ Ø ¬ÙÚ
Ø

In particular, starting from , with maxcircle · � �·¦�§ � � � ¡ ¨¢° ª«¬

(2.8)  Ç¦ § � Ã �· � ÅÆ � ·¦�§ � · ¨´° °circle «
à

Proof. Since � �® ® «¬
*¦µ§ � ¦ ¦�§¸�¢ µ¹§ , (2.5) can be rewritten as

Ç � �
�

¦�§ � Ã � µ ÅÆ � µ � ¦�§¢ ¦µ§ � ¨´
Â º
¦µ§ ·¦µ§®

«
È ® ®

*

*

The condition  is superfluous, and (2.7) follows. In the case , note that  µ � ¦�§ � � º � · ´°�® circle Ò

 One unsatisfactory feature of Theorem 1 is the rather severe restriction to convex initial .�

Unfortunately, nonconvex holes typically arise in disordered systems, and the general mechanism by

which they shrink is quite complicated. As an illustration of the added complexity with nonconvex initial

sets, consider addititive dynamics with , and the completely symmetric stars  with boundaryá � �box â

consisting of 8 line segments, one of which connects  with any point  where . All¦Â¢ Â§ ¦ã¢ £§¢ Â ¤ ã ¤ ä

of these sets are invariant, and all except the square are nonconvex. We call the dynamics  ¯ quasi-

additive if  is convex, a property enjoyed by additive  in that case× × �¬ÙÚ ¬ÙÚ Ø¯ , since , butá

otherwise not often satisfied (cf. , ). Only the two-dimensional quasi-additive case is [GG1] [Gra1]

simple enough to permit a thorough understanding of reverse shapes starting from fairly general sets. The

construction leading to the following result is rather involved, so we will only provide a sketch in the

additive case with convex .á

Theorem 2.9.  Assume , that  is quasi-additive, that  on , and that the boundary of å � ½ · æ £ ¡ �¯ ¬

consists of a finite number of piecewise differentiable curves. Then the double limit in (2.3) exists, and

Ç¦�§ is nonempty, although it need not be convex.
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Sketch of the proof. We begin with a recipe for  For additive dynamics, the first-passage time ofÇ¦�§´

the origin can be represented as

Á � �Ô Ô Ã Û� � ç¨´sup : á

For each , we define a wedge or half-space  as follows. By convention, none of theã � Á Ã Û� èá â

wedges or half spaces in the following construction include . If  is differentiable at , then  is theé Û� ã èâ

tangent half plane to  at . If  is nondifferentiable at , then there are two rays tangent to  at .Û� ã Û� ã Û� ã

Denote the wedge determined by those rays as The ray from  through intersects  at someè ´ ã è Åâ â
ê ê

é á

point .  is the half plane or wedge at  which is parallel to the half plane or wedge tangent toë è ãâ

ì íè Å § ëâ
ê

á  at . Finally, we claim that

¦½´Â£§ ¦�§ � ¦ è § ´Ç î
ï ð ñ ò óôõ

â É

 To justify this formula, note first that only an infinitesimal neighborhood of Á Ã Û�á  plays a role in

the reverse shape since other points of lag linearly behind. Also, � Á Ã Û�the prescription is correct if á

consists of a single point. Finally, the general case follows by additivity.

 Formula (2.10) also holds for any  and initial  satisfying the hypotheses of the theorem provided¯ �

á ö is replaced by  in the construction, but the proof is somewhat more involved so we omit it. The

formula shows that  is convex for every  if and only  is  Ç ö¦�§ � ÷ ´¬ Ò

 Key to our analysis of last holes for symmetric, additive and quasi-additive CA crystals in Section 4

is the following special case of Corollary , which asserts that  is , by which we mean that½´ø ö invariant

the forward asymptotic shape is its own  reverse limit. In other words, the hole obtained by growing a

large crystal �ù, and then reversing the occupied and empty sites of , retains its shape as it shrinks.úª

Corollary 2.11  If  is quasi-additive, then ( .¯ Ç ö ö§ �

Proof. Since  is convex, , so that in (2.7) evidently  and× � � � × Ô � Â¬ÙÚ ¬ÙÚØ Ø Íö

Ô � Ã Û× � Û× § � ¦Û× § � ¢Í Ø Ø¬ÙÚ ¬ÙÚ ¬ÙÚ. Hence ( as claimed. Ç ö ö Ò

 For the remainder of this section we assume that . Let us first try to answer the followingå � ½

question: is there a way to center convex initial  so that  is bounded? More precisely, call � ¦�§ ã �Ç úÍ û

a -  for  if  is bounded. If is not lattice symmetric, then the center need not exist.¯ center � ¦ã Å �§ �Ç Í

To see this, write and consider the case with ,ü � ¦Â¢ £§¢ × � ý ¦ü ¢ Â§ þ ý ¦ ° ü ¢ Â§¬ À ¬ À ¬¬ÙÚ
corresponding to additive dynamics with { 1  Choose , in which caseá � ¦ ÿ ¢ £§¢ ¦£¢ ÿ §¨´ � �¬

û box

different speeds in the horizontal and vertical directions produce increasingly oblong shrinking holes.

However such anomalies cannot occur in completely symmetric cases.
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Proposition 2.12. Under the assumptions of Theorem 1, and complete symmetry of and , the origin is¯ �

the unique -center for .¯ �

Proof.  Since  is finite, and positive in some direction ,  in Corollary 1 must be positive and finite.· � ÔÍ

By symmetry, Ô � Ã Û×Í Ø ¬ÙÚ must contain at least 4 symmetrically situated points. Hence the dual of this

set,  , is bounded with nonempty interior containing the origin. Thus is a -center For Ç¦�§ ã Ðé é¯ . Í ,

the dynamics from  are the translate by  of the dynamics from . So when ã Å � ã � ¦¦¼¦ã Å �§§ §Í Í Í± É¯

hits the origin, its diameter is bounded below by a constant multiple of . ¼ Ò

 For simplicity, then, we will assume complete symmetry of , and complete symmetry and¯

convexity of all sets , in the following analysis of shape dependence on initial seeds. For a typical�

× �¬ÙÚ, different  yield many different reverse shapes. As we will see, most of them are unstable, since

small perturbations produce large differences in . It is important to note that the following notion ofÇ¦�§

stability is formulated  within the restricted class of convex and completely symmetric sets .only �

Definitions.  has a  reverse shape  if for every  there exists a  such that� ¦�§ æ £ æ £weakly stable Ç Ë ¾

å ¦�¢� § . å ¦ ¦� ¢ ¦� §§ . ¦�§ æ £L L
w w¾ Ç Ç Ë Ç ¾ implies ) .  is  if there exists a   such thatstable

å ¦�¢� § . å ¦ ¦� ¢ ¦� §§ � £´L L
w w¾ Ç Ç implies )

In the stability criterion which follows,

H � �¦ã ¢ ã § � £ ¤ ã ¤ ã ¨¢ � � �¦ã ¢ ã § � ã æ £¢ ã Å ã æ £¨ þ � ¨´¬ û û ¬ ¬ û ¬ ¬ û     é

Proposition 2.13. The reverse shape ) is weakly stable if and only if  is either 4 or 8Ç¦� �Ô � Ã Û× �Í Ø ¬ÙÚ
(in which case ) has 4 or 8 sides, respectively)  ) is stable if and only if it is weakly stable and,Ç Ç¦� ´ ¦�

for any  which lies in the closed first octant there is a  such thatã � Ô � Ã Û× ¢ æ £Í Í Ø ¬ÙÚ ¾

ý ¦ã ¢ § Ã Û× Ã Õ ã Å�´û Í Í¬ÙÚ¾ H

In other words, stability means that in the first octant,  only meets parts of the boundary ofÔ �Í Ø

× �¬ÙÚ.which lie inside the translate of cone . Note that in quasi-additive cases the forward shape ,ö

which is its own reverse shape by Corollary 2.11, can   be even weakly stable.never

Proof.  We apply Corollary 2. , using the fact that small perturbations of  produce small changes in ø � Ô ´Í

Assume first that  intersects  in 8 points, one in the interior of each octant by symmetry. Fix anÔ � ×Í Ø ¬ÙÚ

Ë Ë %æ £ ý ´ æ £, and let  denote the -neighborhood of these 8 points  There exists an  such thatÌ

å ¦ý Ã× ¢ Ô � § æ ´ � � Ô ÔL Í ÍÉ Ø w w¬ÙÚ ÍÌ % Therefore, for  sufficiently close to , the corresponding  is close to ,

and By symmetry,  contains at least one point in eachå ¦ý Ã× ¢ Ô ¦� § § æ �½´ Ô ¦� § Ã Û×L
É w w Ø w w Ø¬ÙÚ ¬ÙÚÍ ÍÌ %

octant. It follows that the -distance between   and  is at most .å Ô ¦� § Ã Û× Ô � Ã Û×L Íw w Ø Ø
Í ¬ÙÚ ¬ÙÚ Ë

Continuity of the polar transform establishes weak stability. The remaining cases of 4 or 8 point
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intersections are similar. Conversely, if  contains two points of intersection, then the pointH Ï �ã � ã ¨¬ û
in the interior of  can be removed by an arbitrarily small perturbation.H

 As before, we consider only the case of one intersection point  interior to . If  only meetsã Ô �H Í Ø

Û× ã Å� ¦�¬ÙÚ in , then instability of  ) would imply the existence of 8 symmetrically located pointsÇ

in , having  interior to their convex hull. This contradicts the definition of . Conversely, if theÔ � ã ÔÍ ÍØ

stability condition is violated, then the octagon with one vertex at  is not stable. ã Ò

 A particularly strong form of stability is . The rare cases in which it holds are as follows.uniqueness

Proposition 2.14. All reverse shapes ) agree if . Moreover, if the reverseÇ Ç Ç¦� ¦ § � ¦ §diamond box

shape is unique, then it must be a diamond , a box, or an octagon.

Proof. By Corollary 2.6, if the reverse shapes for diamond and box agree  then there exist  and  such¢ Ô ÔÍ Í
ê

that  only in . Any completely symmetricÛ× þ¬ÙÚ meets Ô Ô ¡ � Ô Û Ã Ô ÛÍ ÍÍ Ídiamond box diamond box
ê ê

convex set  such that  is included in . This proves uniqueness. The reverse� ¡ Õ Û� Ô ÔÍ Ídiamond boxþ
ê

shape is then determined by , which consists of 4 points in a box, 4 points in a diamond, or 8 points in¡

an octagon. Ò

Necessary and sufficient conditions for this unique  to be a diamond or box are ,Ç Ç¦ § �box diamond

and  , respectively. For example, let  where  correspond toÇ ¯ ¯ ¯ ¯ ¯¦ § � � Ã ¢ ¢diamond box ¬ û ¬ û
additive dynamics with { 1  and { 1  respectively. Thená á¬ ¬ ¬

$ $� ¦ ÿ ¢ £§¢ ¦£¢ ÿ §¨ � ¦£¢ ÿ §¢ ¦ ÿ ¢ £§¨¢2

× � �£¢ ¦ ÿ ½¢ £§¢ ¦£¢ ÿ ½§¨ Å O¬ÙÚ box diamond, and  is the unique shape. Rotate by 4 ° to get a

(rescaled) box as the unique shape. The first example of the next section illustrates octagonal uniqueness.

3. Examples

 Let us now present five illustrative examples of Theorem 2 for deterministic Threshold Growth on

the two dimensional integers. Such dynamics have already been studied elsewhere in considerable detail

(see , ). Within our general framework, these cases have  a counting measure on the[Boh] [GG1-5] �

range  lattice box  and  an integer-valued threshold. In words, an empty site 3 á 3 � �� ý ¦£¢ § Ã ¢ ãÀ û

joins the occupied set if it sees at least  occupied cells within its range  box neighborhood. Such� 3

dynamics are supercritical for , and critical for 2 1 2 . The discrete� 3 3 3 3 � 3 3¤ ¦½ Å Â§ ¦ Å § . ¤ ¦ Å Â§

deterministic setting makes computation of the half-space velocities straightforward, and hence,·¦�§

starting from completely symmetric convex initial data , a complete analysis of the possible reverse�

shapes  follows from Corollary 2.6. The solidification process called  Ç¦�§ Hickerson's Diamoeba [GG4]

provides a beautiful example of distinct subsequential reverse shapes when CGT axiom ( ) is lacking.d
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 For each of the following examples we specify the range , threshold , vertices of  in the first3 � ×¬ÙÚ
octant (the others are determined by symmetry), and the maximal number of sides in any�£ ¤ ë ¤ ã¨

(polygonal) reverse shape . In each case we show that graph of , including the largest inscribedÇ ×¬ÙÚ
diamond, circle, and square. Their points of contact with  in (2.7) characterize the dual of the×¬ÙÚ
reverse shape for a square, diamond and circle, respectively (recall that the diamond and square are dual

and the circle self-dual). A second graphic for all but one of the examples shows the evolution of a

shrinking hole, in an alternating black and white palette, for a representative initial Finally, a brief�´

description summarizes the distinctive features of each case. Octagons play a central role in the stability

analysis of our examples, so we denote by  the completely symmetric shape with sides of slope S ÿ¼¢³

ÿ¼ ´«¬  For simplicity we identify all dilations of  in the discussion, ignoring the (as opposed toÇ size 

shape) of the limit. Thus the notation means that  for a suitable constant Ç Çº S � � S � æ £³ ³

which we choose not to compute. However  is easily determined from .� ×¬ÙÚ

 ��� 
�����������' �	����	 �� ���	� ���������	��� ������� �������	 ���	&����� �� ��� ���	� �� ����

general growth models, especially those with random dynamics. But other features should be shared by

many nonlinear systems, deterministic or stochastic, with space and time either discrete or continuous,

since it would seem common for anisotropic neighborhoods to generate nonconvex . We shall return×¬ÙÚ
to this point in Sections 4 and 5.

Example 3.1.  .3 �� Â¢ � �

× ¦ ¢ £§¢ ¦½¢ Â§¢ ¦ ¢ § S¬ÙÚ ¬ ¬ ¬
Í Í Í ûhas vertices .  is always a rescaling of .Ç

  

This critical rule seems to be the only lattice example of reverse shape uniqueness with box

neighborhood, for any range . Note that  is infinite in the horizontal, vertical and diagonal3 ×¬ÙÚ
directions, a manifestation of criticality. The figure on the right shows convergence to  from aº Sû

������� ������, ����� l�	 	���	 ���� 
����&	� �l	*)
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Example 3.2.  2 3.3 �� ¢ �

× ¦ ¢ £§¢ ¦ ¢ §¢ ¦ ¢ §¬ÙÚ ¬ ¬ ¬ ¬ ¬has vertices .  has at most 12 sides.
2 2 4 3 3

Ç

  

S ¼ 
 �³ octagons are invariant (up to rescaling) and weakly stable for , but converge to a multiple of

diamond circle diamond��� r �) ��� ��i�� ��i&�� 	��
	 ) (� ���� �� 
����&	� �l	 ����	 ��¤ ¼ . ¦ § ºÇ

time 118.)

Example 3.3.  2 6.3 �� ¢ �

× ¦ ¢ £§¢ ¦ ¢ §¢ ¦ ¢ §¢ ¦ ¢ §¢ ¦ ¢ §¢ ¦ ¢ §¬ÙÚ $ $ $ û û û
¬ $ ¬ ¬ $ ¬ ¬ ¬has vertices 1 .  has at most 12 sides.2 2

6 4 4 4
Ç

  

S º º Sû # is unstable with three distinct limit shapes in its neighborhood:  (stable),  (stable),diamond

and a rescaling of the unstable 12-gon with vertices (51 0), (44 28). The right figure illustrates¢ ¢

���$��i���� �� ���� � ������� ������ (�� ���� rl	 ���� 
����&	� �l	*)º S#
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Example 3.4.  3 16.3 �� ¢ �

× ¦ ¢ §¢ ¦ ¢ §¢¬ÙÚ & ¬ û ¬
( ( $ $has vertices and many others irrelevant to reverse shapes.  has at most 16 sides.Ç

  

S S S º S Â ¤ ¼ ¤ º Sû & ³ û &
&
û and  are invariant up to rescaling, and stable.  tends to  for , to  for

¼ æ S
&
û .  tends to a rescaling of the unstable 16-gon with vertices (234,0), (215,95), (175,175). The left�

�

��i&�� 	��
	 ���$��i���� �� �� ��� &�	����� rf#i�� (�� ���� r�l ���� 
��������� ����&	� ��l*)S�
�

Example 3.5.  4 11.3 �� ¢ �

× ¦ ¢ £§¢ ¦ ¢ §¢ ¦ ¢ §¢ ¦ ¢ §¢ ¦ ¢ §¢ ¦ ¢ §¢ ¦ ¢ §¢ ¦ ¢ §¬ÙÚ ¬ ¬ $ ¬ ¬ ¬ ¬has vertices .
3 24 24 10 20 17 17 13 13 11 11 16 4 4 4

7 5 4 3 2 3 1 1

Ç has at most 32 sides.

Flat edges of  give rise to a continuum of unstable reverse shapes; here an example of an unstable×¬ÙÚ

32-gon, invariant up to rescaling, has polar determined by (7/24,1/24), (9/31,4/31), (2/7,1/7), (3/16,1/4).
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Example 3.6.  5 15.3 �� ¢ �

× ¦ ¢ §¢ ¦ ¢ §¢ ¦ ¢ §¢ ¦ ¢ §¬ÙÚ $Í $Í � � � �
¬ û ¬ $ ¬ ¬ ¬

$ $
has vertices , and  more irrelevant to reverse shapes.  has at7

1 1
many Ç

most 24 sides.

  

From a circle, the reverse limit shape  is an unstable rescaling of the 12-gon with verticesÇ¦ §circle

(150,0), (140,70). To obtain a reverse shape with more than 8 sides starting from a circle, by (2.8) there

must be two points  and  in the first octant of the boundary of  such that  , as inã ã × Bã B � Bã B¬ û ¬ û û û¬ÙÚ
the present case where Since edge speeds are a nonlinear function of systemB¦ ¢ §B � B¦ ¢ §B ´7

$Í $Í � �
¬ ¬ ¬û û

parameters, such examples are  rare; this is the only case with small range, and perhaps the only onevery

for any choice of  and . The figure on the right shows convergence to the unstable 12-gon from a3 �

������� ������ (�� ���� �� ���� 
����&	� �l	*)

4. Last Holes for Deterministic Growth on ��

 We now turn to the study of last holes (1.2), as described in the Introduction. Let  be aC C ¾� ¦ §

random configuration of occupied sites in distributed according to the Bernoulli product measure � �ª �

with density . Recall that  is the occupation time of  starting from . Throughout this section, let ¾ C ¯Á é

be a CGT satisfying ( ) - ( ) of Section 2, and alsoa e

( ) : for every ,  (In the additive case, f symmetry � ¦ ° �§ � ° �´ � ° §´¯ á á¯

 For additive supercritical transformations, we are able to identify the shape of last holes starting from

any nontrivial . Roughly, if the origin is not occupied at time , then the set  initially has noC ¾ ö¦ § » »

seeds, but if  then there are lots of seeds everywhere around the boundary. Since  is an» 8 ¢ª «¬¾ ö

invariant reverse shape by Corollary 2.11, the hole around  at time  is approximately é Á ° » » ´Ë Ë ö
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Theorem 4.1.  For any , additive supercritical growth satisfies (1.2), with the last hole ¾ �� ¦£¢ Â§ �

equal to the (forward) asymptotic shape  of (1.1). That is for every  and every ,ö ¾ %¢ £ . . Â¢ æ £

(4.2) .lim lim sup
�Ï Ä �ÏÑ

T å ¦ ¢ æ � Á æ »§ � £
»�
ÌÜ ÝL

X« ±V

Ë
ö %

Proof.  Writing  symmetry implies that� � � ¨¢± ±¯ é

(4.3) �Á æ »¨ � �� Ã � ç¨´± C

Conditioning on  therefore has no effect on sites in � � ´ » æ £Á æ »¨ É
± ¬By (2.1), for large  and any ,%

¦Â ° § » Õ � Õ ¦Â Å §» ´% ö % ö¬ ± ¬

In particular, the event  are independent. With� ¦Â Å §»Á æ »¨ and events involving sites outside % ö¬

overwhelming probability, for every belonging to ,ã ¦Â Å ½ § » Ï ¦Â Å § »% ö % ö¬ ¬

C %Ã ý ¦ã¢ »§ Ð ç ´À ¬

Moreover, on  � ¦Â ° §» �Á æ »¨ Ã ç´, The last two conditions, together with Corollary 2.11,C % ö¬

imply that, ,  differs from  by  for some constant on �Á æ »¨ » ¦÷ Å �¦ §§ » ÷ � ÷¦ §´V Ë ö % Ë áX« ± ¬Ì

Choosing , (4.2) follows. % Ë¬ � �¦ § Ò

 An elaboration of the last argument shows that the last holes of  dynamics from sparsequasi-additive

product measures have shape approximately . For simplicity we assume  For instance, our nextö å � ½´

��	&�� ������	 �� 
�
� �� ��i��' 	�������������, �� �� ����	���� r��
�� �� 
��� � ��� ��� ���i�� � 3û �

box neighborhood . New complications arise due to the presence of failed nucleation centers[GG2]

around the origin (e.g., isolated singletons in our 2 examples) which slightly alter the process� �

whereby holes are filled in. For this reason, in only achieved in the limit as . To ensure thatö ¾ � £

failed centers are well-behaved, in addition to ( ) - ( ) we assumea f

¦ § � ý ¦ ¢�§ � � �g strong omnivoracity :  Let be such that 0 . There exists an so that for every ¯ À ª Í_ ú

such that  for some ¯ ¯ ¯R�¬ R RÍ Í À Í� Ð � ¢ ý ¦ã¢�§ Õ � ã´

This uniform version of the  assumption in holds for all the threshold 2 modelsomnivorous [GG2] 

mentioned above, and can be verified by computer for other simple crystals.

Theorem 4.4.  If  is quasi-additive  supercritical  and strongly omnivorous, then the last hole¯ ¢ ¢

converges to  as , in the sense that, for every ,ö ¾ %� £ æ £

lim lim sup lim sup
�!" Ì

�
Ì

¿ ±¿À
L

X« ±

0

T å ¦ ¢ æ � Á æ »§ � £
»

Ü ÝV

Ë
ö % .
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Proof. Call site  is a  if at the time  of ( ), ã �nucleus g ý ¦ã¢�§ Õ F æ £¢û R¯ C. Let  and introduce

comparison dynamics as on p.1771 of . This process supposes a nucleus at a single site, but¯� ¢ [GG2] 

nowhere else, and models growth in a sparse random environment with effects of range at most .�

Lemma 6.4 of  shows that for every  there is a  sufficiently small that[GG2] % ¾¬ æ £¢

T ¦ ã Õ� ¦Â Å § » § ¤ ü ´¯ % ö± «±¬� { }

 Let  be the following event, which depends on On impose a boundary condition ofK � ´ K¢C '¬�û )±* +,

all 1's outside and require that every nucleus  is such that¦Â Å ½ § » ¢ ã% ö¬
¯ % ö % ö %5 ¬ ¬ ¬� { }  for every  By the FKG inequality,ã Ã ¦Â Å ½ §» Õ ã Å ¦Â Å § - - æ » ´

T ¦K � Á æ »§ ¤ T ¦K § ¤ ÷ » ü ´É É û $ « ±8 *,

Since the dynamics are deterministic, on { } there is no nucleus within . Moreover, onÁ æ » ¦Â ° §»% ö¬

K¢ ¦Â Å ½ § » Á æ »no points outside  can effect { }.% ö¬

 From this point on, the proof is a minor modification of the additive argument. Write

K � �/ã � ¦Â Å � § » Ï ¦Â Å � § » §¢ý ¦ã¢ »§

K � � ¦Â ° § » ¨´
¬ ¬ ¬ À ¬

û ¬

% ö % ö %

% ö

 contains a nucleus},

there is no nucleus in 

If  is very large compared to say, of order )  then  is very small. Hence, since  and» ¦ ¢ T ¦K § K¾ ¾«¬ «�0 É É
¬ ¬

�

{ } are conditionally independent given    is also very small for large .Á æ » K¢ T ¦K � Á æ »§ »É
¬

Moreover,  occurs deterministically on { }. On  as in the additive case,K Á æ » K ÃK ÃK ¢û ¬ û
å ¦ ¢ » ¤ ¦÷ Å �¦ §§ »L X« ± ¬V Ë ö % ËÌ Ý . Ò

 Without quasi-additivity a host of new issues arise, so we conclude this section with speculation

about two of the simplest cases.

Example 4.5) 1�� 
����� �� ��i��' 	�������������, ���
��� 	���� �	 ��� ���������� 	��������ö

octagonal region with vertices , and ) is the square  But there are five holes ¦ ¢ £§¢ ¦ ¢ § ¦ ý ¦£¢ §´ �¬ ¬ ¬ ¬
û $ $ ûÀÇ ö

smaller than that square, hence more prevalent in , which are invariant and such that  reaches the�� ¼�

origin at the same time . These candidates for last holes are the  nonconvex completely symmetric starÁ

with vertices , and the asymmetric nonconvex quadrilateral with vertices (couterclockwise)¦ ¢ £§¢ ¦ ¢ §¬ ¬ ¬
û 6 6

¦ ¢ £§¢ ¦ ° ¢ ° §¢ ¦ ¢ ° ¢ ¦ ¢ § ¢ Â2£ ½4£¬ ¬ ¬ ¬ ¬ ¬ ¬
û û û û # #0 )  and its rotations by 90  and , all with  area . We suspect° ° °

3

that no smaller invariant hole has the same and hence conjecture thatÁ ¢

lim lim sup lim sup
6

6
79 :ÏÄ ±¿À

² ²±å¦ ¢ § � £� �� Ì ;

¦in the manner of (1.2)), where is some measure concentrated on the above five shapes. Several�;6
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hurdles would need to be overcome in order to establish this result, and even so, the relative weight of

last holes assigned to stars vs. quadrilaterals would pose an extremely difficult problem

Example 4.6 [AL]) 
1�&� �� ��i��' 	������������� �	 � <r�, ���$��#�������� ��=� ��	critical bootstrap 

relatives on the range 1 diamond neighbor set. The last hole is most likely, for every , a random set of¾

dimension one. This is probably quite difficult to prove, but provides good evidence: for one[AMS] 

variant of bootstrap percolation, in which a site becomes occupied if it has one occupied nearest neighbor

in the horizontal direction and one in the vertical direction, that paper shows that as » � ä¢

(4.7) 1.
log 

 log

T ¦Á æ »§

½» ¦Â ° §
�

¾

The denominator is the logarithm of the probability that an interval of 2  sites is empty. This should»

mean that conditioning on  is equivalent to conditioning on such a vacant interval around . For�Á æ »¨ é

every large  (much larger than ), the rest of space is filled way before the interval shortens» üÉÙ�

significantly from its ends. The last stage then consists of filling the interval and the shape is obvious,¢

but lattice symmetry dictates a random distribution of orientations. Of course, whether or not such

heuristics can be substantiated,  the last hole of the  model cannot possibly be a set with positive[AMS]

area, since that would violate (4.7).

5. Reverse Shapes for Additive Random Crystals

 Our setting for stochastic growth on  begins with a finite set  (the  of the� á �ª ªÕ neighborhood

origin) with , and a table of local transition probabilities [ ]  We assume that  is aé � � ½ � £¢ Â ´á a a>

monotone solidification map, i.e.,  implies  and ({ })=1. Then a� Õ ý Õ ¦�§ ¤ ¦ý§¢ ¦ç§ � £¢á a a a a é

random crystal growth model is constructed as follows. Identifying  with , at? ? ?± ± ±� �£¢ Â¨ � � Â¨@A

every update, each site  looks at the configuration of its neighborhood , and decidesã ã Åá

independently, with probability ( , whether to becomes occupied. Given any leta ? á D ú¦ ° ã§ Ã § Õ ¢± ª

? D �E
±

ª denote the dynamics started from Ã ´

 Although propagation of stochastic interfaces is a notoriously difficult subject, at least the

formulation of half space speeds is straightforward. For , let� � ¡ª«¬  , and introduce? �Í « ª
à� Æ Ã

Z ¦�§ � � � � � � Åý ¦ ¢ §¨´± À© ú © ?± é G

I

Call  the   if·¦�§ �half space velocity in direction

·¦�§ � » Z ¦�§ � » Ï Z ¦�§§lim lim
±¿À ±¿À

«¬
± ±«¬max min (ú
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exists with probability one. In order to apply the deterministic methods of Section 2 to random crystals,

one needs a large deviations inequality of the type established in for some first-passage[Kes2] 

percolation models to be mentioned below. We formalize the required estimate as follows.

Definition. Say that  is  if exists and there is a strictly positive function?± Kesten ·

J Ë� ¡ À ¦£¢ä§ � ¦£¢ä§ � � ¡ æ £¢ª«¬ ª«¬such that for every  and every 

(5.1) max min T ¦� ° »·¦�§�Å � ° »·¦�§� æ »§ ¤ ü ´Z ¦�§ Ï Z ¦�§§± ±(ú Ë « 'à² )±M Ì

 In  we show that Kesten random crystals grow with an asymptotic shape  given by the polar[BGG] ö

formula in (2.1). The main result of this section establishes corresponding reverse shapes given by (2.4).

In the statement of the next theorem, a.s. convergence refers to the basic coupling which constructs

processes  for every  on a common probability space. Note that coupling and monotonicity imply?±
³®N ¼

continuity of  whenever it exists.· � ¡ � P £¢ä§ª«¬

Theorem 5.2.  Assume that  is Kesten, and that .  Given convex there is a unique? ú± ª· æ £ � Õ ¢

nonempty convex proper subset  of  such that almost surely,Ç ú¦�§ ª

(5.3) .lim lim
Ì Ì¿Í X« ³

³® É
ÎÏÑ

Â
¼

� ¦�§
Ë

? Ç
N

Proof. Introduce

Z ¦�¢ ã§ � � � � � Å ã � Åý ¦ ¢ §¨´± À© ú © ?± é G

I

Then by (5.1) ,

T ¦� ° »·¦�§� Å � ° »·¦�§� ¤ »

ã ¸ã¢ �¹ � £ BãB ¤ » §

¤ ÷ » ü ´

max min 

for every  such that  and  

Z ¦�¢ ã§ Ï Z ¦�¢ ã§§± ±(

        

ú Ë

û û

û'ª«¬) « 'à² )±M Ì

Assume that  is a convex set with  boundary having curvature bounded above and below. In other� ÷û

words, there is a positive constant  such that÷¬

(5.4) ÷ B� ° � B ¤ B ¦� § ° ¦� §B ¤ ÷ B� ° � B´«¬
¬ û ¬ ® û ® ¬ ¬ û ¬� �

For a fixed , we will select , and set% æ £ µ ¢� ¢ µ � ÷¬ 5 ¬¡ª«¬ depending on  and %

Q �
Â
½ U

minJ %¦µ ¢ §W .
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We claim that the  can be chosen so that, for large , µ ¼W ?*³
³®N  differs from

þ ¦¼ ¦�§ ° ¼·¦ ¦�§§ ¦�§ Å Æ � � � ¡�� � �� % � �® ® ® 'à) ª«¬
Y[

(the right side of (2.4) with by at most  with probability at least » � ÷ ¼¢ Â °%¼ ü ´ ÷)  Here û û% « ³ û\ *

depends only on ÷¬ of (5.4).

 In order to verify the claim, first choose the (unique) direction  such that �W �® W W¦� § � µ ´ Then there

is a constant  (depending only on ) such that within distance  of  the boundary of÷ ÷ ¼ ¼ ¦� §�$ ¬ ® W W% �

¼� ÷ ¼´ ÷ lies within a cylinder of height  Moreover, there is a  (depending only on ) such that$ #
û% á

only sites within distance influence how far sites within distance  advance. Hence we simply% %¼ ÷ ¼«¬
#

choose the  so that  is within the cylinder with height  and base consisting of pointsµ ¦� §� ÷W ® $W W
û� %+1 +1

on the boundary of  within distance � %® W W
« «¬
È #¦� §� Å Æ ÷ ´]

 To finish the proof, we now apply the claim repeatedly,  times in all, using smooth^«Ì
*

approximations as in the proof of Theorem 2.2. Ò

Example 5.5.  One class of Kesten random dynamics to which Theorem 5.2 applies comprises any

additive growth with neighborhood  in which  if  if  and  otherwise.á a¦�§ � £ � � ç¢ � Â £ � �¢ � `

Such systems permit a first-passage interpretation, and then the martingale difference method of [Kes2]

yields (5.1). More generally, Kesten's analysis and the techniques of the present paper apply to the

growth of any first-passage percolation model in which the distribution function  of the time it takes tob

cross a site (bond) satisfies

    the critical value for the site (bond) percolation,  and

 for some 

b ¦£§ . ` ¢

ü åb ¦ã§ . ä c æ £´

É
dâe

Example 5.6) ������� ��	����� �� ������� l)� �	 
������ 	&����������� ������ ����	���� i��
��'

( ], ). In this case,  consists of and its four closest neighbors,  if  or[Gra2 [KS]  á aé ¦�§ � Â £ � �

��� 
 ¢ � ` � � £2   if  is a singleton other than  otherwise. Estimate (5.1) is obtained from a lasté, 

passage representation (cf.  . As  decreases from 1 to 0,  changes from  to[GK], [Gra2]) ` × ý ¦ ¢ Â§¬ÙÚ À é

the Hence the reverse shape of any convex, completely symmetric cross  or . �Bã B ¤ Â Bã B ¤ Â¨¬ û �

other than  (which is always invariant) makes a transition from a square or octagon at  to aý ¦ ¢ Â§ ` � Â1 é

diamond at . In particular, the reverse shape of a circle changes from square to diamond, perhaps` � £

through some intermediate regime of octagons. Level sets of one simulated sample path of the reverse

�������	, 	������i ���� � ������� ������ �� 
����&	' �l	, �� ����	 	, l	, r		 , �l	 ��� 	��
� ����
 ���¢ �

parameter values  (left) and  (right).` � ´4 ´�
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Remark. For  close to 1 or 0, this last example illustrates weak stability of CA crystals with small`

������ 
�����)' g�	&��	 ���&� ��� ���
��� 	���� &���� ����&�������	 ������ �� (��� ������$�ö [DL] 

case) and (nonconvex ).  A representative general result for reverse shapes is the following.[BGG] ×¬ÙÚ
Given a CGT  , let  denote the random dynamics which adjoin sites with probability  whenever they¯ ¯h `

are added deterministically under , and let be the reverse shapes for .  If  is any completely¯ Ç ¯h h¦ i § �

symmetric, convex set which is weakly stable for , then as  tends to 1,  can be made arbitrarily¯ Ç` ¦�§h

close to .Ç¦�§

 We conclude by analyzing the last holes problem for additive random crystals with symmetric

neighborhood  and update probability , started from . (Essentially the same analysis applies to theá �` �

first-passage models of Example 5.5.) For large , the most likely scenario on  is that  refuses» �Á æ »¨ é

to be affected by its surroundings, leading to a trivial last hole.

Theorem 5.7.  For additive, symmetric random growth, �� � � ¨´é

Proof. Let  be the random crystal started from , in the standard additive graphical representation,� � ¨± é

so that (4.3) holds. By the method used to prove Theorem 4.1, the last hole must be trivial if the

conditional distribution of concentrates on balls of radius  around , i.e� �¦»§ ´¢± é

(5.8) diam        as  T ¦ ¦� § 
 » � Á æ »§ � £ » � ä� ± %

for any . Indeed, this implies that  is less than  with high probability, in which case% %æ £ Á ¦Â Å §»

VX« ±Ì  has diameter at most % ».

 The first step in checking (5.8) is to show, for a suitable ,º . ä

(5.9)        as  T ¦�� � 
 º» � Á æ »§ � £ » � ä� ±
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By definition, this last probability equals

j ¦Â ° § Â
T ¦Á æ »§

´
�

�

� k¾ m® m
Öm® mn^±op
p

The denominator here is at least , corresponding to the event that the origin is¦Â ° §¦Â ° `§¾ m qÖ om±> s

initially empty and . Of course the numerator is at most � � � ¨± é ¦Â ° §¾ ^±, so (5.9) follows by

choosing large enough that º ¦Â ° § ¤¾ ^ ¦Â ° `§m qÖ om> s .

 The second step asserts that given   such that any ,  there is a% æ £ � æ £

(5.10) diamT ¦ ¦� § 
 »¢ �� � ¤ º»§ ¤ ü� ± ± «É ±
%

�

for  large. As noted in the previous paragraph,  has at least exponentially small probability in» �Á æ »¨

», so conditioning on that event does not appreciably alter (5.10). In combination with (5.9), this yields

(5.8). Finally, to check (5.10), note that the total number of deterministic sequences � � � ¨¢Í é

� ¢� ¢ � ¤ º» ¦º »§ �¬ ± ±w ± which lead to a possible configuration of size  is at most . (  is -á

connected, and every site in  has at most choices of when to first become occupied If� » ´§± diam

¦� § 
 »¢ »§± %  then linearly many (in of � ¢� ¢ �¬ ± must have linear diameter, and hence linear

boundary. Thus the probability of a prescribed trajectory entering into (5.10) is at most

¦ �`¢ Â ° `¨§max . Summing over trajectories finishes the proof. We note that the same estimateÉ ±t �

precludes diam  on . ¦� § 
 »± �,� * �Á æ »¨ Ò

+� 	���� �� ��� ���$��&	 �������, � 
��	� ������$��� ����' 
��� 	���� ���	�	 �� ��	�������i ���ö

window of observation times  to a shorter horizon as the seeding density  decreases..» ¾

Theorem 5.11.  Under the same hypotheses, if  for some  then» � » � P ¢ u æ £¢�
v v¾ ¾ �« « « �, ,

A Ax,

(5.12) .lim lim sup
�Ï Ä ÏÄy

T å ¦ ¢ æ � Á æ »§ � £
»�
ÌÜ ÝL

X« ±V

Ë
ö %

Proof. For a suitable constant , with  sufficiently small and  in the prescribed range,÷ � ÷ »h ¾

T Á æ »§ 
 � ° ÷» ¨ 8 ü�Ü exp ª «z ±¾
t

(any . Hence, the large deviation bounds established in  for the forward limit shape  give÷ §
ê

[Kes2] ö

T ¦¦Â ° §» Õ � Õ ¦Â Å §» � Á æ »§ � £ �� % ö % ö ¾±        as  0.

Also for  in the prescribed range, with overwhelming probability » there are initially lots of occupied sites

everywhere around the boundary of »ö, as in the argument for Theorem 4.1, and the rest of the proof is

essentially the same as for that case of additive deterministic dynamics. We remark that (5.12) also holds

with the conditioning event changed to , perhaps a more natural formulation. �Á � »¨ Ò
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