
Slow Convergence in Bootstrap Percolation

Janko Gravner∗ Alexander E. Holroyd†

May 1, 2007 (revised Sept 12, 2007)

Abstract

In the bootstrap percolation model, sites in an L by L square
are initially infected independently with probability p. At subsequent
steps, a healthy site becomes infected if it has at least 2 infected
neighbours. As (L, p) → (∞, 0), the probability that the entire square
is eventually infected is known to undergo a phase transition in the
parameter p log L, occurring asymptotically at λ = π2/18 [15]. We
prove that the discrepancy between the critical parameter and its limit
λ is at least Ω((log L)−1/2). In contrast, the critical window has width
only Θ((log L)−1). For the so-called modified model, we prove rigorous
explicit bounds which imply for example that the relative discrepancy
is at least 1% even when L = 103000. Our results shed some light on the
observed differences between simulations and rigorous asymptotics.

1 Introduction

The standard bootstrap percolation model on the square lattice Z
2 is

defined as follows. For any set K ⊆ Z
2 we define

B(K) := K ∪
{

x ∈ Z
2 : #{y ∈ K : ‖x − y‖1 = 1} ≥ 2

}

,
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and
〈K〉 := lim

t→∞
Bt(K),

where Bt denotes the t-th iterate of the function B. The set 〈K〉 is the final
set of infected sites if we start with K infected.

Now fix p ∈ (0, 1) and let W be a random subset of Z
2 in which each

site is included independently with probability p; more formally let P = Pp

be the product measure with parameter p on Ω = {0, 1}Z
2

, and define the
random variable W = W (ω) := {x ∈ Z

2 : ω(x) = 1} for ω ∈ Ω. We say that
a set K ⊆ Z

2 is internally spanned if 〈K ∩W 〉 ⊇ K. For L ≥ 1 denote the
square R(L) := {1, . . . , L}2 ⊂ Z

2. The main object of interest is the function

I(L) = I(L, p) := Pp

(

R(L) is internally spanned
)

.

A central result is the following from [15], which refines earlier results in
[3, 20].

Theorem (phase transition, [15]) Consider the standard bootstrap perco-
lation model. As L → ∞ and p → 0 simultaneously we have

if lim inf p log L > λ then I(L, p) → 1;
if lim sup p log L < λ then I(L, p) → 0,

(1)

where λ := π2/18.

Surprisingly, predictions for the asymptotic threshold λ based on simu-
lation differ greatly from the rigorous result. For example, in [2] the esti-
mate λ = 0.245 ± 0.015 is reported (based on simulation of squares up to
size L = 28800), whereas in fact λ = π2/18 = 0.548311 · · · . This appar-
ent discrepancy between theory and experiment has been investigated using
partly non-rigorous methods in [9, 10, 19]. Our aim is to provide some rig-
orous understanding of the phenomenon. Our main result is the following
strengthening of the first assertion in (1).

Theorem 1 (slow convergence) Consider the standard bootstrap percola-
tion model. There exists c > 0 such that, if L → ∞ and p → 0 simultaneously
in such a way that

p log L > λ − c√
log L

,

where λ = π2/18, then
I(L, p) → 1.
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(The condition in Theorem 1 may be equivalently expressed as p log L >
λ − c′

√
p, for a different constant c′). Thus, the convergence of the critical

value of the parameter p log L to its limit λ is very slow, with an asymptotic
discrepancy of at least c/

√
(log L). (In order to halve the latter quantity, L

must be raised to the 4th power).
On the other hand, the window over which I changes from near 0 to near

1 is much smaller – roughly constant/ log L. The precise statement depends
on whether we vary p or L, as follows.

For fixed L, and α ∈ (0, 1), define pα = pα(L) := sup{p : I(L, p) ≤ α}.
Since I(L, p) is continuous and strictly increasing in p, we have that pα is the
unique value such that I(L, pα) = α. The following was proved in [6] using
a general result from [12].

Theorem (p-window, [6]) Consider the standard bootstrap percolation
model. For any fixed ε ∈ (0, 1/2), we have

p1−ε log L − pε log L = O

(

log log L

log L

)

= O
(

p1/2 log p−1
1/2

)

as L → ∞. (2)

More precise estimates on the size of the window are available if we instead
vary L. An upper bound was proved in [3]. Here we use similar methods
to obtain matching upper and lower bounds. Since I(L, p) is not necessarily
monotone in L, we define for fixed p and α ∈ (0, 1): Lα = Lα(p) := min{L :
I(L, p) ≥ α} and Lα = Lα(p) := max{L : I(L, p) ≤ α}. Thus the interval
[Lε, L1−ε] contains all those L for which I(L, p) ∈ [ε, 1 − ε].

Theorem 2 (L-window) Consider the standard bootstrap percolation
model. For any fixed ε ∈ (0, 1/5), we have

p log L1−ε − p log Lε = Θ(p) = Θ
(

1/log L1/2

)

as p → 0.

Indeed, for p sufficiently small (depending on ε) we have

p log L1−ε − p log Lε ∈ [C−p, C+p],

where C± = C±(ε) = (1/2 ± o(1)) log ε−1 as ε → 0.

The modified bootstrap percolation model is a variant of the stan-
dard model in which we replace the update rule B with

BM(K) := K ∪
{

x ∈ Z
2 : {x + ei, x − ei} ∩ K 6= ∅ for each of i = 1, 2

}
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(here e1 := (1, 0) and e2 := (0, 1) are the standard basis vectors), and define
〈·〉M, internally spanned, and IM(L, p) accordingly. We sometimes omit the
subscript M when it is clear we are referring to the modified model.

Theorem (phase transition, modified model; [15]) For the modified
bootstrap percolation model, (1) holds with threshold λM := π2/6.

Theorem 3 (modified model) Theorem 2 and (2) hold also for the mod-
ified model.

In place of Theorem 1 we establish the following stronger version with an
explicit error bound.

Theorem 4 (explicit bound) For the modified model, if p ≤ 1/10 and

p log L ≥ λM −
√

2p + η(p), then IM(L, p) ≥ 1/2,

where λM = π2/6 and η(p) := 1.8p log p−1 + 2p.

One may deduce rigorous numerical bounds such as the following.

Corollary 5 Consider the modified model. We have p1/2 log L < 0.98 λM

when L = 10500, and p1/2 log L < 0.99 λM when L = 103000.

Proof. Take respectively p = 0.0014 and p = 0.0002356 in Theorem 4. �

Remarks

Aside from their mathematical interest, bootstrap percolation models have
been applied to a variety of physical problems (see e.g. [1]), and as tools in
the study of other models (e.g. [8, 11, 13]).

Several interesting attempts have been made to understand the discrep-
ancy between simulation results (e.g. those of [2]) and the rigorous results in
[15]; see e.g. [1, 9, 10, 19]. The present work is believed to be the first fully
rigorous progress in this direction. In [19] it is estimated that p1/2 log L may
become close to λ = π2/18 only beyond about L = 1020 (the data given in
[2] support a similar conclusion). Current simulations extend only to about
L = 105. A length scale of about L = 1010 is relevant to some physical
applications. Thus it is important to understand this issue in more detail.

In particular, it would be of interest to determine the asymptotic be-
haviour of (say) λ − p1/2 log L as L → ∞. Theorem 1 gives only a lower
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bound of Ω((log L)−1/2). In [19] simulation data are fitted to p1/2 log L =
π2/18−0.45(log L)−0.2. In [10], computer calculations together with a heuris-
tic argument lead to the estimate p1/2 log L = π2/6−3.67(log L)−0.333 for the
modified model. Since 0.2 and 0.333 are less than 1/2 these findings appear
consistent with Theorem 1.

The phenomenon of a critical window whose width is asymptotically much
smaller than its distance from a limiting value has been proved in other
settings including integer partitioning problems [7], but contrasts with more
familiar models such as random graphs [18].

Outline of Proofs

The idea behind the phase transition result (1) from [15] is as follows. We
expect the square R(L) to be internally spanned if and only if it contains
at least one internally spanned square of side B � 1/p, since with high
probability this will grow indefinitely in the presence of a random background
of density p. Such a square is sometimes called a nucleation centre or critical
droplet. Therefore the critical regime should be roughly at L2I(B) ≈ 1, i.e.
log L ≈ (− log I(B))/2, and we need to estimate I(B). First consider the
modified model. One way for R(B) to be internally spanned is for every
square with its bottom left corner at (1, 1) to have at least one adjacent
occupied site on each its top and right faces – then every such square will
be internally spanned (we can think of an infected square growing from R(1)
to R(B)). A straightforward computation shows that the probability of this
event is approximately exp[−2λM/p] where λM = π2/6. This argument proves
the first inequality in (1) for the modified model. (The second inequality
requires a much more delicate argument - see [15]).

In order to prove the slow convergence result for the modified model,
Theorem 4, we consider other ways for a square to be internally spanned.
One way is for every site along the main diagonal to be occupied. For a square
of size A < p1/2, the latter event has higher probability than the event in the
previous paragraph, because the probability of growing by one additional row
and column is p versus about (Ap)2. Therefore let A = p−1/2/2, and suppose
R(A) is internally spanned by this mechanism, while each square from R(A)
to R(B) has occupied sites on its faces as before. By comparing the two
growth mechanisms, we see that, compared with the previous argument,
this increases the lower bound on I(B) by a factor of least [p/(Ap)2]A =
exp[Cp−1/2]. This argument therefore proves the analogue of Theorem 1 for
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the modified model. Theorem 4 is proved by a refinement of these ideas (see
in particular Lemmas 15 and 17). The coefficient

√
2 of

√
p seems to be the

best that can be achieved by this method.
The above argument cannot work for the standard bootstrap percolation

model. This is because an internally spanned square can grow from a face
whenever there is an occupied site within distance 2. Thus, each additional
occupied site can allow growth by two rows or two columns, so we do not
achieve sufficient saving by considering occupied sites along the diagonal.
Instead we consider another mechanism. Rather than a growing square, we
consider a growing rectangle which may change shape when it encounters
vacant rows or columns. (Figure 1 illustrates the main idea). We may de-
scribe such growth by means of the path traced by the rectangle’s top right
corner. As noted in [15], the probability of such a growth path becomes
much smaller if it deviates far from the main diagonal (which corresponds to
a growing square). However, it turns out that if the deviations are of scale
only p−1/2 then the “entropy factor” (the number of possible deviations) out-
weighs the “energy cost” (the reduction in probability for each path). This
argument yields Theorem 1.

Notation

The following notation will be used throughout. For integers a, b, c, d we
denote the rectangle R(a, b; c, d) := ([a, c] × [b, d]) ∩ Z

2, and we write for
convenience R(m, n) = R(1, 1; m, n) and R(n) = R(n, n). The long side of
a rectangle is long(R(a, b; c, d)) = max{c− a + 1, d− b + 1}. A copy of a set
K ⊆ Z

2 is an image under an isometry of Z
2. A site x ∈ Z

2 is occupied if
x ∈ W . A set of sites is vacant if it contains no occupied site.

It will sometimes be convenient to denote

q = q(p) := − log(1 − p),

and
f(z) := − log(1 − e−z),

so that for any K ⊂ Z
2,

Pp(K is not vacant) = 1 − (1 − p)|K| = exp−f(|K|q).

Note that q ≥ p, and q ∼ p as p → 0. The function f is positive, decreasing,
and convex on (0,∞).
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In Section 3 we will also have occasion to consider the functions

β(u) :=
u +

√

u(4 − 3u)

2
and g(z) := − log β(1 − e−z).

The thresholds λ, λM arise from the integrals

∫ ∞

0

f = λM =
π2

6
and

∫ ∞

0

g = λ =
π2

18
(3)

(see [15], and also [4, 17]).

2 Critical Window

In this section we present a proof of Theorem 2, together with the extension
to the modified model claimed in Theorem 3. The following lemma from [3]
is useful.

Lemma 6 Let R be a rectangle, and consider the standard or modified model.
If R is internally spanned then for every positive integer k ≤ long(R) there
exists an internally spanned rectangle T ⊆ R with long(T ) ∈ [k, 2k].

Proof. See [3]. �

Lemma 7 (comparison) Consider the standard or modified model. For
integers L ≥ ` ≥ 2 and any p ∈ (0, 1) we have

(i)

I(L) ≥
(

1 − e−I(`)
(

L
`
−1

)2)
(

1 − 2L2e−p`
)

;

(ii)
(

1 − 2`2e−p(`/4−1)
)

I(L) ≤ I(`)

(

2L

` − 1

)2

.

Proof of Lemma 7(i). Let m = bL/`c, and consider the m2 disjoint
squares

Sk = R(`) + k`, k ∈ {0, . . . , m − 1}d.

Let E be the event that at least one of the Sk is internally spanned, and
let F be the event that every copy of R(1, `) in R(L) is non-vacant. It is
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straightforward to see that if E and F both occur then R(L) is internally
spanned. Hence using the Harris-FKG inequality (see e.g. [14]),

I(L) ≥ P(E)P(F ) ≥
(

1 − (1 − I(`))m2
)(

1 − 2L2(1 − p)`
)

≥
(

1 − e−I(`)
(

L
`
−1

)2)
(

1 − 2L2e−p`
)

.

�

Proof of Lemma 7(ii). Let s = b`/2c and m = bL/sc, and consider the
m2 overlapping squares

Sk = R(`) + ks ∧ (L − `, L − `), k ∈ {0, . . . , m − 1}2,

where ∧ denotes coordinate-wise minimum. Note that
⋃

k Sk = R(L), and
that the overlap between two adjacent squares has width at least s. It follows
that any rectangle T ⊆ R(L) with long(T ) ≤ s lies entirely within one of the
Sk. Hence, using Lemma 6,

I(L) ≤ P
(

∃ i.s. T ⊆ R(L) with long(T ) ∈
[

b s
2
c, s

])

≤ P

[

⋃

k

{

∃ i.s. T ⊆ Sk with long(T ) ∈
[

b s
2
c, s

]}

]

≤ m2
P
(

∃ i.s. T ⊆ R(`) with long(T ) ∈
[

b s
2
c, s

])

. (4)

On the other hand, considering the event that every copy of R(1, b s
2
c) in

R(`) contains at least one occupied site, and using the argument from the
proof of part (i), we have

I(`) ≥ P
(

∃ i.s. T ⊆ R(`) with long(T ) ∈
[

b s
2
c, s

])(

1 − 2`2e−ps
)

.

Combining this with (4) yields the result. �

Proof of Theorem 2. It follows from (1) that for any α ∈ (0, 1) we have

p log Lα(p) , p log Lα(p) → λ as p → 0. (5)

Therefore, once the first equality is proved, the second follows immediately.
To prove the first equality we will use Lemma 7 to derive upper and lower
bounds on p log L1−ε − p log Lε.
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For the upper bound, we fix ε and use Lemma 7(i) with L = L1−ε(p)
and ` = Lε(p), noting that I(L, p) ≤ 1 − ε and I(`, p) ≥ ε. By (5), for p
sufficiently small (depending on ε) we have 1−2L2e−p` ≥ 1−ε2, so we obtain
for p sufficiently small:

1 − ε ≥
(

1 − e
−ε

(

L1−ε

Lε
−1

)2
)

(1 − ε2).

Rearranging gives
L1−ε

Lε

≤ 1 +

√

1

ε
log

1 + ε

ε
,

hence
p log L1−ε − p log Lε ≤ C+p,

where C+ = log
(

1 +
√

ε−1 log(ε−1 + 1)
)

satisfies C+ < ∞ for all ε > 0 and
C+ ≤ (1

2
+ o(1)) log ε−1 as ε → 0.

For the lower bound, we fix ε and use Lemma 7(ii) with L = L1−ε(p) + 1
and ` = Lε(p) − 1, noting that I(L, p) > 1 − ε and I(`, p) < ε. By (5), we
have 2`2e−p(`/4−1) = o(1) as p → 0, so we obtain:

(

1 − o(1)
)

(1 − ε) ≤ ε
(2(L1−ε + 1)

Lε − 2

)2

.

Rearranging gives

L1−ε + 1

Lε − 2
≥

√

(1 − ε)(1 − o(1))

4ε
,

as p → 0. For p sufficiently small we obtain

p log L1−ε − p log Lε ≥ C−p,

for any C−(ε) < log
√

(1 − ε)/(4ε). Thus we may take C− > 0 for all ε < 1/5,
and C− ≥ (1

2
− o(1)) log ε−1 as ε → 0. �

3 Slow Convergence

The main step in proving Theorem 1 will be the following.
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Proposition 8 (nucleation centres) Consider the standard bootstrap per-
colation model. There exist p0 > 0 and c ∈ (0,∞) such that, for all p < p0

and B ≥ 2p−1,
I(B, p) ≥ exp

[

− 2λ/p + c/
√

p
]

,

where λ = π2/18.

Proof of Theorem 1. First suppose that (L, p) → (∞, 0) in such a way
that for some c1,

p log L > λ − c1/
√

log L.

Then for L sufficiently large we have in particular p log L > λ/2, so 1/
√

log L
<

√

2p/λ and hence
p log L > λ − c2

√
p, (6)

where c2 = c1

√

2/λ.
Therefore it is enough to prove that for some c2 > 0, if (L, p) → (∞, 0)

satisfy (6) then I(L, p) → 1. Furthermore, we may assume that we have
equality in (6), since if not we may find (for p sufficiently small) p′ < p such
that p′ log L = λ − c2

√
p′, and then I(L, p) ≥ I(L, p′) → 1. Therefore let

L = exp
[

λ/p − c2/
√

p
]

and B = dp−3e.

Using Lemma 7(i),

I(L) ≥
(

1 − e−I(B)
(

L
B

−1
)2)

(

1 − 2L2e−pB
)

. (7)

The above definitions of L and B easily imply L2e−pB → 0 as p → 0, while
by Proposition 8,

log
[

I(B)(L/B − 1)2
]

≤ −2λ/p + c/
√

p + 2
(

λ/p − c2/
√

p
)

+ O(log p−1) → 0

as p → 0 provided 2c2 > c. Then (7) gives I(L, p) → 1 as required. �

In order to prove Proposition 8 we consider various ways for R(B) to be
internally spanned. The simplest way involves symmetric growth starting
from a corner. We say that a sequence of events A1, A2, . . . , Ak has a double
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a

a

b

b

a

a

b

b

Figure 1: Two possible mechanisms for growth from R(a) to R(b). (i) The
event Db

a: no two consecutive strips are vacant. (ii) The event J b
a : the grey

strips are non-vacant, the hatched region is vacant, the black site is occu-
pied, and the horizontal/vertical arrows indicate no two consecutive vacant
columns/rows respectively.

gap if there is a consecutive pair Ai, Ai+1 neither of which occur. For integers
2 ≤ a ≤ b, let Db

a be the event that:

{

R(1, i; i − 2, i) is not vacant
}

i=a+1,...,b
has no double gaps, and

{

R(i, 1; i, i − 2) is not vacant
}

i=a+1,...,b
has no double gaps.

See Figure 1(i). Note that if R(a) is internally spanned, and Db
a occurs, then

R(s, t) is internally spanned for some s, t ∈ {b − 1, b}. Indeed, it is easily
seen that we may find a sequence of internally spanned rectangles R(i, j)
with |i − j| ≤ 2, starting with R(a) and ending with R(s, t), with the width
or the height increasing by 1 or 2 at each step.
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We will also consider the following alternative growth mechanism. For
positive integers a ≤ b − 4, let J b

a be the event that:

R(1, a + 1; a − 1, a + 1) is not vacant,

R(a + 1, 1; a + 1, a − 1) is not vacant,
{

R(i, 1; i, a + 1) is not vacant
}

i=a+2,...,b−1 has no double gaps,

(b, 1; b, a + 1) is not vacant,

R(1, a + 2; b − 1, a + 3) is vacant,

(b, a + 3) is occupied,
{

R(1, i; b, i) is not vacant
}

i=a+4,...,b−1 has no double gaps, and

R(1, b; b, b) is not vacant.

See Figure 1(ii). Note again that if R(a) is internally spanned and J b
a occurs

then R(b) is internally spanned. In this case, vertical growth is stopped
by the two vacant rows, and there is a sequence of horizontally growing
internally spanned rectangles, followed by vertical growth after the occupied
site (b, a + 3) is encountered.

Now fix a positive integer B. For positive integers (ai, bi)i=1,...,m satisfying
2 ≤ a1 ≤ b1 ≤ a2 ≤ · · · ≤ bm ≤ B and bi − ai ≤ 4 ∀i, define the event

E(a1, b1, . . . , am, bm) := Da1

2 ∩
(

m
⋂

i=1

J bi
ai

)

∩
(

m−1
⋂

i=1

Dai+1

bi

)

∩ DB−1
bm

∩
{

(1, 1), (2, 2), (B, 1), (1, B) are occupied
}

.

Lemma 9 (properties of E)

(i) The various events appearing in the above definition of E(a1, . . . , bm)
are independent.

(ii) If E(a1, . . . , bm) occurs then R(B) is internally spanned.

(iii) For different choices of a1, . . . , bm, the events E(a1, . . . , bm) are dis-
joint.

Proof. Property (i) is clear from the definitions of the D and J events.
Property (ii) follows from the earlier remarks on these events: indeed the
squares R(2), R(b1), . . . , R(bm), R(B) are all internally spanned. To see (iii),
fix a configuration and consider examining in sequence the rows R(1, i; i−2, i)
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for i = 3, 4, 5, . . .. The presence of two consecutive vacant rows signals an
event J b

a , and determines the value of a, and then if we follow the upper
vacant row to the right until an occupied site is encountered, we discover the
corresponding value of b. �

We will obtain a lower bound on the probability R(B) is internally spann-
ed by bounding the probability of each event E (for certain choices of the
ai, bi), and bounding the number of possible choices.

We start by estimating the probability of Db
a, for which we need the

following slight refinement of a result from [15] (see [5] for a much more
precise result in the same direction). Recall the function β defined in the
introduction.

Proposition 10 (double gaps) For independent events A1, . . . , Ak whose
probabilities ui := P(Ai) form an increasing or decreasing sequence, the prob-
ability that there are no double gaps is at least

∏k
i=1 β(ui).

Lemma 11 For 0 ≤ u ≤ v ≤ 1 we have uβ(v) + (1 − u)v ≥ β(u)β(v).

Proof. The function h(u, v) := uβ(v) + (1 − u)v − β(u)β(v) satisfies
h(v, v) = 0, so it suffices to show that h is decreasing in u for u ≤ v. But
we have ∂h/∂u = β(v)− v− β ′(u)β(v) ≤ 0, by the elementary computations
β ′(u) ≥ β ′(v) ≥ (β(v) − v)/β(v). �

Proof of Proposition 10. Without loss of generality suppose the
probabilities ui are decreasing. Let ak be the probability that the sequence
A1, . . . , Ak has no double gaps. Then a0 = a1 = 1, and by conditioning
on the last two events we obtain ak = ukak−1 + (1 − uk)uk−1ak−2. The
result follows by induction, using Lemma 11 thus: ak ≥ [ukβ(uk−1) + (1 −
uk)uk−1]

∏k−2
i=1 β(ui) ≥

∏k
i=1 β(ui). �

Recall the function g from the introduction, and write for a ≤ b,

Gb
a = Gb

a(p) := exp
[

− ∑b−1
i=a g(iq)

]

.

Lemma 12 (diagonal growth)

Pp(Db
a) ≥ (Gb−1

a−1)
2
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Proof. Immediate from Proposition 10 and the definitions of Db
a and g.

�

Next we estimate the relative cost of a J -event.

Lemma 13 (deviation cost) Fix positive constants c− < c+. For any p ∈
(0, 1/2) and a ≤ b − 4 satisfying a, b ∈ [c−/p, c+/p], we have

Pp(J b
a )

(Gb−1
a−1)2

≥ Cp e−C′p(b−a)2 ,

where C, C ′ ∈ (0,∞) depend only on c±.

Proof. From the definition of J b
a and Proposition 10 we obtain

Pp(J b
a ) ≥ [1 − (1 − p)a]4(1 − p)2b p exp

[

− (b − a)g(aq) − (b − a)g(bq)
]

.

Note that g is decreasing, and that (1 − p)k is bounded away from 0 and 1
for k ∈ [c−/p, c+/p], so we deduce

Pp(J b
a ) ≥ Cp exp

[

− 2(b − a)g(aq)
]

. (8)

Also we have

(Gb−1
a−1)2 = exp

[

− 2
∑b−2

i=a−1 g(iq)
]

≤ exp
[

− 2(b − a)g(bq)
]

. (9)

Now g(aq)−g(bq) ≤ (bq−aq) maxz∈[aq,bq] |g′(z)|, but the ratio q/p is bounded
for p < 1/2, hence g′ is uniformly bounded over the relevant interval, and we
obtain g(aq) − g(bq) ≤ C ′(b − a)p. Therefore dividing (8) by (9) gives the
result. �

Proof of Proposition 8. Let m = bMp−1/2c, where M < 1/4 is a
constant to be chosen later. Suppose integers (ai, bi)i=1,...,m and B satisfy:

p−1 < a1 ≤ b1 ≤ a2 ≤ · · · ≤ bm < 2p−1 ≤ B
bi − ai ∈ [4, p−1/2] ∀i

(10)

Let C, C ′ be the constants from Lemma 13 corresponding to c− = 1 and
c+ = 2. Then from the definition of the event E together with Lemmas 9(i),
12 and 13 we obtain:

Pp

[

E(a1, . . . , bm)
]

≥ p4
[

Cp e−C′p(p−1/2)2
]m

exp
[

− 2
∑B−1

i=1 g(iq)
]

= p4(C ′′p)m(GB
1 )2 (11)
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for C ′′ a fixed constant. Now since mp−1/2 < p−1/4, the number of possible
choices of (ai, bi)i=1,...,m satisfying (10) is at least

(bp−1 − mp−1/2c
m

)

(p−1/2 − 4)m ≥ (p−1/2)m

mm
(p−1/2/2)m =

( 1

4pM

)m

(12)

for p sufficiently small.
By Lemma 9(ii),(iii) we may multiply (11) and (12) to give for p suffi-

ciently small and all B > 2p−1,

I(B) ≥ p4
( C ′′

4M

)m

(GB
1 )2.

Now choose M = C ′′/8 (recall that C ′′ was an absolute constant) so that
C ′′/4M = 2. Also note that since g is decreasing,

− log GB
1 =

B−1
∑

i=1

g(iq) ≤ q−1

∫ Bq

0

g ≤ p−1

∫ ∞

0

g = p−1λ.

Hence for p sufficiently small,

I(B) ≥ p42Mp−1/2/2 exp[−2p−1λ] ≥ exp[−2p−1λ + cp−1/2],

as required. �

4 Explicit bound for the modified model

In this section we prove Theorem 4. Since we always refer to the modified
model we sometimes omit the subscript M in IM.

Proposition 14 (nucleation centres) Consider the modified model. For
any p ≤ 1/10 and any B ≥

√

2/p we have

I(B) ≥ exp
[

− 2λM/q + 2
√

2/p − log p−1 − 3.2
]

,

where λM = π2/6.

Lemma 15 (diagonal spanning) For the modified model we have for any
positive integer a and any p ∈ (0, 1),

IM(a) ≥ 1
2

(

2p − p2
)a

.

15



Proof. Note that for a ≥ 2, the square R(a) is internally spanned pro-
vided (1, 1) is occupied and R(2, 2; a, a) is internally spanned, or alternatively
provided (1, a) is occupied and R(2, 1; a, a− 1) is internally spanned. Hence

I(a) ≥ pI(a − 1) + (1 − p)pI(a − 1) = (2p − p2)I(a − 1).

The result follows by induction. �

Denote

F b
a = F b

a(p) :=
∏b−1

j=a

(

1 − (1 − p)j) = exp
[

− ∑b−1
i=a f(iq)

]

.

Lemma 16 (growth) Let a ≤ b be integers and let p ∈ (0, 1). For the
standard or modified model, we have

I(b) ≥ I(a)(F b
a)2.

Proof. Let F be the event that each of the strips

R(j + 1, 1; j + 1, j), j = a, a + 1, . . . , b,

R(1, j + 1; j, j + 1), j = a, a + 1, . . . , b

is non-vacant. It is easily seen that if R(a) is internally spanned and F occurs
then R(b) is internally spanned. Hence

I(b) ≥ P({R(a) is i.s.} ∩ F ) = I(a)P(F ) = I(a)(F b
a)2.

�

We next note some elementary bounds. We have

p ≤ q ≤ p + p2, (13)

where the second inequality holds provided p < 1/2. The function F b
a satisfies

exp

[

− 1

q

∫ (b−1)q

(a−1)q

f

]

≤ F b
a ≤ exp

[

− 1

q

∫ bq

aq

f

]

, (14)

since f is decreasing.

16



Also note the inequalities

log ε−1 ≤ f(ε) ≤ log ε−1 + ε (15)

e−K ≤ f(K) ≤ e−K + e−2K , (16)

where the fourth inequality holds provided K > 1/2. (The inequalities are
useful when ε � 1 � K). Hence

ε log ε−1 + ε ≤
∫ ε

0

f ≤ ε log ε−1 + ε + 1
2
ε2 (17)

e−K ≤
∫ ∞

K

f ≤ e−K + 1
2
e−2K , (18)

where the fourth inequality holds provided K > 1/2.

Proof of Proposition 14. Fix p < 1/10, and let A ≤ B be positive
integers (later we will take A ≈

√

2/p).
By Lemmas 15 and 16 we have

I(B) ≥ 1
2
(2p − p2)A(F B

A )2,

so using (14), (3) and (17), and rearranging,

log I(B) ≥ − log 2 + A log(2p − p2) − 2

q

∫ ∞

(A−1)q

f

≥ − log 2 + A log(2p − p2) − 2

q

(

λM − (A − 1)q log[(A − 1)q]−1 − (A − 1)q
)

= −2λM

q
+ 2(A − 1) log

e
√

2

(A−1)
√

p
+ 2(A − 1) log

p

q
+ A log(1 − p

2
) + log p,

where we have written (2p − p2) = 2p(1 − p/2). By (13), for p < 1/2 we
have log(p/q) ≥ log[p/(p + p2)] = − log(1 + p) ≥ −p, and log(1 − p/2) ≥
−p/2 − p2/4, so we obtain

log I(B) ≥ −2λM

q
+2(A−1) log

e
√

2

(A − 1)
√

p
−2(A−1)p−A(p/2+p2/4)+log p.

Now let
A =

⌈
√

2/p
⌉

,
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to give for p ≤ 1/10 and B ≥ A,

log I(B)

≥ −2λM

q
+ 2

(

√

2/p − 1
)

· 1 − 2
√

2/p p −
(

√

2/p + 1)(p/2 + p2/4) + log p

≥ −2λM

q
+

2
√

2√
p

− log p−1 − 3.2.

Note the non-trivial cancellation between terms in p−1/2 log p−1 implicit in
the simplification of the first logarithm, resulting from the choice of A. �

The following variant of Lemma 7(i) allows better control of the error
terms.

Lemma 17 (scanning estimate) Let b, `, m positive integers with mb < `,
and let p ∈ (0, 1). For the standard or modified model, we have

I(`) ≥
(

1 − e−m2I(b)
)

(F `
b F `

`−mb)
2
(

1 − (1 − p)`−mb
)`

.

Proof. Consider the m2 disjoint squares

Sk := R(b) + bk, k ∈ {0, . . . , m − 1}2,

and let
{0, . . . , m − 1

}2
=

{

k(1), k(2), . . . , k(m2)
}

be the lexicographic ordering of the set on the left side. For i = 1, . . . , m2

define the event
Ji = {Sk(i) is internally spanned},

and let Fi be the event that each of the strips

R(`) ∩ [bk(i) + R(j + 1, 1; j + 1, j)], j = b, b + 1, . . .

R(`) ∩ [bk(i) + R(1, j + 1; j, j + 1)], j = b, b + 1, . . .

that is non-empty is non-vacant. See Figure 2. Also define the event

E =
{

〈W ∩ R(`)〉 ⊇ R(mb + 1, mb + 1; `, `)
}

.

It is straightforward to see that for any i, if Ji and Fi occur then E occurs.
Furthermore, for each i, the event Fi is independent of the events J1, . . . , Ji.

18



Figure 2: An illustration of the proof of Lemma 17. Here m = 4, and the
first internally spanned sub-square is Sk(7) = S(2,1). The arrows indicate the
event F7.

Hence we have

P(E) ≥ P

[ m2

⋃

i=1

(

JC
1 ∩ · · · ∩ JC

i−1 ∩ Ji ∩ Fi

)

]

=

m2

∑

i=1

P
(

JC
1 ∩ · · · ∩ JC

i−1 ∩ Ji

)

P(Fi)

≥ P(J1 ∪ · · · ∪ Jm2) min
i

P(Fi)

≥
(

1 − e−m2I(b)
)

(F `
b )2

(

1 − (1 − p)`−mb
)`

. (19)

To conclude, let H be the event that each of the strips

R(j, j − 1; j, `), j = mb, . . . , 2, 1

R(j − 1, j; `, j), j = mb, . . . , 2, 1

is non-vacant. Using the Harris-FKG inequality we have I(`) ≥ P(E ∩H) ≥
P(E)P(H) ≥ P(E)(F `

`−mb)
2, and combining this with (19) gives the result. �

Proof of Theorem 4. Fix p ≤ 10 and let B ≥
√

2/p, and take L and
m such that L ≥ mB. We use Lemma 17 to derive a lower bound for I(L).
We obtain

I(L) ≥
(

1 − e−m2I(B)
)

(F∞
B F∞

L−mB)2e−Lf([L−mB]q). (20)
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Consider the first factor above. Take

m =

⌈

exp

(

λM

q
−

√
2√
p

+
1

2
log p−1 + 1.8

)⌉

. (21)

Then Proposition 14 implies log(m2I(B)) ≥ 0.4, and therefore

1 − e−m2I(B) ≥ 1 − e−e0.4

.

Turning to the other factors in (20), we have by (14),

(F∞
B F∞

L−mB)2e−Lf([L−mB]q)

≥ exp
(

− 2

q

∫ ∞

(B−1)q

f − 2

q

∫ ∞

(L−mB−1)q

f − Lf([L − mb]q)
)

≥ 1 − 2

q

∫ ∞

(B−1)q

f − 2

q

∫ ∞

(L−mB−1)q

f − Lf([L − mb]q).

We now set

B = 1 +
⌈3 + log q−1

q

⌉

and L = mB + 4cq−2, (22)

for any c ≥ 1. (The latter is simply a convenient way to express L ≥
mB + 4q−2). It is straightforward to check that for p ≤ 1/10 we have (L −
mB − 1)q > (B − 1)q > 1/2, so we may use (16),(18) to bound the above
terms thus:

2

q

∫ ∞

(B−1)q

f − 2

q

∫ ∞

(L−mB−1)q

f ≤ 4

q

(

e−(B−1)q + e−2(B−1)q
)

≤ 4e−3 + 4e−6,

and

Lf([L − mB]q) ≤ 2Le−(L−mB)q ≤ 2
(

e2/q2q−2 + 4cq−2 + 1)e−4c/q

≤ 2(e2/q2q−2 + 4q−2 + 1)e−4/q ≤ e−2

since m ≤ e2/q and B ≤ 2q−2 for p ≤ 1/10. Hence, returning to (20), for the
given choices of B, L we have

I(L) ≥ (1 − e−e0.4

)(1 − 4e−3 − 4e−6 − e−2) > 1/2.
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From (22) we have shown that I(L, p) > 1/2 provided p ≤ 1/10 and

p log L ≥ p log(mB + 4q−2) = p log m + p log B + p log
(

1 +
4q−2

mB

)

. (23)

Finally we need to find upper bounds for the terms appearing on the right
of (23). By (21) we have

p log m ≤ λM
p

q
−

√

2p +
1

2
p log p−1 + 1.8p + p log

m

m − 1
.

But for p ≤ 1/10 we have p log(m/(m − 1)) = −p log(1 − 1/m) ≤ 2p/m ≤
2pe−1/p ≤ 0.001p, while p/q ≤ p/(p + p2/2) ≤ 1 − 0.47p, so

p log m ≤ λM −
√

2p +
1

2
p log p−1 + 1.03p.

By (22) we have

p log B ≤ p log
(

2 +
3

q
+

log q−1

q

)

≤ p log(2.6p−1.3) = 0.96p + 1.3p log p−1.

Since 4q−2 > B and m ≥ e1/p for p ≤ 1/10, we have

p log
(

1 +
4q−2

mB

)

≤ pe−1/p ≤ 0.001p.

Hence the right side of (23) is at most

λM −
√

2p + 1.8p log p−1 + 2p,

as required. �

Open Problems

(i) Prove a complementary bound to Theorem 1. For example, do there ex-
ist γ, c ∈ (0,∞) such that (L, p) → (∞, 0) with p log L < λ−c(log L)−γ

implies I → 0?

(ii) Prove matching upper and lower bounds, e.g. involving inequalities of
the form p log L ≶ λ − c(log L)γ±ε, or even p log L ≶ λ − (c ± ε)F (L)
for some elementary function F .

(iii) Extend the results to other bootstrap percolation models for which
sharp thresholds are known to exist – currently those in [16, 17].

(iv) Identify more precisely the width of the critical window as p varies. Is
it the case that p1−ε log L − pε log L = Θ(1/ log L) as L → ∞?
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