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Abstract. We introduce and study a new percolation model, inspired by recent works on jigsaw
percolation, graph bootstrap percolation, and percolation in polluted environments. Start with
an oriented graph G0 of initially occupied edges on n vertices, and iteratively occupy additional
(oriented) edges by transitivity, with the constraint that only open edges in a certain random
set can ever be occupied. All other edges are closed, creating a set of obstacles for the spread
of occupied edges. When G0 is an unoriented linear graph, and leftward and rightward edges
are open independently with possibly different probabilities, we identify three regimes in which
the set of eventually occupied edges is either all open edges, the majority of open edges in one
direction, or only a very small proportion of all open edges. In the more general setting where G0

is a connected unoriented graph of bounded degree, we show that the transition between sparse
and full occupation of open edges occurs when the probability of open edges is (log n)−1/2+o(1).
We conclude with several conjectures and open problems.

2010 Mathematics Subject Classification: 60K35

Key words and phrases: Bootstrap percolation, Catalan percolation, jigsaw percolation, phase
transition, random graph, transitive closure.



1 Introduction

Suppose that we have n logical statements, each represented by a vertex of a graph V , and that
they are all equivalent, but we are not aware of this fact. The initial information consists of some
implications, and is realized as an oriented subgraph G0 = (V,E0). We then try to logically
complete the knowledge by transitivity. However, a capricious “censor” allows only certain
conclusions to be made, represented by open edges. A natural question is whether a substantial
proportion of uncensored knowledge can be obtained by this transitive closure process.

Another application is as follows. Suppose we want to compute the product a1a2 · · · an−1 in
a noncommutative group. However, some of the subproducts, and their inverses, are not allowed
to be computed. Can the product still be computed? If all ai and a−1i are initially known, then
G0 is the unoriented linear graph Ln on the points [n] = {1, 2, . . . , n} with edges between nearest
neighbors. Rightward edges in G0 represent the ai, leftward edges in G0 represent their inverses
a−1i , and vertices in G0 are positions for multiplication brackets. Longer edges between vertices
in [n] represent other elements in the group.

We now introduce our dynamics more formally. All of our graphs will have a fixed vertex
set V of n points. In many contexts, it is convenient to take V = [n]. We denote oriented and
unoriented edges using the notations i→ j and i↔ j. Throughout we identify unoriented edges
with two edges in both directions. As our focus is transitive closure, it is convenient to adopt
the notation i→ j → k for the pair of oriented edges i→ j and j → k. Likewise, we make use
of similar abbreviations, such as i← j → k and i→ j ← k.

We consider an evolving sequence Gt = (V,Et), t = 0, 1, . . . of graphs, with the set of occupied
edges Et ⊂ V × V by time t nondecreasing in time, that is, Et ⊂ Et+1. We denote the set of
eventually occupied edges by E∞ =

⋃
t≥0Et, and put G∞ = (V,E∞). More specifically, our

transitive closure dynamics, once initialized by some G0 = (V,E0), are governed by another
graph Gopen = (V,Eopen), where Eopen ⊂ (V × V ) \ E0 are open edges. Note, in particular,
that the sets of initially occupied and open edges are disjoint, Eopen ∩ E0 = ∅. The edges in
(V × V ) \ (Eopen ∪ E0) are called closed . The status of self-loops i ↔ i will be irrelevant, but
for concreteness, we assume they are all closed. The dynamics evolve as follows: given the set
of occupied edges Et at time t, we let

(1.1) Et+1 = Et ∪ {i→ j ∈ Eopen : i→ k → j ∈ Et, for some k ∈ V }.

In words, an open edge i→ j becomes occupied at time t+ 1 if there is a series of two occupied
edges i→ k → j at time t.

If G0 is strongly connected and all edges not initially occupied are open, then it is clear
that G∞ is a complete graph. Thus it is natural to ask what happens when some — most, in
our case — edges are closed and thus unable to ever become occupied. In this introduction, we
will assume that G0 is a deterministic connected unoriented graph. In general, when G0 does
not have extra structure, Gopen will be the oriented Erdős–Rényi graph with edge probability
popen > 0. (To be more precise, this is a slightly modified version in which each oriented edge
not in E0 is open with probability popen > 0 and closed otherwise.) We note here that the case
when Gopen is unoriented is easier, and also results like Theorem 1.2 below are not possible.
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Some of our results are concerned with the specific case when G0 = Ln is the unoriented
linear graph with edges 1 ↔ 2 ↔ · · · ↔ n, and it is in this case that we may assign different
probabilities pleft > 0 and pright > 0 to leftward and rightward open edges. The probabilities
popen, pleft and pright may depend on n, however, we suppress this notationally whenever the
dependence is clear in context.

We say that a subset V ′ ⊂ V is saturated at time t if all open edges in V ′ × V ′ are occupied
at this time. When we do not make a reference to time, we mean t =∞, that is, V ′ is saturated
eventually. For an edge i → j, we define its length as the number of edges on the shortest
oriented path in the graph G0 from i to j (or ∞ if no such path exists). For instance, when
G0 = Ln, the length of i→ j is simply |i− j|.

Our first result is for general initial graphs of bounded degree.

Recall that a sequence of events An hold asymptotically almost surely, abbreviated a.a.s., if
their probabilities converge to 1.

Theorem 1.1. Assume that G0 = (V,E0) is a connected unoriented graph on V = [n] with
vertex degrees bounded by a constant D, and that open (oriented) edges are chosen independently
(from amongst those not in E0) with probability popen. Fix a constant α > 0. Then there exist
constants c ∈ (0,∞) depending on D and α, and C ∈ (0,∞) depending only on D, so that the
following statements hold.

(1) When popen < c 1√
logn

, a.a.s. E∞ contains no edge longer than α log n.

(2) When popen > C log logn√
logn

, a.a.s. saturation occurs, E∞ = E0 ∪ Eopen.

We remark that the identical result (with easier proof) holds under the assumption that
Gopen is the unoriented Erdős–Rényi graph with probability popen of open edges.

Our next theorem establishes three regimes in the case of the unoriented linear graph.

Theorem 1.2. Assume that G0 = Ln is the unoriented linear graph on V = [n] with edge set
E0 consisting of all edges 1 ↔ 2 ↔ · · · ↔ n. Suppose that open leftward and rightward edges
are chosen independently (from amongst those not in E0) with probabilities pleft and pright. Fix
a constant α > 0. Then there exist constants c ∈ (0,∞) and A ∈ (0, 1) depending on α, and a
constant C ∈ (0,∞), so that the following three statements hold.

(1) When max{pleft, pright} < c 1√
logn

, a.a.s. E∞ contains no edge longer than α log n.

(2) When pleft < c 1√
logn

and pright > A, a.a.s. E∞ contains all open rightward edges longer

than α log n, but no such leftward edge.

(3) When min{pleft, pright} > C log logn√
logn

, a.a.s. saturation occurs, E∞ = E0 ∪ Eopen.

While it is not realistic to expect that simple simulations can distinguish between
√

log n
and a constant, we illustrate the three regimes guaranteed by Theorem 1.2 in Fig. 1.1.
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Figure 1.1: Illustration of the three regimes in Theorem 1.2 when n = 300: subcritical (left,
with pleft = 0.24, pright = 0.36), intermediate (middle, with pleft = 0.2, pright = 0.4; note the non-
monotone fashion in which edges are occupied), and supercritical (right, with pleft = pright =
0.35; note the nucleation). The dynamics are represented as the evolution of the adjacency
matrix, with edges exhibited as sites in the square. Initially occupied sites next to the diagonal
are black, closed sites are grey and open sites are white. After the transitive closure process
is complete, the initially white sites that become occupied are colored according to the time of
occupation, from blue (the earliest) to yellow (the latest).

It appears to be a challenge to extend the subcritical case (1), due to interactions between
leftward and rightward edges.

For comparison, we also state the following result for the oriented linear graph G0 = L→n ,
where the edges 1→ 2→ · · · → n are initially occupied, all other rightward edges are open with
some probability pright > 0, and all leftward edges are closed (pleft = 0). For reasons that will
become clear in Section 3, we call this instance of our process Catalan percolation. In contrast
with the unoriented case G0 = Ln, where saturation occurs at a probability (log n)−1/2+o(1) of
open edges, in this oriented case the probability must be very close to 1 for saturation. Part (3)
of the following theorem calculates the asymptotics of this probability. Parts (1) and (2) show
that the threshold for “near-saturation” is of constant order, bounded away from 0 and 1.

Theorem 1.3. Assume G0 = L→n is the oriented linear graph on V = [n] with edge set E0

consisting of all edges 1 → 2 → · · · → n. Suppose that open leftward and rightward edges are
chosen independently (from amongst those not in E0) with probabilities pleft = 0 and pright = p.
Then the following statements hold.

(1) For any constant p < 1/4, a.a.s. E∞ contains no edge longer than C log n, for some
constant C = C(p).

(2) There is a constant pu < 1 so that for all constants p ∈ (pu, 1), a.a.s. E∞ contains all
open edges of length C ′ log n, for some constant C ′ = C ′(p).

(3) If p = 1−αn−1/2, for some constant α > 0, then the probability of saturation (E∞ contains
all open rightward edges) approaches e−α

2
as n→∞.
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To put our results in the context of the literature, let us note that the algorithm by which
edges become occupied according to (1.1) is related to graph bootstrap percolation [8, 4, 7] (in
particular, see the discussion following Problem 6 in [4]), but in its analysis, as well as in its mod-
eling of increasing partial knowledge, it more closely resembles jigsaw percolation [11, 20, 10, 13].
As is clear from Fig. 1.1, the supercritical regime in this process is characterized by nucleation.
That is, local events create a network of occupied edges large enough to be unstoppable: with
high probability it continues to occupy edges on its boundary until, finally, no open edges remain
unoccupied. Perhaps the most well-known nucleation process is bootstrap percolation [26, 12],
which has been studied in great detail and yielded numerous deep and surprising results. Here
we only mention three milestone papers [1, 22, 3]. Due to the fundamental significance of this
model, methods and concepts which have resulted from its study are likely useful in the analysis
of any nucleation process, and ours is no exception. We should also mention that the pol-
luted version of bootstrap percolation has also been investigated [19, 17, 18], however, with the
emphasis on random initial states and thus on results of a different flavor.

By contrast, Catalan percolation and the related intermediate regime have ties to classical
results on random graphs: we establish the constant-order threshold for the formation of a giant
component, while saturation is avoided primarily by the appearance of the shortest closed edges
that can prevent it, which is analogous to the containment problem [23]. Finally, we also mention
the work of Karp [24], which studies strongly connected components in directed random graphs
and the time to complete the transitive closure process.

1.1 Outline

Most of the rest of this article is devoted to proofs of the above three theorems. We in fact
prove a bit more, and so some of the statements will be given in a more general form. Due
to the connections between the parts of these results, they are proved in a different order than
stated above: In Section 2 we prove the subcritical result Theorem 1.1 (1) for bounded-degree
initial graphs G0. This implies Theorem 1.2 (1) for the linear graph G0 = Ln. Theorem 1.3 for
Catalan percolation is proved in Section 3. Theorem 1.3 (2) is used to establish the statement
about rightward edges in the intermediate result Theorem 1.2 (2). The remainder of this result,
concerning leftward edges, is dealt with in Section 4. Section 5 establishes the supercritical result
Theorem 1.1 (2), which implies Theorem 1.2 (3). We conclude with Section 6, which contains a
selection of open problems.

1.2 Notation

We use standard asymptotic notation throughout, such as f � g and f = o(g) if f(n)/g(n)→ 0
as n→∞. In particular, o(1) denotes a function f such that f � 1.
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2 Subcritical regime for bounded-degree initial graphs

In this section, we prove Theorem 1.1 (1), which recall implies Theorem 1.2 (1).

We begin with a series of deterministic Lemmas 2.1, 2.2 and 2.3 that provide a necessary
condition for an edge e to become occupied. Roughly speaking, Lemma 2.3 implies the existence
of a set Ie, larger than the length of e, with the property that each v ∈ Ie is the base of a special
type of oriented triangle, called a horn. The most crucial property of a horn is that it contains
at least one open edge. Horns will also play a key role in the subsequent Sections 4 and 5
(intermediate and supercritical regimes). The next result Lemma 2.4 establishes an Aizenman–
Lebowitz [1] type property for the sizes of sets Ie of eventually occupied edges. These results,
together with a simple search algorithm Lemma 2.5 for edge-disjoint horns based in a set Ie,
imply the main result Theorem 1.1 (1).

Lemma 2.1. Assume that i→ j ∈ E∞. Then there exists an oriented path from i to j in G0.

Proof. The proof is by induction on the time of occupation. The statement is immediate for
edges in E0. For an edge i → j ∈ Et+1, there are edges i → w → j ∈ Et, and so by induction,
oriented paths from i to w and from w to j. Concatenating these paths, we obtain an oriented
path from i to j (after deleting any loops). �

For sets A,B ⊂ V we say that an edge e is an edge from A to B if e = a→ b for some a ∈ A
and b ∈ B.

Lemma 2.2. Assume V1 ⊂ V . Assume E∞ \ E0 contains an edge from V1 to V2 = V \ V1.
Then there exist vertices v1 ∈ V1, v2 ∈ V2 and w ∈ V so that v1 → w → v2 ∈ E0 ∪ Eopen,
v1 → v2 ∈ Eopen and either (1) w ∈ V1 and w → v2 ∈ E0, or else, (2) w ∈ V2 and v1 → w ∈ E0.

Proof. Let t ≥ 1 be the first time that an edge v1 → v2 ∈ Eopen from V1 to V2 becomes occupied.
Then, for some w ∈ V , v1 → w → v2 ∈ Et−1 ⊂ E0 ∪Eopen. Then, by the minimality of t, either
(1) w ∈ V1 and w → v2 ∈ E0, or else, (2) w ∈ V2 and v1 → w ∈ E0. �

For edges e ∈ E∞, we define

Ie = {V0 ⊂ V : the subgraph of (V,E0 ∪ Eopen) induced by V0 makes e occupied}.

With each such e, we associate an arbitrary Ie ∈ Ie of minimal cardinality.

Our next lemma shows that if v ∈ Ie, then v is in a triangle of a certain type.
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Let K ⊂ V . A vector (v, x, y) ∈ K3 is a horn in K if any of the following conditions are
satisfied (see Fig. 2.1):

1. x→ v → y ∈ E0 and x→ y ∈ Eopen,

2. v → y ∈ Eopen, v → x ∈ E0 and x→ y ∈ E0 ∪ Eopen,

or, in the opposite orientation,

3. x← v ← y ∈ E0 and x← y ∈ Eopen,

4. v ← y ∈ Eopen, v ← x ∈ E0 and x← y ∈ E0 ∪ Eopen.

In all cases, we call v the base and y the tip of the horn.

x v y v x y

v x yx v y

Figure 2.1: The four ways v can be the base and y the tip of a horn. Initially occupied edges in
E0 are represented by solid arrows, open edges in Eopen by dotted arrows, and edges in E0∪Eopen

by dashed arrows.

Lemma 2.3. Assume e ∈ E∞ \ E0, and v ∈ Ie. Then v is the base of a horn in Ie.

Proof. Replace V with Ie, and replace G0 and Gopen with their subgraphs induced by Ie, so that
E0 and Eopen now only contain edges between vertices in Ie.

By the minimality of Ie, we have Ie \ {v} /∈ Ie. Therefore, informally, some edge in Eopen

would not get occupied without the “help” of v. Let e′ be some such edge in Et, where t ≥ 1 is
the first time such an edge becomes occupied. There are two cases:

(a) If v is an endpoint of e′, then either e′ = v → y or e′ = v ← y for some y ∈ Ie \ {v}.
Therefore, by the choice of t, it follows in these cases that v → x ∈ E0 and x → y ∈ Et−1 or
v ← x ∈ E0 and x ← y ∈ Et−1 for some x ∈ Ie \ {v, y}, and hence that v is the base of a horn
in Ie.

(b) On the other hand, if e′ = x → y for some x, y /∈ Ie \ {v}, then x → v → y ∈ Et−1. If
x→ v → y ∈ E0 then it is immediate that v is the base of a horn in Ie. Otherwise, if x→ v /∈ E0

use Lemma 2.2 with V2 = {v} to see that v is the base of a horn in Ie. Similarly, if v → y /∈ E0,
use V1 = {v} instead. �
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Next, we state a crucial property for establishing the subcritical regime of our iterative
growth process. This property, first formulated by Aizenman and Lebowitz [1] in the context
of bootstrap percolation, implies that the transitive closure dynamics create sets, with certain
internal properties, of sizes on all scales smaller than the longest length of an occupied edge. The
proof hinges on a slowed-down version of the dynamics, whereby at each time step we occupy a
single open edge (that can be occupied by a transitive step). This edge is chosen arbitrarily from
the available edges until no such edge exists. The monotonicity of the original process implies
that any slowed-down version produces the same set of eventually occupied edges.

Recall that the length of an edge e = i → j is the number of edges in the shortest oriented
path (∞ if no such path exists) from i to j in G0.

Lemma 2.4. Assume e0 ∈ E∞ has length `. Then for every integer k ∈ [1, `], there is an edge
e with |Ie| ∈ [k + 1, 2k].

Proof. Remove all edges from E0∪Eopen besides those between vertices of Ie0 , and then consider
the slowed-down process, terminated once e0 is occupied. If at some step an edge e = x→ y ∈
Eopen is occupied by “parent” edges e′ = x → z and e′′ = z → y, then Ie′ ∪ Ie′′ ∈ Ie and so
|Ie| ≤ |Ie′ |+ |Ie′′ |. Therefore, at each step of the slowed-down process, the maximal cardinality
of |Ie|, over all edges e occupied thus far, at most doubles. As this maximum starts at 2 and ends
at |Ie0 |, the claim follows, noting that |Ie0 | ≥ `+ 1 by Lemma 2.1 (and since, by assumption, e0
has length `). �

For the rest of this section, assume that the in-degrees and out-degrees of the initial graph
G0 are bounded by an integer D ≥ 1.

In this setting, we collect one more lemma before turning to the main result of this section.

Lemma 2.5. Suppose that K ⊂ V is such that all v ∈ K are bases of horns in K. Then there
is a set K0 ⊂ K of size at least |K|/(9D) so that horns (in K) for each v ∈ K0 can be chosen
so that their edge-sets are pairwise disjoint.

Proof. This can proved by a simple search algorithm. Order the vertices of K arbitrarily. Start
with K0 = ∅ and another set U = ∅ of used vertices, and enlarge them as follows. Let d0 be
the graph distance in G0. In each step, find the first vertex v such that d0(v, U) > 1 and a
horn (v, x, y) in K. Note that x /∈ U , but the tip y could possibly be in U . Add v to K0 and
all of v, x, y to U . The proof now follows by observing that, after t steps, there are at most
3(1 + 2D)t ≤ 9Dt vertices u such that d0(u, U) ≤ 1, and that any horn based some v′ with
d0(v

′, U) > 1 does not involve any edges between vertices in U . �

Finally, we prove Theorem 1.1 (1), which we state below in a stronger form, as we do not
need to assume that the initial graph in unoriented.

Theorem 2.6. Assume that G0 = (V,E0) is a connected on V = [n] with in-degrees and
out-degrees bounded by a constant D. Fix a constant α > 0. Then there exists a constant
c = c(α) > 0, so that if open (oriented) edges are chosen independently (from amongst those not
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in E0) with probability popen < c/
√

log n, then

P (some edge of length at least α log n becomes occupied)→ 0,

as n→∞.

Proof. The idea is to show that an occupied edge of length ` = bα log nc or longer implies the
existence of many edge-disjoint horns, and so, many open edges. To this end, consider the
unoriented graph G̃0 obtained from G0 by ignoring orientation, i.e., i ↔ j is an edge of G̃0 if
either i← j ∈ G0 or i→ j ∈ G0.

First note that, for any fixed (deterministic) set K ⊂ V of size k,

(2.1) P (v is the base of a horn in K) ≤ 2(2D)2popen + 2Dkp2open,

where (see Fig. 2.1) the first term bounds the event that v is the base of a horn in K with only
one open edge, and the other term bounds the case of other types of horns involving two open
edges. Next, by Lemma 2.5 and the van den Berg–Kesten inequality [27] we claim that, for any
such K, the probability that all vertices in K are bases of horns in K is at most

2k(8D2popen + 2Dkp2open)k/(9D).

Indeed, the number of ways to select k/(9D) vertices in K is
(

k
k/(9D)

)
≤ 2k. Further, any given

given k/(9D) vertices in K are bases of edge-disjoint horns in K with probability at most the
upper bound in (2.1) to the power k/(9D).

Next, we claim that if an edge of length ` is occupied, then there is some G̃0-connected set
K of size k ∈ [`/2, `] such that all vertices v ∈ K are bases of horns in K. To see this, note
that if some e0 of length at least ` is occupied then by Lemma 2.4 there is an edge e ∈ E∞ with
|Ie| ∈ [`/2, `]. By Lemma 2.1 (with k ∈ b`/2c) Ie is G̃0-connected, and by Lemma 2.3 every
v ∈ Ie is the base of a horn in Ie, giving the claim.

Finally, by e.g. Lemma 3.5 in [20], the number of G̃0-connected subsets of V of size k
containing a given vertex is at most (6D)k. Putting all of the above together, a union bound
yields

P (some edge of length at least ` becomes occupied)

≤ n
∑̀
k=`/2

(6D)k · 2k(8D2popen + 2Dkp2open)k/(9D)

≤ n`(12D)`(8D2popen + 2D`p2open)`/(18D)

= αn log n
[
12D(8cD2/

√
log n+ 2Dαc2)1/(18D)

]bα lognc
� 1

for all sufficiently small c > 0. �
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3 Catalan percolation

In this section, we focus on Catalan percolation, which recall is the transitive closure process on
the oriented linear graph G0 = L→n , consisting of the initially occupied edges 1→ 2→ · · · → n,
in the case that all leftward edges are closed (pleft = 0) and all rightward edges (of length at
least 2) are open independently with some probability pright = p. Observe that in this setting,
the length of an edge i→ j is simply j − i.

We first prove Theorem 1.3 (1) and (2), stated as Lemmas 3.1 and 3.2 below, which together
establish that the threshold for the occupation of “long” edges is of constant order, bounded
between 0 and 1. The proof of Lemma 3.1 is a simple combinatorial argument, but reveals a
connection with the Catalan numbers, which is the reason for the name of the process. On the
other hand, Lemma 3.2 is proved by noticing that a certain restriction of the dynamics can be
described using oriented percolation [14]. The probability of saturation (occupation of all open
edges), Theorem 1.3 (3), is discussed afterwards at the end of this section.

Lemma 3.1. For any constant p < 1/4, there exists a constant C = C(p) so that a.a.s. all
edges in E∞ have length at most C log n.

Proof. Assume e is an oriented edge of length `. Let Ee be the set of all inclusion-minimal sets
of open edges (including e) that, together with edges in E0, make e occupied. By induction, it
is easy to see that any A ∈ Ee is of size |A| = ` − 1, and moreover |Ee| = C`, the `th Catalan
number. One way to see this is to consider computing a product of a1a2 · · · a` as described in
Section 1. Then each element in Ee corresponds with a way of parenthesizing the product. Since
C` ≤ 4`, it follows that

P (an edge of length at least C log n becomes occupied) ≤ n2p−1(4p)C logn � 1

for all C > −2/ log(4p). �

In preparation for the proof of the next result, it will be useful to view the growth dynamics
on [n]2. As such, we will often use the terms “edge” and “site” interchangeably when referring
to an edge i → j and its corresponding site (i, j). As in Fig. 1.1, the site (i, j) for an edge
i → j is positioned in [n]2 as in the adjacency matrix (with the y-axis oriented downwards).
The initially occupied sites are those in {(i, i + 1) : i = 1, . . . , n − 1} and only the sites above
this diagonal may ever become occupied. Open sites (i, j) ∈ [n]2 become occupied once there
are occupied sites (i, k) and (k, j), for some i < k < j.

The advantage of this point of view is its connection with oriented percolation. See Fig. 3.1.
It is easy to see (by induction) that an open site (i, j) becomes occupied if there is an oriented
percolation path (moving one unit up or to the right in each step) along open sites, starting from
some (initially occupied) site on the diagonal to (i, j). Indeed, moving up from a site (x, y)
corresponds to occupying (x − 1) → y due to x → y and (x − 1) → x being occupied, and
moving to the right corresponds to occupying x→ (y + 1) due to x→ y and y → (y + 1) being
occupied. This connection plays a crucial role in the proof of Lemma 3.2 below, which shows
by a contour/duality argument (standard for oriented percolation) that with high probability
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1

(2, 11)
1

(2, 5)

(5, 11)

5 112

(3, 4)

(8, 9)

Figure 3.1: At left: The open edge (2, 11) becomes occupied due to a pair of oriented paths of
open sites, from (3, 4) to (2, 5) and from (8, 9) to (5, 11). At right: The same occupation process
whereby edges are represented as usual. Note that, until the very last step, each transitive step
involves at least one initially occupied edge.

all open edges of i → j of length at least C log n become occupied due to a pair of oriented
paths from (possibly different starting points on) the diagonal to sites (i, k) and (k, j), for some
i < k < j.

Lemma 3.2. There exists a constant pu < 1 so that the following holds. If p > pu, then there
exists a constant C = C(p) so that a.a.s. E∞ contains every open edge of length at least C log n.

Proof. We divide the proof into three steps. Recall that, as discussed above, we identify edges
i→ j with sites (i, j) ∈ [n]2.

Step 1. Assume that, for i < j, there exists an oriented percolation path of open or initially
occupied sites connecting a site in G0 to i→ j. Then i→ j ∈ E∞.

As already sketched above, the proof of Step 1 is a simple induction argument on the length
` of i → j. The claim holds when ` = 1 as those edges are in E0. Otherwise, for ` > 1, the
oriented percolation path from the diagonal to (i, j) must visit either (i, j − 1) or (i+ 1, j) (i.e.,
either the site to the left or below (i, j) in the adjacency matrix) before reaching (i, j). So, by
the induction hypothesis, either i → (j − 1) or (i + 1) → j becomes occupied. Then, since
(j − 1)→ j and i→ (i+ 1) are initially occupied, the claim follows.

Step 2. Fix an ` > 1. Let F` be the event that strictly more than `/2 sites on L = {(1, i) : 2 ≤
i ≤ `+ 1} are connected to G0 through oriented percolation paths. Then, for p > 1− 2−32, we
claim that

P (F c` ) ≤ 2 · 8`(1− p)`/8.

This follows by a typical contour argument (see e.g. [14] Section 10).
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Choose any subset S of L of size at least `/2, and assume that S is exactly the set of sites
that are not connected to G0 by oriented percolation paths. Write S = S1 ∪ · · · ∪ Sm, where
Si are non-adjacent intervals. Then, by a standard duality argument, there exist disjoint paths

πi : x
(i)
0 , . . . , x

(i)
ti

, i = 1, . . . ,m, such that (1) ||x(i)j − x
(i)
j−1||∞ = 1 for j = 1, . . . , ti, (2) x

(i)
0 and

x
(i)
ti

are the endpoints of Si, and (3) such that at least ti/4 sites on πi (determined as a function
of πi) are closed.

Form a path π by connecting together all intervals in L\S and all paths πi. As |L\S| ≤
∑

i ti,
the proportion of closed sites on π is at least 1/8. Trivially, the length t of π is at least `. It
follows that

P (F c` ) ≤ P (π exists) ≤
∑
t≥`

8t(1− p)t/8,

which establishes Step 2.

Step 3. Conclusion of the proof, by the pigeonhole principle.

Let L′ = {(i, `+ 1) : 1 ≤ i ≤ `}, and F ′` the event that strictly more than `/2 sites on L′ are
connected to G0 through oriented percolation paths. If p is close enough to 1, then by symmetry
and Step 2,

P
(
F` ∩ F ′`

)
≥ 1− exp(−γ`),

for some constant γ > 0 (not depending on `). Suppose that F` ∩ F ′` occurs. Then, by Step 1
and the pigeonhole principle, there exists an i ∈ [1, `], so that (1, i) ∈ L and (i, ` + 1) ∈ L′ are
eventually occupied, in which case (1, `+ 1) becomes occupied if open. It follows that

P ((1, `+ 1) is open but never occupied) ≤ P
(
(F` ∩ F ′`)c

)
≤ exp(−γ`).

Therefore,

P (there is an open edge of length at least C log n that is never occupied)

≤ n2 exp(−γC log n)� 1

for any C > 2/γ. �

The final task of this section is to address saturation for Catalan percolation.

Proof of Theorem 1.3 (3). For 1 ≤ i ≤ n− 3, let Zi be the indicator of the event that the edge
i→ (i+ 3) is open but never occupied (i.e., i→ (i+ 2) and (i+ 1)→ (i+ 3) are both closed).
The random variable N =

∑
i Zi has EN = (n − 3)(1 − p)2p and, as we will see, converges

in distribution to a Poisson(α2) random variable by an application of the Chen–Stein method
[6]. Indeed, Zi and Zj are independent unless |i− j| ≤ 1, therefore the total variation distance
between (the distribution of) N and Poisson(EN) is bounded above by

∑
i

(EZi)2 +
∑

j:|i−j|=1

(EZiEZj + E(ZiZj))


≤ n

[
3(1− p)4 + 2(1− p)3

]
= O(n−1/2).



4 INTERMEDIATE REGIME FOR LINEAR INITIAL GRAPHS 12

Therefore,

(3.1)

lim sup
n

P (all open oriented edges become occupied)

≤ lim sup
n

P (N = 0) = exp(−α2).

Now let H` be the event that ` is the minimal length of an unoccupied open edge. Note that if
N = 0 then all open edges of length 3 become occupied. Therefore

(3.2) P (all open oriented edges become occupied) = P (N = 0)−
∑
`≥4

P (H`) .

Note that, on the event H`, there is an edge (i, i+ `) so that, for all 1 ≤ j < `, either i→ (i+ j)
or (i+ j)→ (i+ `) is closed. It follows that

(3.3) P (H`) ≤ n · 2`−3(1− p)`−1 ≤ (2α)`−1n1−(`−1)/2.

By (3.2) and (3.3),

(3.4)

P (all open oriented edges become occupied)

≥ P (N = 0)− (2α)3√
n

∑
`≥0

(2α/
√
n)`

= exp(−α2)−O(n−1/2).

Putting the bounds (3.1) and (3.4) together completes the proof. �

4 Intermediate regime for linear initial graphs

For an edge i → j, we say that another edge x → y is below i → j if x, y are between i, j.
Similarly, we say that x→ y is above i→ j if one of x, y are on either side of i, j.

In the Catalan percolation process studied above, where all edges are oriented in the same
direction, an edge i → j can only become occupied due to other edges below i → j becoming
occupied. On the other hand, if leftward and rightward edges are present (initially occupied or
open), there are many ways in which they can interact, and so also ways in which edges can
become occupied. See Fig. 4.1.

i j i j kk

Figure 4.1: A leftward open edge i ← j becomes occupied due to occupied edges i ← k ← j of
opposite orientations, for some k /∈ [i, j].
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4.1 The tilde process

It appears challenging to accurately control the interactions between leftward and rightward
edges in any regime in between that of Theorem 1.2 (1) and (3). We present a modest result
Theorem 1.2 (2) stating that, when pleft < c/

√
log n and pright > A, for small enough c and large

enough A, a.a.s. all open rightward edges longer than α log n are eventually occupied, however,
no such leftward edges are ever occupied. The statement about rightward edges follows by
Lemma 3.2 above. To prove the other statement, we show that, even if all rightward edges were
to become occupied, a.a.s. no long leftward edges become occupied.

More formally, we consider a modified tilde process Ẽt, which describes the occupation of
leftward edges in time, when all rightward edges are assumed to be initially occupied. The set
Ẽ0 of initially occupied leftward edges is given by 1 ← 2 ← · · · ← n. The set Ẽopen of open
leftward edges is obtained by opening leftward edges (of length at least 2) independently with
probability pleft = p. Given Ẽt, an edge i ← j ∈ Ẽt+1, provided that i ← j ∈ Ẽopen and for
some k ∈ [n] we have that:

• i← k ← j ∈ Ẽt and i < k < j; or

• k ← j ∈ Ẽt and k < i; or

• i← k ∈ Ẽt and k > j.

In other words, in each step of the tilde process, either an open leftward edge becomes
occupied due to a usual transitive step, or else, some open leftward edge becomes occupied
which is below, and shares an endpoint with, a previously occupied leftward edge.

To show that these dynamics are subcritical for p < c/
√

log n, when c is small, we translate
some of the ideas and definitions from Section 2.

We call an interval I ⊂ [n] good if either

• |I| = 2; or

• |I| ≥ 3 and, for every {i, i + 1} ⊂ I, there exists a j ∈ I so that either (1) j < i and
i→ j ← i+ 1 ∈ Ẽopen ∪ Ẽ0, or else, (2) j > i+ 1 and i← j → i+ 1 ∈ Ẽopen ∪ Ẽ0.

When such a j exits for i ∈ I, we say that i is the base of a tilde horn in I.

Assume that an edge e = i1 ← i2 ∈ Ẽ∞. Associated with e, we let Ĩe denote an interval I of
minimal cardinality such that graphs on I induced by edges in Ẽ0 ∪ Ẽopen make e occupied (by

the tilde process dynamics). Note that [i1, i2] ⊂ Ĩe.

The next lemma is an analogue of Lemma 2.3.

Lemma 4.1. For any e ∈ Ẽ∞, the interval Ĩe is good. That is, either e ∈ Ẽ0, or else, for each
{i, i+ 1} ⊂ Ĩe, i is the base of a tilde horn in Ĩe.
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Proof. For any {i0, i0 +1} ⊂ Ĩe, an open edge over the initially occupied edge i0 ← (i0 +1) must
become occupied, or else the interval could be shortened. The first time t0 ≥ 1 such an edge
i ← j becomes occupied, it follows by the minimality of t0 that i ← k ← j ∈ Et0−1 for some
i < k < j. That is, i← j becomes occupied by a usual transitive step. Moreover, again by the
minimality of t0, either (1) i = i0 and k = i0 + 1, or else, (2) k = i0 and j = i0 + 1. �

We also need counterpart of Lemmas 2.4 and 2.5. We omit the proof, since they are almost
identical.

Lemma 4.2. Assume that e0 ∈ Ẽ∞ has length `. Then, for every integer k ∈ [1, `], there exists
an edge e with |Ĩe| ∈ [k + 1, 2k].

Lemma 4.3. Suppose that K ⊂ V is such that all v ∈ K are bases of tilde horns in K. Then
there is a set K0 ⊂ K of size at least |K|/(9D) so that tilde horns (in K) for each v ∈ K0 can
be chosen so that their edge-sets are pairwise disjoint.

Proof of Theorem 1.2 (2). As already mentioned, the statement for rightward edges follows by
Lemma 3.2. The statement for leftward edges can be proved along the same lines as Theorem 2.6,
but using Lemmas 4.1–4.3 instead of Lemmas 2.3–2.5. �

5 Supercritical regime for bounded-degree initial graphs

Finally, we prove the supercritical result Theorem 1.1 (2) for bounded-degree initial graphs G0.
Recall that this result implies Theorem 1.2 (3). Before turning to the proof, we state a few
preliminary observations, and briefly discuss some of the main parts of our strategy.

First, note that, we can assume that G0 is an unoriented tree (i.e., replace G0 it by a spanning
subtree if necessary). Then using a result from [11], which follows from Lemma 6.1 in [20], we
obtain a large number of edge-disjoint subtrees of G0 of some (suitably chosen) size.

Lemma 5.1. For any tree with n vertices and integer L ∈ [1, n− 1] there exist d(n− 1)/(2L2)e
subtrees such that (1) each subtree has L edges, and (2) any two subtrees have at most 1 vertex
in common.

Next, we prove the following lemma, which we will use in describing the spread of occupied
edges via nucleation in the supercritical regime. Note that, once again, horns are playing a
crucial role in our arguments.

Lemma 5.2. Assume that some subtree T ⊂ G0 is internally saturated. Suppose that for every
neighboring (in G0) vertices v, v′ which are not both in T , (1) there is a y ∈ T so that edges
v ← y → v′ ∈ Eopen ∪ E0 (oriented away from T ), and (2) the set U→v of endpoints u ∈ T of
edges u→ v is strongly connected by edges in Eopen ∪ E0. Then all edges from T to G0 \ T are
eventually occupied. Likewise, a symmetric statement also holds in the reverse orientation (i.e.,
towards T ).
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Proof. This follows by a straightforward induction on the distance (in G0) of a vertex v /∈ T to
T . In (1), we choose v′ to be the neighbor (in the unoriented tree G0) of v that is closest to T .
Then, by the inductive hypothesis, y → v′ is eventually occupied. Therefore, since v′ ↔ v ∈ E0,
it follows that y → v is eventually occupied. Next, by (2), there is a collection of oriented paths
such that all (a) end at y, (b) visit only vertices in U→v , and (c) together visit all points in U→v .
Therefore, starting with the eventually occupied edge y → v, it follows by another induction
(on the distance to y along such oriented paths ending at y) that all edges from U→v to v are
eventually occupied. Informally, we can backtrack (started from y) along such a path to y until
we eventually reach any given u ∈ U→v , occupying edges from this path to v along the way. �

Therefore, supposing that one of the subtrees T ⊂ G0 (of size L, to be determined below)
given by Lemma 5.1 is internally saturated, all other open edges in Eopen become occupied by
Lemma 5.2, provided that L is large enough so that, a.a.s. for all x, y /∈ T , there are edges
x → u → y for some u ∈ T . Showing that at least one such subtree is internally saturated
follows similarly, however, on this smaller scale slightly more delicate arguments are required.

In order to apply Lemma 5.2, we will require the following standard result about the con-
nectivity of oriented Erdős–Rényi random graphs, the proof of which we only briefly sketch.

Lemma 5.3. Assume G is an oriented Erdős–Rényi random graph on n points with edge prob-
ability p. If p = c log n/n with c > 1, then

P (G is not strongly connected) = O(n1−c).

If p = n−α, for some α < 1, then

P (G is not strongly connected) ≤ exp(−n1−α/2).

Proof. If G is not strongly connected, then there exists a nonempty set A of k ≤ n/2 points
so that there are no outward connections, or no inward connections, from A to Ac. Therefore
(using the bounds

(
n
k

)
≤ (ne/k)k and (1− x) ≤ e−x),

P (G is not strongly connected)

≤ 2

bn/2c∑
k=1

(
n

k

)
(1− p)k(n−k)

≤ 2

bn/2c∑
k=1

exp[−k(pn+ log k − pk − log n− 1)].

The desired inequalities then follow by dividing the above sum into two sums over k ≤ p−1/2

and k > p−1/2. �

Finally, we note that in our context, an event E (i.e., a subset of the sample space Ω of
all possible configurations ω of open and closed edges) is increasing if ω ∈ E implies ω+ ∈ E
whenever ω+ contains all open edges in ω. In other words, an event is increasing if it cannot be
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destroyed by the addition of open edges. Note that the event {V is saturated} is not increasing.
To deal with this nuisance, we say that a set E of oriented edges between vertices in V is
abundant if for every i, j ∈ V , there exists k ∈ V so that i → k → j ∈ E. We record the
following simple observations.

Lemma 5.4. The event {E∞ is abundant} is increasing and

{E∞ is abundant} ⊂ {V is saturated}.

We now prove the following result, which immediately implies Theorem 1.1 (2).

Theorem 5.5. Assume that G0 = (V,E0) is an unoriented connected graph. Suppose that
open (oriented) edges are chosen independently (from amongst those not in E0) with probability
popen ≥ C log logn/

√
log n, for some C > 4. Then, with high probability, V is saturated.

Proof. We divide the proof into several steps. In Step 1, we select edge-disjoint subtrees of G0

of suitable sizes. Steps 2 and 3 show that if any of these trees are saturated, then a.a.s. so is V .
By similar, but more delicate reasoning, we show in Step 4 that indeed a.a.s. at least one such
tree is internally saturated. The final Step 5 extends these results to larger p.

Step 1. Recall that, for simplicity we may assume, without loss of generality, that G0 is
edge-minimal, that is, a spanning tree. Fix C > 8 and put

k =

⌈
log n

2 log log n

⌉
, p =

√
C log k

k
.

By Lemma 5.1, we fix subtrees Tm, m = 1, . . . , dn/(4k6)e, of size k3, no two of which share more
than a single vertex. Generate the configuration of open edges Eopen with popen = p.

Step 2. We claim that a.a.s. all subtrees Tm have the following properties:

1. For all j1, j2 ∈ [n] there are i1, i2, i3 ∈ Tm such that all edges j1 ← i1 → j2, j1 → i2 ← j2
and j1 → i3 → j2 are in Eopen ∪ E0.

In particular, for every j1 ↔ j2 ∈ E0, the edges j1 ← i1 → j2, j1 → i2 ← j2 give horns
(j1, j2, i1) and (j1, j2, i2), oriented towards and away from j1 with their tips in i1, i2 ∈ Tm.

2. For all j /∈ Tm, the sets

U→j = {i ∈ Tm : i→ j ∈ Eopen ∪ E0},
U←j = {i ∈ Tm : i← j ∈ Eopen ∪ E0}

are strongly connected by edges in Eopen ∪ E0.

To see this, we first claim that, for any given Tm and j1, j2 ∈ [n], the probability that
property (1) fails is at most, for all large n,

3(1− p2)k3−2 ≤ 4 exp(−p2k3) ≤ 4 exp(−k2).
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This follows by a union bound: For a given j1, j2 there are at least k3−2 vertices i ∈ Tm\{j1, j2}.
If (1) fails then either (a) for all such i at least one of the edges j1 ← i → j2 is closed, (b) for
all such i at least one of edges j1 → i ← j2 is closed, or (c) for all such i at least one of edges
j1 → i → j2 is closed. For fixed j1, j2 any one of these events holds with probability at most
(1− p2)k3−2 by independence.

By Lemma 5.3 above and standard Binomial tail bounds (e.g., Lemma 2.8 in [20]), for any
given Tm and j /∈ Tm, the probability that any given U→j or U←j is not strongly connected is at
most, for all large n,

P
(
Bin(k3, p) ≤ pk3/2

)
+ exp(−k2/2) ≤ exp(−pk3/7) + exp(−k2/2) ≤ 2 exp(−k2/2).

Hence, for all large n, all trees Tm have properties (1) and (2) with probability at least

1− n

2k6
[4n2 exp(−k2) + 4n exp(−k2/2)] ≥ 1− n3 exp(−k2/2) = 1− o(1).

Step 3. Convert all open edges between vertices of Tm to occupied. We claim that properties
(1) and (2) for Tm imply that all other open edges (not between vertices in Tm) are eventually
occupied.

Indeed, using the horns provided by (1), the strong connectivity in (2) and Lemma 5.2,
all open edges with exactly one endpoint in Tm are eventually occupied. As discussed below
the proof of Lemma 5.2, all other edges between x, y /∈ Tm are then occupied, using the edges
x→ i→ y ∈ Eopen ∪ E0 for some i ∈ T , provided by (1).

Step 4. A.a.s., some Tm is saturated.

We show that any given subtree Tm is saturated with probability at least (2
√
n)−1. Given

this, recalling that any two subtrees share at most 1 vertex, it follows that some Tm is saturated
with probability at least

1− (1− (2
√
n)−1)n/(4k

6) ≥ 1− exp(−
√
n/(8k6)) = 1− o(1).

Since the Tm are of the same size, it suffices to consider the case T1. Moreover, for notational
convenience, let us assume that T1 = [1, k3] and that for all j ≤ k3 the vertices in [1, j] form a
subtree of T1.

Step 4a. For all large n, with probability at least n−1/2/ log n all edges 1 ↔ i ∈ [2, k], are in
Eopen ∪ E0 and hence [1, k] is saturated.

Indeed, for large enough n, all such edges are in Eopen ∪ E0 with probability at least

p2k ≥ (log n)−k ≥ n−1/2/ log n.

By induction, all edges 1↔ i become occupied, and using these edges all other open edges can
be occupied: if i→ j is open, then it becomes occupied due to the occupied edges i→ 1→ j.

Step 4b. A.a.s., for any j1, j2 ∈ [k + 1, k3] there are i1, i2, i3 ∈ [1, k] such that all edges
j1 ← i1 → j2, j1 → i2 ← j2 and j1 → i3 → j2 are in Eopen ∪ E0.
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These edges play a similar role as those in Step 2 above. Moreover, the existence of such
edges is proved similarly. For fixed j1, j2, a requiste i1, say, will fail to exist with probability
(1 − p2)k by independence. Therefore, noting that 1 − x ≤ e−x and kp2 = C log k, such edges
are not open with probability at most (recall C > 8)

3k6(1− p2)k ≤ 6k6−C � 1.

Next, for j ∈ [k+ 1, k3], we consider sets V→j , V←j analogous to the sets U→j , U
←
j considered

in Step 2 above. However, in the present setting (where the subtree on [1, k] is much smaller
than Tm of size k3), strong connectivity no longer follows by a simple union bound.

Step 4c. For j ∈ [k + 1, k3], we claim that the sets

V→j = {i ∈ [1, k] : i→ j ∈ Eopen ∪ E0},
V←j = {i ∈ [1, k] : i← j ∈ Eopen ∪ E0}

are a.a.s. strongly connected by edges in Eopen ∪ E0.

Let F→j (resp. F→j ) be the event that V←j (resp. V→j ) is strongly connected by edges in
E0 ∪ Eopen. Let

B =
⋂

j∈[k+1,k3]

(
F←j ∩ F→j

)
.

The crucial step is the following correlation inequality

(5.1) P (B) ≥
∏

j∈[k+1,k3]

P
(
F←j

)
P
(
F→j

)
.

To prove (5.1), let A be the set of all possible choices of V←j , V→j , that is, the set that contains

all ordered selections of 2(k3 − k) subsets of [1, k]:

A = {(A←j , A→j : j = k + 1, . . . k3) : A←j , A
→
j ⊂ [1, k] for all j}.

Observe that for any vector (A←j , A
→
j )j of such (deterministic) subsets, the events {V←j = A←j },

{V→j = A→j }, j ∈ [k + 1, k3], are independent. Therefore, with indices j and j′ running over

[k + 1, k3],

P (B) =
∑

(A←j ,A→j )∈A

P
(
∩j(F←j ∩ F→j )

⋂
∩j′{V←j′ = A←j′ , V

→
j′ = A→j′ }

)
=

∑
(A←j ,A→j )∈A

P
(
∩j(F←j ∩ F→j ) | ∩j′{V←j′ = A←j′ , V

→
j′ = A→j′ }

)
P
(
∩j′{V←j′ = A←j′ , V

→
j′ = A→j′ }

)
≥

∑
(A←j ,A→j )∈A

∏
j

P
(
F←j | ∩j′{V←j′ = A←j′ , V

→
j′ = A→j′ }

)
P
(
F→j | ∩j′{V←j′ = A←j′ , V

→
j′ = A→j′ }

)
· P
(
∩j′{V←j′ = A←j′ , V

→
j′ = A→j′ }

)
,
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by the Fortuin–Kasteleyn–Ginibre inequality [15]. Hence

P (B) ≥
∑

(A←j ,A→j )∈A

∏
j

P
(
F←j | V←j = A←j

)
P
(
F→j | V→j = A→j

)∏
j′

P
(
V←j′ = A←j′

)
P
(
V→j′ = A→j′

)
=

∑
(A←j ,A→j )∈A

∏
j

P
(
F←j | V←j = A←j

)
P
(
F→j | V→j = A→j

)
P
(
V←j = A←j

)
P
(
V→j = A→j

)
=

∑
(A←j ,A→j )∈A

∏
j

P
(
F←j ∩ {V←j = A←j }

)
P
(
F→j ∩ {V→j = A→j }

)

=
∏
j

 ∑
A←j ⊂[1,k]

P
(
F←j ∩ {V←j = A←j }

) ∑
A→j ⊂[1,k]

P
(
F→j ∩ {V→j = A→j }

)
=
∏
j

P
(
F←j

)
P
(
F→j

)
.

Moreover, by Lemma 5.3 above and standard tail bounds (e.g., Lemma 2.8 in [20]), for large k,

P
(
(F←j )c

)
≤ P (|Vj | ≤ pk/2) + k1−C/2 ≤ exp(−pk/7) + k1−C/2 ≤ 2k1−C/2,

and a similar bounds holds for F→j . It follows (by Bernoulli’s inequality) that, for large k,

P (B) ≥
(

1− 2k1−C/2
)2k3

≥ 1− 4k4−C/2 = 1− o(1),

since C > 8.

Step 4d. For all large n, T1 is saturated with probability at least (2
√
n)−1.

Note that, for all large n, the claims in the previous three steps all hold with probability
at least (2

√
n)−1. Hence it remains to show that they together imply that T1 is saturated.

However, this follows by a similar argument as was used in Step 3 above, but using Steps 4a–c
instead of Step 2.

Altogether, by Step 4, a.a.s. some subtree Tm is saturated, and thus by Steps 2 and 3, a.a.s.
V is saturated.

Step 5. Finally, we extend our results from the case popen = p to larger popen. This follows by
the simple observation that, for all large n,

P (Eopen is not abundant) ≤ 2n2(1− p2)n−2 ≤ 3n2e−p
2n ≤ 3n2e−n/ logn � 1.

Therefore, for popen = p, a.a.s. E∞ is abundant since we have shown that a.a.s. V is saturated
(i.e., Eopen ⊂ E∞). Hence, by Lemma 5.4, a.a.s. E∞ is abundant for popen ≥ p, and so also,
a.a.s. V is saturated for popen ≥ p. �

5.1 R-unoriented initial graphs

We can relax the assumption that G0 is unoriented, but we emphasize that strong connectivity
of G0 is not enough for Theorem 5.5 to hold in the same form (see the discussion on Open
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Problem 6.8). We only provide the following mild generalization, whose proof is omitted as it is
a minor adaptation of the proof of Theorem 5.5. Informally, we start with an unoriented tree T
and replace every vertex of T with a graph of bounded size that is strongly connected, so that
between T -neighboring sets we have edges in both directions. To be more precise, for an integer
R ≥ 1, we say that G0 is R-unoriented if there exists an unoriented tree T on a vertex set V ′,
together with a map φ : V → V ′, such that: (1) |φ−1(y)| ≤ R and φ−1(y) is strongly connected
for all y ∈ V ′; and (2) if y1, y2 are neighbors in T , then there are x1 ∈ φ−1(y1) and x2 ∈ φ−1(y2),
such that x1 → x2 ∈ E0.

Note that 1-unoriented graphs are exactly those with an unoriented spanning tree. For an
example with R = 2, take V = [2n] and assume 1 ↔ 2, 3 ↔ 4, 5 ↔ 6, . . . , (2n − 1) ↔ (2n) are
strongly connected pairs, and add connections 1 → 3, 2 ← 4, 3 → 5, 4 ← 6, etc. Here T is a
linear graph on [n].

Theorem 5.6. If G0 is an R-unoriented connected graph, popen ≥ C log logn/
√

log n, and
C ≥ C0(R), then E∞ is a.a.s. saturated.

6 Open problems

For clarity, each unresolved issue is presented in what we view as the simplest context, although
most can be studied in much greater generality. We begin with a conjecture about a sharp
transition in Catalan percolation.

Conjecture 6.1. There exists a critical probability pCat
c ∈ (0, 1) so that for p < pCat

c (resp.
p > pCat

c ) there exists a constant C = C(p) so that a.a.s. E∞ in the Catalan percolation process
contains no edge (resp. contains all open edges) of length at least C log n.

On the other hand, in the case of G0 = Ln, when both pright > 0 and pleft > 0, the interaction
between leftward and rightward edges is a challenge.

Open Problem 6.2. In the setting of Theorem 1.2, is it true that when pleft < c 1√
logn

and

pright < a, a.a.s. E∞ contains no edges longer than α log n?

For the statements of our remaining open problems, we define

pc = inf{p : P (V is saturated) ≥ 1/2 for all popen ≥ p}.

Perhaps the most pressing remaining question is the correct power of log log n for the transition
in Theorem 1.1. We suspect neither bound in that theorem is sharp, as the existence of a giant
component, rather than connectivity of edge endpoints (as used in the proof of Theorem 5.5)
should suffice. We assume the unoriented setting in our next four open problems (i.e., that G0

and Gopen are both unoriented) and that Gopen is the Erdős–Rényi graph with probability popen
of open edges.

Conjecture 6.3. Assume that G0 is the linear graph on [n]. Then pc = Θ(
√

log log n/ log n).
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Graphs of bounded diameter are, in a way, at the opposite extreme from graphs of bounded
degree. As in the case of bootstrap percolation, the scaling of the critical probability should
change dramatically.

Conjecture 6.4. Assume that V = [n]d and that G0 is the Cartesian product of d complete
graphs on [n], i.e., the d-dimensional Hamming graph. For d ≥ 3, there exists a power γ =
γ(d) ∈ (0,∞) so that, for every ε > 0 and large enough n, pc is between n−γ−ε and n−γ+ε.

Observe that the above conjecture does not hold for d = 2 (or for any other G0 with
diameter 2), in which case all open edges get occupied at time 1, regardless of popen. We suspect
that in the setting of Conjecture 6.4 the threshold pc is not sharp, in the sense of [16]. Indeed,
computer simulations suggest that saturation fails close to criticality due to rare open edges with
a protective arrangement of nearby closed edges, and that the number of such protective local
configurations approaches a Poisson distribution with a parameter that depends continuously
on the constant a if p = apc. By contrast, we conjecture that pc is sharp in Conjecture 6.3. The
methods of [16] (or subsequent work) do not apply in any of these cases, as our random objects
(edges) do not play symmetric roles.

Perhaps the most interesting intermediate case is the hypercube, for which we have no guess
about the size of pc.

Open Problem 6.5. Assume that G0 is the hypercube on {0, 1}n. What is the asymptotic
behavior of pc?

Another natural graph with unbounded degree is the random graph.

Open Problem 6.6. Assume G0 is an Erdős–Rényi graph with edge probability pinitial. Estimate
the probability of saturation, in terms of pinitial and popen.

More complex edge addition dynamics can be considered in polluted environments. Following
the lead of [8, 4], we consider Kd-percolation, whereby we iteratively complete all copies of Kd

missing a single edge, where Kd is the complete graph on d points. We assume that G0 the
graph on [n] with edges i↔ j, for all |i− j| ≤ d− 2. Note that this is the simplest initialization
that results in saturation when popen = 1. Simulations suggest (see left panel of Fig. 6.1) that
nucleation occurs for all d ≥ 3. The unpolluted (popen = 1) version of this process is analyzed
in e.g. [4, 5, 9, 21, 2, 25, 7].

Conjecture 6.7. Consider the Kd-percolation dynamics, with G0 as above. Then there exists
some power γ = γ(d) > 0 so that pc = Θ[(log log n)γ(log n)−1/(d−1)].

Finally, we return to the transitive closure of oriented graphs, with Gopen the oriented Erdős–
Rényi graph with probability popen of edges. To understand oriented initial graphs, which are
not covered by Theorem 5.6, we may for example assume that G0 is the oriented graph on [n]
with edges 1 → 2 → · · · → n and 1 ← (1 + r) ← (1 + 2r) ← · · · ← (n − r) ← n, where the
range r of leftward edges may grow with n. It is not difficult to see that pc is bounded away
from 0 when r increases linearly with n, and that, by Theorem 5.6, pc = (log n)−1/2+o(1) when
r is bounded.
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Figure 6.1: Left: nucleation in K4-percolation with popen = 0.39. Middle and right: illustration
of Open Problem 6.8, with r = 50, and respective probabilities popen = 0.3, popen = 0.37. In all
figures, n = 400 and the coloring scheme is similar to the one in Fig. 1.1.

Open Problem 6.8. What is the asymptotic behavior of pc, when 1� r � n?

These dynamics are illustrated in the middle and right panels of Fig. 6.1, which suggest that
the most likely scenario for saturation is through the early occupation of leftward edges whose
lengths are multiples of r.
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