A quantum algorithm for computing the unit grap of a number field
and connections to post quantum cryptography
Joint work with Sean Hallgren, Alexei Kitaev and Fong Song.
Exponential preedups by quantum algorithms
• Factoring integers, discrete log (Shor '94)
· Breaks RSA
• for real quadratic number fields
$$D(Va)$$
, $d > D$
can compute the unit gp, class gp, and solve
the Principal Ideal Problem in quantum poly
time (Hallgren'02)
• same for number fields of constant degree
(Hallgren, Schmidt-Vollmer305)
• this talk : number fields of arbitrary degree
(E-Hallgren - Kitaev - Song)
• with Hallgren: solved same questions for function
Main Theorem (E-H-K-S)
Let K be a number field (i.e. a finite extension
 $f(2)$
Let G be its ring of integers.
There is a poly time quantum alg. (poly in
 $h = [K: R]$ and log [DI) for computing
the unit group OM.
 $O = ells.of K that are roots of monic polys
with Coeffs in Z.$

All of these systems can be broken in quantum
poly time, so they are not suitable for post-
quantum crypts.
Algorithm to solve SGPIP
Given K and
$$I \subseteq O$$
 K= cyclobmic
Quantum (1) Compute the unit group of K (E+K-S)
Quantum (2) Use the unit group to solve
the principal (Biasse - Song)
This gives some generator B for I.
Classical (3) Classical algo. for BDD in unit lattica
Lef a cyclotomic field).
Lef a cyclotomic field).
(3) Classical algo. for BDD in unit lattica
Lef a cyclotomic field).
(4) turns generator β into small generator A
Overview of Quantum Algorithm
for unit group
K, unit gp O*, Log O* $\subseteq \mathbb{R}^{s+t-1}$
 $\tau: O^* \to Log O^*$
 $\tau(z) = (log |\tau_1(z)|_{5...,2} 2log |T_{SHT}(z))$
 $T_{1>...,5} T_{S}$ real end.
 $T_{st}(z) = T_{st}(z) = T_{st}(z)$
 $T_{st}(z) = T_{st}(z)$
 $T_{st}(z) = T_{st}(z) = T_{st}(z)$
 $T_{st}(z) = T_{st}(z)$
 $T_{$

HSP: Let G be a group, S a set. Given f: G -> S that is constant and distinct on cosets of a subgroup H of G, find H,

$$u \mapsto e^{\frac{u}{2}} 0$$

 $\begin{aligned} & \text{If } \underline{\Theta} = \tau(\Theta) \text{ is a lattice with basis} \\ & z_1, \dots, z_n \\ & z_1 = \begin{pmatrix} z_n \\ \vdots \\ z_{nn} \end{pmatrix} \\ & \text{Then } e^{\frac{\pi}{2}} \Theta \text{ is a lattice with basis} \\ & \begin{pmatrix} e^{\frac{\pi}{2}} & z_n \\ e^{\frac{\pi}{2}} & z_{nn} \end{pmatrix} \\ & \text{Then } e^{\frac{\pi}{2}} \Theta \text{ is a lattice with basis} \\ & \begin{pmatrix} e^{\frac{\pi}{2}} & z_{nn} \\ e^{\frac{\pi}{2}} & z_{nn} \end{pmatrix} \\ & \text{This function } f \text{ hides the lattice log } \end{aligned}$