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You have 15 seconds.  What’s the 
biggest integer you can name?

Ackermann(1000)
Graham’s Number G

The largest integer that be 
named in at most 1000 words

99999999999999999999

The largest integer that be named 

using a 1000-bit computer program

:= 79

+1



Busy Beaver Function (Radó 1962)

Given a TM M, let s(M) be the number of steps M 
runs for on a blank tape.  Then BB(n) is the max of 
s(M), over all n-state TMs M with s(M)<∞.  “Busy 
Beavers” are M’s that achieve the maximum.
Examples: BB(1)=1.  The 2-state TM above shows 
that BB(2)≥6.  In fact BB(2)=6.

Turing Machines
(1 tape, 2 symbols)



BB grows uncomputably quickly!
Theorem: Computing any upper bound f(n)≥BB(n) 
is equivalent to solving the halting problem.
Proof: For BB≤HALT, just take the max over n-state 
halting TMs.  For HALT≤f, run an n-state TM for 
f(n) steps.  If it hasn’t halted by then, it never will.

Theorem: For every computable function f, there 
exists an nf such that BB(n)>f(n) for all n≥nf.
Proof: For any n, we can design a TM with 
cf+O(log n) states that computes f(n) and then 
stalls for (say) f(n)2 steps.



BB eludes formal systems
Theorem: Let F be a reasonable formal system (like 
PA or ZFC).  Then there exists a constant nF such 
that F can’t prove the value of BB(n) for any n≥nF.
Proof: Suppose not.  Then we could compute BB(n) 
for any n, by enumerating over all possible proofs.

Proof #2: Let MF be an n-state TM that enumerates 
the theorems of F, halting iff it finds a 
contradiction. If F proved the value of BB(n), it 
would prove that MF ran forever, and hence F’s 
own consistency.

Did we just reprove a version of Gödel’s 
Incompleteness Theorem?  Yes we did!



Think about that…
For every consistent large cardinal axiom, its 
consistency is implied by some statement of the 
form “BB(n)=k”

Is every Busy Beaver number determined by some 
consistent large cardinal axiom?  Maybe, but if so, 
there’s no computable way to find those axioms!

More broadly, the first 1000 BB numbers encode a 
large portion of all interesting mathematical truth!
BB(27): Goldbach Conjecture / BB(744): Riemann Hypothesis…

“The BB Argument for Arithmetical Platonism”?



Beyond Busy Beaver?
Theorem: Let BB1(n) be the BB function for TM’s 
with oracles for ordinary BB.  Then BB1 grows faster 
than any function computable with a BB oracle.

In general, for any ordinal α, let BBα+1(n) be BB for 
TM’s with oracles for BBα.  Or if β is defined as 
limn�∞β(n), then let BBβ(n):=BBβ(n)(n).

How much further can we go, without our numbers 
depending on the intended model of set theory?

Proof: The uncomputability of BB relativizes!



Intermediate growth rates
Theorem: There’s a function g:N�N that dominates 
every computable function f, yet such that BB and 
HALT are still uncomputable given an oracle for g

Proof: Let f1,f2,…:N�N be an enumeration of 
computable functions.  We set

for some nondecreasing w that increases without 
bound—thereby ensuring that g dominates every fi.  
For the other property, only increment w (i.e., set 
w(n+1)=w(n)+1) after another candidate reduction 
from HALT to g has been “killed off”



Concrete Values

BB(18) >> Graham’s number >> Ackermann(18)

What’s the least n with BB(n)>Ackermann(n)?



What does the 5-state champ do?
Consider the “Collatz-like” map g:N�N∪{⊥}:

Starting from 0, does iterating g ever reach ⊥?  
Yes:

The current 5-state BB champion verifies this fact.



How many BB values are 
knowable?

Theorem (O’Rear, building on A.-Yedidia): There’s a 
748-state TM that halts iff there’s an inconsistency 
in ZFC.  Thus, if ZFC is consistent, then it can’t prove 
the value of BB(748)
To get from ~1,000,000 down to 748 took a lot of optimizations!

Is the value of BB(20) provable in ZFC?  Will we 
ever know BB(6)?
Is there a gap between the first BB(n) value that’s 
unprovable in ZFC, and the first BB(n’) value (n’≥n) 
that implies Con(ZFC)?



BB(n) vs. BB(n+1)

Theorem (Ben-Amram and Petersen 2002): For 
every computable function f, there exists a cf such 
that BB(n+8⎡n/log n⎤+cf) > f(BB(n)) for all n.

This remains open!!  Incredibly, the best we know 
(from Bruce Smith) is BB(n+1) ≥ BB(n)+3 for all n

“Obvious fact”: BB(n+1)>2BB(n) for all large enough n

Proof Idea: “Introspective encoding.”  For every 
n-state TM M, there’s an n+O(n/log(n))-state TM 
that writes a description of M onto its tape



Chaitin’s Problem

Theorem (Chaitin): Let L be a programming language 
where no valid program is a proper prefix of another.  
Let BBL be BB for L-programs.  Then BBL(n+1) is 
computable from BBL(n) plus O(log n) bits.

Theorem (A.): BB(n+1) is computable from BB(n) 
plus O(n) bits  (beats the trivial O(n log n))

If you knew BB(n), how many bits would someone 
need to tell you to let you compute BB(n+1)?

Proof uses the famous Chaitin’s constant:



Lazy Beavers
Define the nth Lazy Beaver number, LB(n), to be 
the least t such that there’s no n-state Turing 
machine that runs for exactly t steps

Theorem (A.-Smith, in preparation): LB(n) grows 
like nΩ(n), and requires nΩ(n) time to compute.

Unlike BB, LB is computable!  Furthermore, LB(n)≤
(4n+1)2n+1 by a counting argument



Beeping Busy Beavers (A.-Friedman)
A “beeping Turing machine” never halts, but has a 
state that emits a “beep”
Given a TM M, let b(M) be the last time step 
where M beeps on an all-0 input, or ∞ if there 
isn’t one. Then let BBB(n) be the max of b(M), 
among all n-state machines M for which b(M)<∞

Theorem: BBB(n) grows uncomputably quickly 
even given an oracle for BB(n) (indeed, like BB1)



Curious Questions
For which n’s is BB(n) odd?  Prime?  A perfect 
square?  Are there infinitely many such n’s?  
Given n, is it decidable whether BB(n) has these 
properties?

Does every Busy Beaver halt on all finite inputs?

Does every Busy Beaver have a strongly 
connected graph?

For n≥3, is there an essentially unique n-state 
Busy Beaver?


