The Busy Beaver Frontier

Scott Aaronson (University of Texas at Austin)
UC Davis, October 15, 2020
You have 15 seconds. What’s the biggest integer you can name?

99999999999999999999

Ackermann(1000)

The largest integer that be named in at most 1000 words

Graham’s Number G

9999999 := 79

The largest integer that be named using a 1000-bit computer program

+1
Busy Beaver Function (Radó 1962)

Given a TM M, let $s(M)$ be the number of steps M runs for on a blank tape. Then $BB(n)$ is the max of $s(M)$, over all n-state TMs M with $s(M)<\infty$. “Busy Beavers” are M’s that achieve the maximum.

Examples: $BB(1)=1$. The 2-state TM above shows that $BB(2) \geq 6$. In fact $BB(2)=6$.

Turing Machines
(1 tape, 2 symbols)
BB grows uncomputably quickly!

Theorem: Computing any upper bound \(f(n) \geq BB(n) \) is equivalent to solving the halting problem.

Proof: For \(BB \leq HALT \), just take the max over \(n \)-state halting TMs. For \(HALT \leq f \), run an \(n \)-state TM for \(f(n) \) steps. If it hasn’t halted by then, it never will.

Theorem: For every computable function \(f \), there exists an \(n_f \) such that \(BB(n) > f(n) \) for all \(n \geq n_f \).

Proof: For any \(n \), we can design a TM with \(c_f + O(\log n) \) states that computes \(f(n) \) and then stalls for (say) \(f(n)^2 \) steps.
BB eludes formal systems

Theorem: Let F be a reasonable formal system (like PA or ZFC). Then there exists a constant n_F such that F can’t prove the value of $BB(n)$ for any $n \geq n_F$.

Proof: Suppose not. Then we could compute $BB(n)$ for any n, by enumerating over all possible proofs.

Did we just reprove a version of Gödel’s Incompleteness Theorem? Yes we did!

Proof #2: Let M_F be an n-state TM that enumerates the theorems of F, halting iff it finds a contradiction. If F proved the value of $BB(n)$, it would prove that M_F ran forever, and hence F’s own consistency.
Think about that...

For every consistent large cardinal axiom, its consistency is implied by some statement of the form “BB(n)=k”

Is every Busy Beaver number determined by some consistent large cardinal axiom? Maybe, but if so, there’s no computable way to find those axioms!

More broadly, the first 1000 BB numbers encode a large portion of all interesting mathematical truth!

BB(27): Goldbach Conjecture / BB(744): Riemann Hypothesis...

“The BB Argument for Arithmetical Platonism”?
Beyond Busy Beaver?

Theorem: Let $BB_1(n)$ be the BB function for TM’s with oracles for ordinary BB. Then BB_1 grows faster than any function computable with a BB oracle.

Proof: The uncomputability of BB relativizes!

In general, for any ordinal α, let $BB_{\alpha+1}(n)$ be BB for TM’s with oracles for BB_α. Or if β is defined as $\lim_{n \to \infty} \beta(n)$, then let $BB_\beta(n) := BB_{\beta(n)}(n)$.

How much further can we go, without our numbers depending on the intended model of set theory?
Intermediate growth rates

Theorem: There’s a function $g: \mathbb{N} \to \mathbb{N}$ that dominates every computable function f, yet such that BB and HALT are still uncomputable given an oracle for g

Proof: Let $f_1, f_2, \ldots: \mathbb{N} \to \mathbb{N}$ be an enumeration of computable functions. We set

$$g(n) := \max_{i \leq w(n)} f_i(n),$$

for some nondecreasing w that increases without bound—thereby ensuring that g dominates every f_i. For the other property, only increment w (i.e., set $w(n+1) = w(n)+1$) after another candidate reduction from HALT to g has been “killed off”
Concrete Values

<table>
<thead>
<tr>
<th>n</th>
<th>BB(n)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Trivial</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>Lin 1963</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>Lin 1963</td>
</tr>
<tr>
<td>4</td>
<td>107</td>
<td>Brady 1983</td>
</tr>
<tr>
<td>5</td>
<td>≥ 47,176,870</td>
<td>Marxen and Buntrock 1990</td>
</tr>
<tr>
<td>6</td>
<td>> $7.4 \times 10^{36,534}$</td>
<td>Kropitz 2010</td>
</tr>
<tr>
<td>7</td>
<td>> $10^2 \times 10^{10^{10^{18,705,352}}}$</td>
<td>“Wythagoras” 2014</td>
</tr>
</tbody>
</table>

BB(18) >> Graham’s number >> Ackermann(18)

What’s the least n with BB(n) > Ackermann(n)?
What does the 5-state champ do?

Consider the “Collatz-like” map $g: \mathbb{N} \cup \{ \perp \}$:

\[
g(x) := \begin{cases}
\frac{5x+18}{3} & \text{if } x \equiv 0 \pmod{3} \\
\frac{5x+22}{3} & \text{if } x \equiv 1 \pmod{3} \\
\perp & \text{if } x \equiv 2 \pmod{3}
\end{cases}
\]

Starting from 0, does iterating g ever reach \perp?

\[
0 \rightarrow 6 \rightarrow 16 \rightarrow 34 \rightarrow 64 \rightarrow 114 \rightarrow 196 \rightarrow 334 \rightarrow 564 \\
\rightarrow 946 \rightarrow 1584 \rightarrow 2646 \rightarrow 4416 \rightarrow 7366 \rightarrow 12284 \rightarrow \perp.
\]

The current 5-state BB champion verifies this fact.
How many BB values are knowable?

Theorem (O’Rear, building on A.-Yedidia): There’s a 748-state TM that halts iff there’s an inconsistency in ZFC. Thus, if ZFC is consistent, then it can’t prove the value of BB(748).

To get from ~1,000,000 down to 748 took a lot of optimizations!

Is the value of BB(20) provable in ZFC? Will we ever know BB(6)?

Is there a gap between the first BB(n) value that’s unprovable in ZFC, and the first BB(n’) value (n’≥n) that implies Con(ZFC)?
BB(n) vs. BB(n+1)

“Obvious fact”: BB(n+1) > 2^{BB(n)} for all large enough n

This remains open!! Incredibly, the best we know (from Bruce Smith) is BB(n+1) ≥ BB(n)+3 for all n

Theorem (Ben-Amram and Petersen 2002): For every computable function f, there exists a c_f such that BB(n+8\lceil n/\log n \rceil+c_f) > f(BB(n)) for all n.

Proof Idea: “Introspective encoding.” For every n-state TM M, there’s an n+O(n/\log(n))-state TM that writes a description of M onto its tape
Chaitin’s Problem

If you knew BB(n), how many bits would someone need to tell you to let you compute BB(n+1)?

Theorem (Chaitin): Let L be a programming language where no valid program is a proper prefix of another. Let BB_L be BB for L-programs. Then BB_L(n+1) is computable from BB_L(n) plus O(log n) bits.

Proof uses the famous Chaitin’s constant:

$$\Omega_L := \sum_{\text{L-programs } P \text{ that halt}} 2^{-|P|}$$

Theorem (A.): BB(n+1) is computable from BB(n) plus O(n) bits (beats the trivial O(n log n))
Lazy Beavers

Define the n^{th} Lazy Beaver number, $LB(n)$, to be the least t such that there’s no n-state Turing machine that runs for exactly t steps.

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$LB(n)$</td>
<td>2</td>
<td>7</td>
<td>22</td>
<td>72</td>
<td>427</td>
<td>33,851</td>
</tr>
</tbody>
</table>

Unlike BB, LB is computable! Furthermore, $LB(n) \leq (4n+1)^{2n}+1$ by a counting argument.

Theorem (A.-Smith, in preparation): $LB(n)$ grows like $n^{\Omega(n)}$, and requires $n^{\Omega(n)}$ time to compute.
Beeping Busy Beavers (A.-Friedman)

A “beeping Turing machine” never halts, but has a state that emits a “beep”

Given a TM M, let $b(M)$ be the last time step where M beeps on an all-0 input, or ∞ if there isn’t one. Then let $BBB(n)$ be the max of $b(M)$, among all n-state machines M for which $b(M) < \infty$

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BB (n)$</td>
<td>1</td>
<td>6</td>
<td>21</td>
<td>107</td>
</tr>
<tr>
<td>$BBB(n)$</td>
<td>1</td>
<td>6</td>
<td>≥ 55</td>
<td>$\geq 66,349$</td>
</tr>
</tbody>
</table>

Theorem: $BBB(n)$ grows uncomputably quickly even given an oracle for $BB(n)$ (indeed, like BB_1)
Curious Questions

For which n’s is BB(n) odd? Prime? A perfect square? Are there infinitely many such n’s? Given n, is it decidable whether BB(n) has these properties?

Does every Busy Beaver halt on *all* finite inputs?

Does every Busy Beaver have a strongly connected graph?

For n≥3, is there an essentially unique n-state Busy Beaver?