The Busy Beaver Frontier

Scott Aaronson (University of Texas at Austin) UC Davis, October 15, 2020

You have 15 seconds. What's the biggest integer you can name?

Ackermann(1000)

Graham's Number G

The largest integer that be named in at most 1000 words +1 The largest integer that be named using a 1000-bit computer program

Busy Beaver Function (Radó 1962)

Turing Machines (1 tape, 2 symbols)

Given a TM M, let s(M) be the number of steps M runs for on a blank tape. Then BB(n) is the max of s(M), over all n-state TMs M with $s(M) < \infty$. "Busy Beavers" are M's that achieve the maximum.

Examples: BB(1)=1. The 2-state TM above shows that BB(2) \geq 6. In fact BB(2)=6.

BB grows uncomputably quickly!

Theorem: Computing any upper bound f(n)≥BB(n) is equivalent to solving the halting problem.

Proof: For BB≤HALT, just take the max over n-state halting TMs. For HALT≤f, run an n-state TM for f(n) steps. If it hasn't halted by then, it never will.

Theorem: For every computable function f, there exists an n_f such that BB(n)>f(n) for all $n \ge n_f$. **Proof:** For any n, we can design a TM with $c_f+O(\log n)$ states that computes f(n) and then stalls for (say) f(n)² steps.

BB eludes formal systems

Theorem: Let F be a reasonable formal system (like PA or ZFC). Then there exists a constant n_F such that F can't prove the value of BB(n) for any $n \ge n_F$.

Proof: Suppose not. Then we could compute BB(n) for any n, by enumerating over all possible proofs.

Did we just reprove a version of Gödel's Incompleteness Theorem? Yes we did!

Proof #2: Let M_F be an n-state TM that enumerates the theorems of F, halting iff it finds a contradiction. If F proved the value of BB(n), it would prove that M_F ran forever, and hence F's

Think about that...

For every consistent large cardinal axiom, its consistency is implied by some statement of the form "BB(n)=k"

Is every Busy Beaver number determined by **some** consistent large cardinal axiom? Maybe, but if so, there's no computable way to **find** those axioms!

More broadly, the first 1000 BB numbers encode a large portion of all interesting mathematical truth! BB(27): Goldbach Conjecture / BB(744): Riemann Hypothesis...

"The BB Argument for Arithmetical Platonism"?

Beyond Busy Beaver?

Theorem: Let $BB_1(n)$ be the BB function for TM's with oracles for ordinary BB. Then BB_1 grows faster than any function computable with a BB oracle.

Proof: The uncomputability of BB relativizes!

In general, for any ordinal α , let BB_{$\alpha+1$}(n) be BB for TM's with oracles for BB_{α}. Or if β is defined as $\lim_{n \ge \infty} \beta(n)$, then let BB_{β}(n):=BB_{$\beta(n)$}(n).

How much further can we go, without our numbers depending on the intended model of set theory?

Intermediate growth rates

Theorem: There's a function g:NIN that dominates every computable function f, yet such that BB and HALT are *still* uncomputable given an oracle for g

Proof: Let $f_1, f_2, ...: N \supseteq N$ be an enumeration of computable functions. We set $g(n) \coloneqq \max_{i \le w(n)} f_i(n)$,

for some nondecreasing w that increases without bound—thereby ensuring that g dominates every f_i . For the other property, only increment w (i.e., set w(n+1)=w(n)+1) after another candidate reduction from HALT to g has been "killed off"

Concrete Values

n	BB(n)	Reference
1	1	Trivial
2	6	Lin 1963
3	21	Lin 1963
4	107	Brady 1983
5	$\geq 47,\!176,\!870$	Marxen and Buntrock 1990
6	$> 7.4 \times 10^{36,534}$	Kropitz 2010
7	$> 10^{2 \times 10^{10^{10^{10}18,705,352}}}$	"Wythagoras" 2014

BB(18) >> Graham's number >> Ackermann(18)

What's the least n with BB(n)>Ackermann(n)?

What does the 5-state champ do?

Consider the "Collatz-like" map g:N \mathbb{P} N \cup { \bot }:

$$g(x) \coloneqq \begin{cases} \frac{5x+18}{3} & \text{if } x \equiv 0 \pmod{3} \\ \frac{5x+22}{3} & \text{if } x \equiv 1 \pmod{3} \\ \bot & \text{if } x \equiv 2 \pmod{3} \end{cases}$$

Starting from 0, does iterating g ever reach \perp ? $0 \rightarrow 6 \rightarrow 16 \rightarrow 34 \rightarrow 64 \rightarrow 114 \rightarrow 196 \rightarrow 334 \rightarrow 564$ $\rightarrow 946 \rightarrow 1584 \rightarrow 2646 \rightarrow 4416 \rightarrow 7366 \rightarrow 12284 \rightarrow \perp$.

The current 5-state BB champion verifies this fact.

How many BB values are knowable?

Theorem (O'Rear, building on A.-Yedidia): There's a 748-state TM that halts iff there's an inconsistency in ZFC. Thus, if ZFC is consistent, then it can't prove the value of BB(748)

To get from ~1,000,000 down to 748 took a lot of optimizations!

Is the value of BB(20) provable in ZFC? Will we ever know BB(6)?

Is there a gap between the first BB(n) value that's **unprovable in ZFC**, and the first BB(n') value (n'≥n) that **implies Con(ZFC)**?

BB(n) vs. BB(n+1)

"Obvious fact": BB(n+1)>2^{BB(n)} for all large enough n

This remains open!! Incredibly, the best we know (from Bruce Smith) is **BB(n+1)** ≥ **BB(n)+3** for all n

Theorem (Ben-Amram and Petersen 2002): For every computable function f, there exists a c_f such that BB(n+8[n/log n]+ c_f) > f(BB(n)) for all n.

Proof Idea: "Introspective encoding." For every n-state TM M, there's an n+O(n/log(n))-state TM that writes a description of M onto its tape

Chaitin's Problem

If you knew BB(n), how many bits would someone need to tell you to let you compute BB(n+1)?

Theorem (Chaitin): Let L be a programming language where no valid program is a proper prefix of another. Let BB_{L} be BB for L-programs. Then $BB_{L}(n+1)$ is computable from $BB_{L}(n)$ plus O(log n) bits.

Proof uses the famous Chaitin's constant:

$$\Omega_L := \sum_{L \text{-programs } P \text{ that halt}} 2^{-|P|}$$

Theorem (A.): BB(n+1) is computable from BB(n) plus O(n) bits *(beats the trivial O(n log n))*

Lazy Beavers

Define the nth Lazy Beaver number, LB(n), to be the least t such that there's no n-state Turing machine that runs for exactly t steps

n	1	2	3	4	5	6
LB(n)	2	7	22	72	427	$33,\!851$

Unlike BB, LB is computable! Furthermore, LB(n)≤ $(4n+1)^{2n}+1$ by a counting argument

Theorem (A.-Smith, in preparation): LB(n) grows like $n^{\Omega(n)}$, and requires $n^{\Omega(n)}$ time to compute.

Beeping Busy Beavers (A.-Friedman)

A "beeping Turing machine" never halts, but has a state that emits a "beep"

Given a TM M, let b(M) be the last time step where M beeps on an all-0 input, or ∞ if there isn't one. Then let BBB(n) be the max of b(M), among all n-state machines M for which $b(M) < \infty$

n	1	2	3	4
$\mathrm{BB}\left(n ight)$	1	6	21	107
BBB(n)	1	6	≥ 55	$\geq 66,349$

Theorem: BBB(n) grows uncomputably quickly even given an oracle for BB(n) (indeed, like BB₁)

Curious Questions

For which n's is BB(n) odd? Prime? A perfect square? Are there infinitely many such n's? Given n, is it decidable whether BB(n) has these properties?

Does every Busy Beaver halt on *all* finite inputs?

Does every Busy Beaver have a strongly connected graph?

For n≥3, is there an essentially unique n-state Busy Beaver?