The Busy Beaver Frontier

Total system state -
complete corfiguration (aka

"instantaneous description’)
TAPE & TABLE &HEAD

-

-

-
-

- - -

-
-
.

-

1111

-

O] Ol v O] Ol Of v| | v v| Ol v| v| |

- -
Lol R
Ll o
- - -

<CO<CON<CONONNNCOI
ool ol S R TR o Db i vl
s i 28 ol Sl -
L R
-
| 1
. @
i oo 1T 2
AL O B [©]
| (o)im @] (0] @@
/. Bi< BT = <
S E g |
“Q i
1 |
o_ time -->
| -“
| iy =
1B o FEEEEEEEEEEEEEEE
nnwon FEREEREEREEREEREEREEEEREEEE
' ' o|lo|oo|o|o|oloolo|ol+ [oolo
' . FEEEEEEEEEEEEEEE
H g [SIEEEEE EEEE EEGE EE
L= [l =] =) EHEEE EEE EE G SE G B B
H O|O |~ |O|O|O|O|v ||| | |||
| & w_0_0_0_._1_0_0_0_1.1_1.1.0_1_1_1.
m S = E G G G G G G G E EI G L
> [l = EE EE EE E G S E E EIE EE E
& R EEEEEE
Q olo|oo|o|o o oo|olooo|o
m olo|oo|o|o|o|o|o|lo|oloo|lo|o
o o|o|o|o[o|o|o|o[olo|o|o[oloo
o FEEEEEEEEEEEEEEE
5
m <CON<CON<COMONONOM<COI
&
mv ~rNMOTOVLONOOTNRT

Progress of t_he computation (state-trajectory) of a 3-state busy beaver

Scott Aaronson (University of Texas at Austin)

UC Davis, October 15, 2020

You have 15 seconds. What'’s the
biggest integer you can hame?

Ackermann(1000)

The largest integer that be +1
named in at most 1000 words

Busy Beaver Function (Rado 1962)

Turmg Machines initial state --+{{ 0 [0 | 0 [0A] O | O § :
step 1 voegl | O 10| L 0B B [

(1 tape, 2 SymbOIS) step 2 ~floflo]ofial1]olf -
| step 3 -floJofoB[1|1]0}f-

Q = ‘ step 4 e flofoAl 11]1]o0f--
@W step 5 ~foJ[i1[m[r][1]o -
OJ1L step 6 (halt) ---{{ O |1 |[1H|[1|10 f e

Given a TM M, let s(M) be the number of steps M

runs for on a blank tape. Then BB(n) is the max of
s(M), over all n-state TMs M with s(M)<ee. “Busy

Beavers” are M’s that achieve the maximum.

Examples: BB(1)=1. The 2-state TM above shows
that BB(2)=>6. In fact BB(2)=6

BB grows uncomputably quickly!

Theorem: Computing any upper bound f(n)=BB(n)
is equivalent to solving the halting problem.

Proof: For BBSHALT, just take the max over n-state
halting TMs. For HALT<Zf, run an n-state TM for
f(n) steps. If it hasn’t halted by then, it never will.

Theorem: For every computable function f, there
exists an n_such that BB(n)>f(n) for all n2n..

Proof: For any n, we can design a TM with
c+0(log n) states that computes f(n) and then
stalls for (say) f(n)? steps.

BB eludes formal systems

Theorem: Let F be a reasonable formal system (like
PA or ZFC). Then there exists a constant n_such
that F can’t prove the value of BB(n) for any n2n_..

Proof: Suppose not. Then we could compute BB(n)
for any n, by enumerating over all possible proofs.

Did we just reprove a version of Godel’s
Incompleteness Theorem? Yes we did!

Proof #2: Let M_be an n-state TM that enumerates
the theorems of F, halting iff it finds a
contradiction. If F proved the value of BB(n), it
would prove that M_ran forever, and hence F’s

L]
I I

Think about that...

For every consistent large cardinal axiom, its
consistency is implied by some statement of the
form “BB(n)=k”

Is every Busy Beaver number determined by some
consistent large cardinal axiom? Maybe, but if so,
there’s no computable way to find those axioms!

More broadly, the first 1000 BB numbers encode a

large portion of all interesting mathematical truth!
BB(27): Goldbach Conjecture / BB(744): Riemann Hypothesis...

“The BB Argument for Arithmetical Platonism”?

Beyond Busy Beaver?

Theorem: Let BB, (n) be the BB function for TM’s
with oracles for ordinary BB. Then BB, grows faster
than any function computable with a BB oracle.

Proof: The uncomputability of BB relativizes!

In general, for any ordinal a, let BB__.(n) be BB for
TM’s with oracles for BB_. Or if § is defined as

lim___B(n), then let BBB(n):=BBB(n)(n).

How much further can we go, without our numbers
depending on the intended model of set theory?

Intermediate growth rates

Theorem: There’s a function g:NBEIN that dominates
every computable function f, yet such that BB and
HALT are still uncomputable given an oracle for g

Proof: Let fl,fz,...:NN be an enumeration of

computable functions. We set g(n) = 7;1<anwai>;§) fi(n),

for some nondecreasing w that increases without
bound—thereby ensuring that g dominates every f..
For the other property, only increment w (i.e., set

w(n+1)=w(n)+1) after another candidate reduction
from HALT to g has been “killed off”

Concrete Values

n | BB(n) Reference

11 | Trivial

2 |6 Lin 1963

g | 21 Lin 1963

4 | 107 Brady 1983

o | >47,176,870 Marxen and Buntrock 1990
6 | > T4 %1070 Kropitz 2010

¥ | = 102><101010 “Wythagoras” 2014

BB(18) >> Graham’s number >> Ackermann(18)

What's the least n with BB(n)>Ackermann(n)?

What does the 5-state champ do?

Consider the “Collatz-like” map g:NEN U { L }:

02418 if x = 0 (mod 3)

3
g(z) = ¢ 22E2 if = 1 (mod 3)
1 if z =2 (mod 3)

Starting from 0, does iterating g ever reach L ?
'0—=6—16—34 =64 — 114 — 196 — 334 — 564
— 946 — 1584 — 2646 — 4416 — 7366 — 12284 — ..

The current 5-state BB champion verifies this fact.

How many BB values are
knowable?

Theorem (O’Rear, building on A.-Yedidia): There’s a
748-state TM that halts iff there’s an inconsistency
in ZFC. Thus, if ZFC is consistent, then it can’t prove

the value of BB(748)
To get from ~1,000,000 down to 748 took a lot of optimizations!

Is the value of BB(20) provable in ZFC? Will we
ever know BB(6)?

Is there a gap between the first BB(n) value that’s
unprovable in ZFC, and the first BB(n’) value (n’>n)
that implies Con(ZFC)?

BB(n) vs. BB(n+1)

“Obvious fact”: BB(n+1)>288M for all large enough n

This remains open!! Incredibly, the best we know
(from Bruce Smith) is BB(n+1) =2 BB(n)+3 for all n

Theorem (Ben-Amram and Petersen 2002): For
every computable function f, there exists a c_ such
that BB(n+8[n/log n1+c) > f(BB(n)) for all n.

Proof Idea: “Introspective encoding.” For every
n-state TM M, there’s an n+O(n/log(n))-state TM
that writes a description of M onto its tape

Chaitin’s Problem

If you knew BB(n), how many bits would someone
need to tell you to let you compute BB(n+1)?

Theorem (Chaitin): Let L be a programming language
where no valid program is a proper prefix of another.
Let BB, be BB for L-programs. Then BB (n+1) is
computable from BB (n) plus O(log n) bits.

Proof uses the famous Chaitin’s constant:
QL .= E 2_|P|
L-programs P that halt

Theorem (A.): BB(n+1) is computable from BB(n)
plus O(n) bits (beats the trivial O(n log n))

Lazy Beavers

Define the n'" Lazy Beaver number, LB(n), to be
the least t such that there’s no n-state Turing
machine that runs for exactly t steps

n 1123 4 3 6

LB(n) |2 |7 | 22| 72 | 427 | 33,851

Unlike BB, LB is computable! Furthermore, LB(n)<
(4n+1)°"+1 by a counting argument

Theorem (A.-Smith, in preparation): LB(n) grows
like n®" and requires n®™ time to compute.

Beeping Busy Beavers (A.-Friedman)

A “beeping Turing machine” never halts, but has a
state that emits a “beep”

Given a TM M, let b(M) be the last time step
where M beeps on an all-0 input, or o if there
isn’t one. Then let BBB(n) be the max of b(M),

among all n-state machines M for which b(M)<eo
n 1 (2|3 4
BB(n) |16 21 107
BBB(n) | 1 | 6 | >55 | > 66,349

Theorem: BBB(n) grows uncomputably quickly
even given an oracle for BB(n) (indeed, like BB)

Curious Questions

For which n’s is BB(n) odd? Prime? A perfect
square? Are there infinitely many such n’s?
Given n, is it decidable whether BB(n) has these

properties?
Does every Busy Beaver halt on all finite inputs?

Does every Busy Beaver have a strongly
connected graph?

For n=3, is there an essentially unique n-state
Busy Beaver?

