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Conventions

I All rings are commutative and unital.
I If M is an R-module, we define Sub(M) to be the set of

submodules of M.
I (Sub(M),⊆) is a poset.

I All categories are locally small.



Filtrations

Definition
A poset filtration of an k-vector space V consists of
I a partially ordered set (P,≤)

I a function F : P → Sub(V )
satisfying:
(F1) Fp = {0} for some p ∈ P

(F2) Fq = V for some q ∈ P

(F3) p ≤ q =⇒ Fp ⊆ Fq (F is order-preserving)

I (F ,P) is linear if (P,≤) is totally ordered.
I (F ,P) is embedded if p ≤ q ⇐⇒ Fp ⊆ Fq (F is an order

embedding). [=⇒ F is injective.]
I Linear (F , I ) is maximal if F (I ) is a maximal chain of Sub(V ).



Examples of Filtrations

k⊕N :=
⊕

n∈N k (“finitely supported sequence space”)

Example (A)
I = Z≥0 ∪ {∞}

E∞ = {(a1, a2, . . .)} = k⊕N

...

E3 = {(a1, a2, a3, 0, . . .)}
E2 = {(a1, a2, 0, . . .)}
E1 = {(a1, 0, . . .)}
E0 = 0

I (E , I ) is a maximal embedded linear filtration of k⊕N.



Examples of Filtrations

Example (B)
J = {−∞} ∪ Z≤0

F0 = {(a1, a2, . . .)} = k⊕N

F−1 = {(0, a2, . . .)}
F−2 = {(0, 0, a3, . . .)}
F−3 = {(0, 0, 0, a4, . . .)}

...

F−∞ = 0

I (F , J) is a maximal embedded linear filtration of k⊕N.



Examples of Filtrations

kN :=
∏

n∈N k (“sequence space”)

Example (C)
J = {−∞} ∪ Z≤0

G0 = {(a1, a2, . . .)} = kN

G−1 = {(0, a2, . . .)}
G ′−2 = {(0, 0, a3, . . .)}
G ′−3 = {(0, 0, 0, a4, . . .)}

...

G−∞ = 0

I (G , J) is a maximal embedded linear filtration of kN.



Gradations

Definition
A gradation of (F ,P) is a function S : P → Sub(V )
satisfying:
I Fp =

⊕
q≤p Sq for all p ∈ P

Definition
An almost gradation of (F ,P) is a function S : P → Sub(V )
satisfying:
I Fp = F<p ⊕ Sp for all p ∈ P

(where F<p :=
∑

q<p Fq)

I Gradation =⇒ almost gradation.



Examples of Gradations

Example (A)
I = Z≥0 ∪ {∞}

E∞ = {(r1, r2, . . .)} = k⊕N S∞ = 0
...

...
E3 = {(a1, a2, a3, 0, . . .)} S3 = span{e3}
E2 = {(a1, a2, 0, . . .)} S2 = span{e2}
E1 = {(a1, 0, . . .)} S1 = span{e1}
E0 = 0 S0 = 0

I S is a gradation of E .
I We’ll see that every almost gradation of E is a gradation.



Examples of Gradations

Example (B)
J = {−∞} ∪ Z≤0

F0 = {(a1, a2, . . .)} = k⊕N T0 = span{e1}
F−1 = {(0, a2, a3, . . .)} T−1 = span{e2}
F−2 = {(0, 0, a3, . . .)} T−2 = span{e3}
F−3 = {(0, 0, 0, a4, . . .)} T−3 = span{e4}

...
...

F−∞ = 0 T−∞ = 0

I T is a gradation of F .
I Unlike before, not every almost gradation of F is a gradation.



Examples of Gradations

Example (B’)
J = {−∞} ∪ Z≤0

F0 = {(a1, a2, . . .)} = k⊕N T ′0 = span{e1 − e2}
F−1 = {(0, a2, a3, . . .)} T ′−1 = span{e2 − e3}
F−2 = {(0, 0, a3, . . .)} T ′−2 = span{e3 − e4}
F−3 = {(0, 0, 0, a4, . . .)} T ′−3 = span{e4 − e5}

...
...

F−∞ = 0 T ′−∞ = 0

I T ′ is an almost gradation of F .
I T ′ is not a gradation of F because T ′i ⊆ ker(1, 1, . . .) for all

i ∈ I ′, so ∑
i≤0

T ′i ⊆ ker(1, 1, . . .) ( k⊕N = F0.



Examples of Gradations

Example (C)
J = {−∞} ∪ Z≤0

G0 = {(a1, a2, . . .)} = kN

G−1 = {(0, a2, . . .)}
G ′−2 = {(0, 0, a3, . . .)}
G ′−3 = {(0, 0, 0, a4, . . .)}

...

G−∞ = 0

I S any almost gradation, Si ∼= Gi/Gi−1 ∀i ∈ Z≤0 which has
dimension 1 =⇒ dim(

∑
i≤0 Si ) is countable, but dim(kN) is

uncountable.
I =⇒ There are NO gradations of (G , J)!



Spanning and Independent Almost Gradations

Definition
Let S be an almost gradation of a post filtration (F ,P).
I S spans F if for all p ∈ P we have that Fp =

∑
q≤p Sq.

I S is independent if whenever we have a finite subset
Q ⊆ P and for each q ∈ Q, a vector sq ∈ Sq such that∑

q∈Q sq = 0, then sq = 0 for all q ∈ Q.

I Almost gradation S of (F ,P) is a gradation ⇐⇒ S is
independent and spans F .



Guaranteeing Independence

Theorem
Every almost gradation of a linear filtration is independent.

Definition
The intersection of two poset filtrations (E ,P) and (F ,Q) of
M is the poset filtration consisting of
I the poset (P × Q,≤×) (the product poset)
I the function E ∩ F : P × Q → Sub(M) defined by

[E ∩ F ](p,q) = Ep ∩ Fq.

Theorem
Every almost gradation of the intersection of two linear
filtrations is independent.

I It is NOT true that every almost gradation of the intersection
of three linear filtrations is independent!



Guaranteeing Spanning

Definition
A poset is well-ordered if every nonempty subset has a
minimal element.

Theorem
Every almost gradation S of a well-ordered poset filtration
(F ,P) spans F .

Proof.
Transfinite induction. �



Guaranteeing Independence and Spanning

Corollary
I Every almost gradation of a linear well-ordered filtration

(F , I ) is a gradation.
I Every almost gradation of the intersection (E ∩ F , I × J)

of two linear well-ordered filtrations (E , I ) and (F , J) is a
gradation.

Partial converse:

Theorem
Let (E , I ) be a maximal embedded linear filtration of V . If
every almost gradation of (E , I ) is a gradation, then (I ,≤) is
well-ordered.



Applications: A∞,∞ Quivers
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Figure 1: A∞,∞ Graph

Theorem
Let Q be an A∞,∞ quiver. Every (not necessarily
finite-dimensional) representation of Q is a direct sum of
connected thin (locally 0 or 1 dimensional) sub-representations
⇐⇒ Q is eventually outward.
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Figure 2: Thin Representations



Applications: Double Complexes

Theorem
Every (not necessarily finite-dimensional or bounded) double
complex supported in the first and third quadrants is a direct
sum of “zig-zags” and “squares”.
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Figure 3: Zigzags and Squares



Applications: Infinite-dimensional Flag Spaces

Definition
Let I be a well-ordered set. An I -flag in k-vector space V is a
maximal embedded linear filtration (F , I ) of V . Denote the set
of I -flags of V by FlI (V ).

I This will be our analog of the full flag variety.
I GL(V ) acts transitively on FlI (V ).
I Fix a reference flag E ∈ FlI (V ), and denote the stabilizer of E

by BE ⊆ GL(V ).
I BE acts on FlI (V ).
I The Bruhat Decomposition gives a nice description of the set

of orbits BE\FlI (V ).



The Bruhat Decomposition
I Is := {successor elements of I}
I Sym(Is) := group of permutations of Is (the Weyl group).
I For each w ∈ Sym(Is), let Xw ⊆ FlI (V ) (the Schubert cell)

denote the set of I -flags F whose intersection with E satisfies:

dim(F ∩ E )(i ,j)/(F ∩ E )<(i ,j) =

{
1 if i = w(j)
0 otherwise

Theorem (Bruhat Decomposition)

BE\FlI (V ) = {Xw |w ∈ Sym(Is)}

=⇒ FlI (V ) =
⊔

w∈Sym(Is)

Xw



The Geometry of Finite-dimensional Flag Varieties

I Let V be finite-dimensional, k = k .
I To simplify our initial discussion, restrict to the case of

Grassmannians: Grr (V ) := {W ⊆ V | dimW = r}.
I Grr (V ) can be made into a variety in several different ways:

1. Explicitly define charts.
2. Use the Plücker embedding

Grr (V ) ↪→ P(ΛrV )

span(v1, . . . , vr ) 7→ span(v1 ∧ . . . ∧ vr )

and note that the image is Zariski-closed.

I Xw =
⊔

u≤bw
Xu, where ≤b denotes the Bruhat order on

Sym(Is) = Sn where n = dim(V ).



The Geometry of the Infinite-dimensional Flag Spaces

I Now let V be infinite-dimensional.
I Above approaches to defining a topology on FlI (V ) no longer

work.
1. The domains of the charts are no longer affine - (they are

products of ind-affine ind-schemes).
2. The Plücker embedding is no longer well-defined.

I Goal: Find a “natural” topology on FlI (V ) and a “Bruhat
order” on Sym(Is) such that the closure theorem still holds.

I Understanding the geometry of the infinite flag space is a
moduli problem - use Grothendieck’s “functor of points”
approach.



The Functor of Points: An Approach to Moduli Problems

I Moduli space - the points are known, the geometric structure
is not.

I Grothendieck [1]: to study a moduli space we study maps into
it.

I Work in the category of schemes.
I A morphism of schemes f : X → Grr (kn) can be interpreted as

algebraically assigning to every point in X , an r -dimensional
subspace of kn.

I In other words if Grr (kn) were a scheme, MorSch(X ,Grr (kn))
would be in bijection with rank-r subbundles of the rank-n
trivial bundle on X .



Representable Functors

Definition
Define a functor Grr ,n : Schop → Set by sending
I a scheme X to the set of rank-r subbundles of the rank-n

trivial bundle O⊕nX .
I a scheme morphism ϕ to its pullback ϕ∗.

Definition
For any scheme Y , we define a functor hY : Schop → Set by
sending
I a scheme X to the set MorSch(X ,Y )

I a morphism ϕ to pre-composition − ◦ ϕ.

I h− : Sch→ [Schop,Set] is a fully faithful (Yoneda Lemma)
I =⇒ if Grr ,n ∼= hY then Y is unique.



The Grassmannian in Finite Dimensions

Definition
A functor X : Schop → Set is representable if there exists a
scheme Y such that X ∼= hY .

Theorem
The functor Grr ,n is representable.

I Explicitly, there is a scheme Y such that the set MorSch(X ,Y )
is naturally isomorphic to the set of rank r -subbundles of O⊕nX .

I In principle, this is what the Grassmannian should be.



The Grassmannian: A Purely Algebraic Approach
This is supposed to be an algebra talk . . .
I Re-frame algebraic geometry −→ algebra!
I Schemes are locally affine.
I Spec : Ring→ AffSchop is an equivalence of categories.
I Serre [2]: A finite-rank vector bundle on an affine scheme

Spec(R) is the same as a finitely generated projective
R-module.
I A subbundle corresponds to a module direct summand.

Note
Re-define Grr ,n : Ring→ Set by sending
I a ring R to the set
{N ⊆ Rn|N ⊕M = Rn for some M ≤ Rn, rkN = r},

I a ring homomorphism R → S to the function
N 7→ N ⊗R S .



The Grassmannian in Infinite Dimensions

I Suggests generalization to infinite-dimensions:

Definition
Let I be a set. We define a functor GrI : Ring→ Set by
sending
I a ring R to {N ⊆ R⊕I |N has a direct sum complement},
I a ring homomorphism R → S to the function

N 7→ N ⊗R S .

I Is GrI representable?
I I.e. is there a scheme Y such that GrI ∼= hY (Spec(−))?

Theorem
GrI is not representable.



I -flags in Modules

Let I be a well-ordered set.
I Maximality of a filtration is not functorial.

I Alter notion of “flag” for modules.

Definition
An I -flag in a free R-module M is an embedded linear
filtration (F , I ) of M such that
I Fi is a direct summand of M for each i ∈ I ,
I Fi/F<i has constant rank 1 if i ∈ Is and is 0 otherwise.



The Full Flag Space

Definition
Define a functor F`I : Ring→ Set by sending
I a ring R to {I -flags in R⊕Is},
I a ring homomorphism R → S to the function sending

(F , I ) 7→ (F ⊗R S , I ).

Theorem
F`I is not representable.



The Bruhat Decomposition

I E := the standard flag in R⊕Is .
I For w ∈ Sym(Is), define the Schubert subfunctor Xw ⊆ F`I

which sends
I a ring R to the set of F ∈ F`I (R) such that

rk(F ∩ E )(i,j)/(F ∩ E )<(i,j) =

{
1 if i = w(j)
0 otherwise

Theorem (The Bruhat Decomposition)
F`I =

⊔
w∈Sym(Is)

Xw .

I It makes sense to take the closure of a subfunctor!
I X is the intersection of all closed subfunctors containing X .

I Current goal: Nicely describe the closure of a Schubert
subfunctor by a partial order on Sym(Is).



Proof of Non-representability: Subfunctors

I Technical definitions for a representability criterion:

Definition
A functor Y : C→ Set is a subfunctor of X : C→ Set if:
I For all objects A ∈ C, Y(A) ⊆ X (A).
I For all morphisms f : A→ B , Y(f ) = X (f )

∣∣
Y(f ).

Definition
If η : Z → X is a natural transformation and Y ⊆ X is a
subfunctor, the inverse image is the subfunctor of Z defined
by η−1(Y)(A) = η−1

A (Y(A)).



Proof of Non-representability: Open/Closed Subfunctors

Definition
A subfunctor Y ⊆ X : Ring→ Set is open (resp. closed) if
for all rings R and all morphisms ϕ : hR → X , the inverse
image ϕ−1(Y) ⊆ hR is of the form

S 7→ {f : R → S |S · f (I ) = S}
(resp. S 7→ {f : R → S |f (I ) = 0})

for some ideal I ⊆ R .

Definition
A collection {Yj : j ∈ J} of subfunctors of X covers X if
for all fields k , X (k) =

⋃
j∈J Yj(k).



Proof of Non-representability: Zariski Sheaves

Definition
X : Ring→ Set is a Zariski sheaf if for any ring R and any
elements r1, . . . , rn ∈ R with 〈r1, . . . , rn〉 = R , the following
diagram of sets is an equalizer.

X (R)→
n∏

i=1

X (Rri )⇒
n∏

i ,j=1

X (Rri rj ).

Theorem
A functor X : Ring→ Set is representable ⇐⇒
1. X is a Zariski sheaf.
2. There is an open cover of X by representable subfunctors.



Proof of Non-representability: Zariski Descent of GrI

Theorem
GrI and F`I are Zariski sheaves (in fact fpqc sheaves).

Proof for GrI .
I ModR is equivalent to QCo(Spec(R)).
I Projective modules ↔ locally projective quasi-coherent sheaves

on Spec(R).
I (Injectivity of the First Map). Follows from the locality

property of sheaves.
I (Exactness in the Middle). Pairwise compatible locally

projective quasi-coherent sheaves on Spec(Rri ) glue to a
quasi-coherent sheaf on Spec(R). The result
is locally projective by a difficult theorem of Raynaud and
Gruson [3], and Perry [4].

�



Proof of Non-representability of GrI

Theorem
GrI and F`I are not representable.

Lemma
Any open or closed subfunctor of a representable functor is
itself representable.

Proof of Theorem for GrI .
I X (R) := {N ∈ GrI (R) | rkN ≤ 1}. (Closed subfunctor)
I πi := projection onto the ith coordinate in R⊕I .
I Y(R) = {N ∈ GrI (R) | πi |N is surjective}. (Open subfunctor)
I If GrI is representable, so is X ∩ Y.
I X ∩ Y isomorphic to R 7→ R⊕(Iri), which is not representable.

�



Further Descent Properties

Definition
X is an fpqc sheaf if (1) it is a Zariski sheaf and (2) for every
faithfully flat ring homomorphism R → S , the following
diagram of sets is an equalizer.

X (R)→ X (S)⇒ X (S ⊗R S).

I Note: Representable =⇒ fqpc sheaf.

Theorem
GrI and F`I are fpqc sheaves.

Proof.
Results of Raynaud, Gruson, and Perry cover the fpqc case too! [3]
[4] �
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