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Conventions

» All rings are commutative and unital.

» If M is an R-module, we define Sub(M) to be the set of
submodules of M.
> (Sub(M), Q) is a poset.

» All categories are locally small.



Filtrations

Definition
A poset filtration of an k-vector space V consists of
> a partially ordered set (P, <)

» a function F : P — Sub(V)
satisfying:
(F1) Fp, = {0} for some p € P
(F2) Fqg =V for some q € P
(F3) p<q = F, C F; (F is order-preserving)

» (F,P) is linear if (P, <) is totally ordered.

» (F,P)is embedded if p < q <= F, C Fy (F is an order
embedding). [=> F is injective.]

» Linear (F,/) is maximal if F(/) is a maximal chain of Sub(V).



Examples of Filtrations

KON = D ,cn k (“finitely supported sequence space”)

Example (A)
| = ZZO U {OO}

Eoo = {(31, an, .. )} = kEBN

E3 = {(31, az, as, 07 .. )}
E2 = {(al, an, 0, .. )}

E1 = {(81, O, . )}
Eh=0

» (E, ) is a maximal embedded linear filtration of k®N.



Examples of Filtrations

Example (B)
J= {—OO} UZ<o

» (F,J) is a maximal embedded linear filtration of k%N,



Examples of Filtrations

KN :=TTen k (“sequence space”)

Example (C)
J= {—OO} U ZSO

Go = {(31, an, .. )} = kN
G_1 = {(0, az,.. )}
G, =1{(0,0,a3,...)}
G' 3 =1{(0,0,0,as,...)}
G- .: 0

» (G, J) is a maximal embedded linear filtration of k™.



Gradations

Definition
A gradation of (F, P) is a function S : P — Sub(V)
satisfying:

> Fp=@,<pSqforallpe P

Definition
An almost gradation of (F, P) is a function S : P — Sub(V)
satisfying:
> Fp=F,®S,forall pe P
(where Fep =3, Fq)

» Gradation = almost gradation.



Examples of Gradations

Example (A)

= ZZO U {OO}
EOO = {(rl,rg,...)} = k@N Soo = 0
E3 = {(31732733707"')} 53 = Span{e3}
E; = {(a,a,0,..)} S; = span{ex}
E = {(a1,0,...)} S1 = span{e}
Eo = 0 So = 0

> S is a gradation of E.

> We'll see that every almost gradation of E is a gradation.



Examples of Gradations

Example (B)
J= {*OO} U Zgo

Fo = {(ar,a,...)} = k™ To = span{e}
Ffl = {(0,32,33,...)} Tfl e span{ez}
Fo = {(0,0,as...)} T, = span{es}
F-3 = {(0,0,0,a4,...)} T_3 = span{es}
Fooo = 0 T_» = 0

» T is a gradation of F.

» Unlike before, not every almost gradation of F is a gradation.



Examples of Gradations

Example (B")
J={-00} UZ<o

FO = {(31, az, .. )} = kGBN Té = span{el — 62}
F_l = {(07327337"-)} Tl_l = span{e2 — 63}
Fo = {(07 07 as, . . )} TI,2 = Span{e3 — 64}
Fs = 1(0,0,0,a4,...)} T' ;3 = span{es —es}
Free = 0 T o = 0

» T’ is an almost gradation of F.
» T’ is not a gradation of F because T/ C ker(1,1,...) for all
iel, so
> T Cher(1,1,...) ¢ kN = Fo.
i<0



Examples of Gradations

Example (C)
J= {—OO} U Z§0

Go = {(a1, a2,...)} = k"
G_1= {(0, a, .. )}
Gi = {(0, 0, as, .. )}
G'3=1{(0,0,0,a4,...)}
G_so .: 0

» S any almost gradation, S; = G;/Gj_1 Vi € Z<o which has
dimension 1 = dim(}_;o S;) is countable, but dim(kY) is
uncountable.

» — There are NO gradations of (G, J)!



Spanning and Independent Almost Gradations

Definition
Let S be an almost gradation of a post filtration (F, P).
> S spans F if for all p € P we have that F, = qup Sy

> S is independent if whenever we have a finite subset
Q C P and for each g € Q, a vector s; € 54 such that
> qe@Sq =0, then s; =0 for all g € Q.

» Almost gradation S of (F, P) is a gradation <= S is
independent and spans F.



Guaranteeing Independence

Theorem
Every almost gradation of a linear filtration is independent.

Definition
The intersection of two poset filtrations (E, P) and (F, Q) of
M is the poset filtration consisting of
> the poset (P x Q,<x) (the product poset)
» the function ENF : P x Q@ — Sub(M) defined by
[E N F](qu) = Ep N Fq.

Theorem
Every almost gradation of the intersection of two linear
filtrations is independent.

» It is NOT true that every almost gradation of the intersection
of three linear filtrations is independent!




Guaranteeing Spanning

Definition
A poset is well-ordered if every nonempty subset has a
minimal element.

Theorem
Every almost gradation S of a well-ordered poset filtration
(F, P) spans F.

Proof.

Transfinite induction.



Guaranteeing Independence and Spanning

Corollary
» Every almost gradation of a linear well-ordered filtration
(F,1) is a gradation.
» Every almost gradation of the intersection (E N F, [ x J)
of two linear well-ordered filtrations (E, /) and (F,J) is a
gradation.

Partial converse:

Theorem
Let (E, /) be a maximal embedded linear filtration of V. If

every almost gradation of (E, /) is a gradation, then (/,<) is
well-ordered.




Applications: A~ Quivers

Figure 1: As,00 Graph

Theorem

Let Q be an Ay quiver. Every (not necessarily
finite-dimensional) representation of Q is a direct sum of
connected thin (locally 0 or 1 dimensional) sub-representations
<= Q@ is eventually outward.

Kk —2 s kX k Kkt 1k

Figure 2: Thin Representations



Applications: Double Complexes

Theorem

Every (not necessarily finite-dimensional or bounded) double
complex supported in the first and third quadrants is a direct
sum of “zig-zags" and “squares’.

JH

x~ —
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x>
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kK —1 5k

Figure 3: Zigzags and Squares



Applications: Infinite-dimensional Flag Spaces

Definition
Let / be a well-ordered set. An /-flag in k-vector space V is a
maximal embedded linear filtration (F, /) of V. Denote the set

of /-flags of V by Fl;(V).

» This will be our analog of the full flag variety.

» GL(V) acts transitively on Fl;(V).

> Fix a reference flag E € FI;(V), and denote the stabilizer of E
by Be C GL(V).

» Bg acts on Fl;(V).

» The Bruhat Decomposition gives a nice description of the set
of orbits BE\F|/(V)




The Bruhat Decomposition

» /s := {successor elements of /}
» Sym(/s) := group of permutations of /s (the Weyl group).

» For each w € Sym(/s), let X, C Fl;(V) (the Schubert cell)
denote the set of /-flags F whose intersection with E satisfies:

| 1 if i = w(j)
dim(F N E)(iy/(F N E)<(iyy = {0 otherwise

Theorem (Bruhat Decomposition)

BE\F|/(V) = {XW|W S Sym(ls)}

= F, (V)= || Xu
weSym(/s)




The Geometry of Finite-dimensional Flag Varieties

» Let V be finite-dimensional, k = k.
» To simplify our initial discussion, restrict to the case of
Grassmannians: Gr.(V) :={W C V|dim W = r}.
» Gr,(V) can be made into a variety in several different ways:
1. Explicitly define charts.

2. Use the Pliicker embedding
Gr, (V) = P(A"V)
span(vi,...,v,) —=span(vi A...Av,)

and note that the image is Zariski-closed.

» Xuw = [Jy<,w Xu, where <;, denotes the Bruhat order on
Sym(ls) = S, where n = dim(V).



The Geometry of the Infinite-dimensional Flag Spaces

» Now let V be infinite-dimensional.

» Above approaches to defining a topology on Fl;(V) no longer
work.
1. The domains of the charts are no longer affine - (they are
products of ind-affine ind-schemes).
2. The Pliicker embedding is no longer well-defined.
» Goal: Find a “natural” topology on Fl;(V) and a “Bruhat
order” on Sym(/s) such that the closure theorem still holds.
» Understanding the geometry of the infinite flag space is a

moduli problem - use Grothendieck's “functor of points”
approach.



The Functor of Points: An Approach to Moduli Problems

» Moduli space - the points are known, the geometric structure
is not.

» Grothendieck [1]: to study a moduli space we study maps into
it.

» Work in the category of schemes.

» A morphism of schemes f : X — Gr, (k") can be interpreted as
algebraically assigning to every point in X, an r-dimensional
subspace of k".

» In other words if Gr,(k") were a scheme, Morgch (X, Gr (k"))
would be in bijection with rank-r subbundles of the rank-n
trivial bundle on X.



Representable Functors

Definition
Define a functor Gr, , : Sch®® — Set by sending
» a scheme X to the set of rank-r subbundles of the rank-n

trivial bundle O%".
» a scheme morphism ¢ to its pullback ¢*.

Definition
For any scheme Y, we define a functor hy : Sch°®® — Set by

sending
» a scheme X to the set Morgch(X, Y)

» a morphism ¢ to pre-composition — o .
» h_:Sch — [Sch?,Set] is a fully faithful (Yoneda Lemma)
» — if Gr, , = hy then Y is unique.




The Grassmannian in Finite Dimensions

Definition
A functor X : Sch®® — Set is representable if there exists a
scheme Y such that X = hy.

Theorem
The functor Gr, , is representable.

» Explicitly, there is a scheme Y such that the set Morgen (X, Y)
is naturally isomorphic to the set of rank r-subbundles of 6’;‘?".

» In principle, this is what the Grassmannian should be.



The Grassmannian: A Purely Algebraic Approach
This is supposed to be an algebra talk . ..
» Re-frame algebraic geometry — algebral
» Schemes are locally affine.
» Spec : Ring — AffSch®? is an equivalence of categories.

» Serre [2]: A finite-rank vector bundle on an affine scheme
Spec(R) is the same as a finitely generated projective
R-module.

» A subbundle corresponds to a module direct summand.

Note
Re-define Gr, , : Ring — Set by sending
» aring R to the set
{N C R"IN@& M = R" for some M < R" rkN = r},
» a ring homomorphism R — S to the function
N— N®grS.




The Grassmannian in Infinite Dimensions

» Suggests generalization to infinite-dimensions:

Definition
Let / be a set. We define a functor Gr; : Ring — Set by
sending

» aring R to {N C R®|N has a direct sum complement},

» a ring homomorphism R — S to the function
N— N®rS.

» |Is Gr; representable?
> l.e. is there a scheme Y such that Gr; = hy(Spec(—))?

Theorem
Gr; is not representable.




I-flags in Modules

Let / be a well-ordered set.

» Maximality of a filtration is not functorial.
» Alter notion of “flag” for modules.

Definition
An I-flag in a free R-module M is an embedded linear
filtration (F, /) of M such that

> F;is a direct summand of M for each i € I,

» F;/F.; has constant rank 1 if / € /s and is O otherwise.




The Full Flag Space

Definition
Define a functor 7, : Ring — Set by sending
> aring R to {/-flags in R},
» a ring homomorphism R — S to the function sending
(F, 1)~ (F®rS,1).

Theorem
FY{; is not representable.




The Bruhat Decomposition

» E := the standard flag in R®%.

» For w € Sym(/s), define the Schubert subfunctor X, C FY¢,
which sends

> aring R to the set of F € F¢;(R) such that

1 ifi=w(
tk(FNE)ij/(FNE)<(ij = {0 otherwige)

Theorem (The Bruhat Decomposition)
Fly = I—leSym(/s) Xy

> |t makes sense to take the closure of a subfunctor!
» X is the intersection of all closed subfunctors containing X

» Current goal: Nicely describe the closure of a Schubert
subfunctor by a partial order on Sym(/s).




Proof of Non-representability: Subfunctors

» Technical definitions for a representability criterion:

Definition
A functor JV : C — Set is a subfunctor of X : C — Set if:
» For all objects A € C, Y(A) C X(A).

» For all morphisms f : A— B, J(f) = X(f)‘y(f)'

Definition
If n: Z — X is a natural transformation and ) C X is a
subfunctor, the inverse image is the subfunctor of Z defined

by n 1 (V)(A) = nz ' (V(A)).




Proof of Non-representability: Open/Closed Subfunctors

Definition

A subfunctor Y C X' : Ring — Set is open (resp. closed) if
for all rings R and all morphisms ¢ : hf — X, the inverse
image ¢~1()) C hR is of the form

S—{f:R—>S|S-f(l)=S5}
(resp. S — {f : R — S|f(l) =0})

for some ideal I C R.

Definition
A collection {); : j € J} of subfunctors of X’ covers X' if
for all fields k, X (k) = U;c, Vi(k).




Proof of Non-representability: Zariski Sheaves

Definition
X : Ring — Set is a Zariski sheaf if for any ring R and any
elements ry,...,r, € R with (r1,...,r,) = R, the following

diagram of sets is an equalizer.

—>HXR):;HX )
ij=1

Theorem
A functor X : Ring — Set is representable <
1. X is a Zariski sheaf.

2. There is an open cover of X’ by representable subfunctors.




Proof of Non-representability: Zariski Descent of Gr;

Theorem
Gr; and FY; are Zariski sheaves (in fact fpqc sheaves).

Proof for Gr;.
» Modg is equivalent to QCo(Spec(R)).

» Projective modules <> locally projective quasi-coherent sheaves
on Spec(R).

» (Injectivity of the First Map). Follows from the locality
property of sheaves.

» (Exactness in the Middle). Pairwise compatible locally
projective quasi-coherent sheaves on Spec(R,,) glue to a
quasi-coherent sheaf on Spec(R). The result
is locally projective by a difficult theorem of Raynaud and
Gruson [3], and Perry [4].




Proof of Non-representability of Gry

Theorem
Gr; and F¥; are not representable.

Lemma
Any open or closed subfunctor of a representable functor is
itself representable.

Proof of Theorem for Gr;.
> X(R):={N e gn(R) | rkN < 1}. (Closed subfunctor)
7 1= projection onto the jth coordinate in R®'.
Y(R) = {N € Gr(R) | mi|n is surjective}. (Open subfunctor)
If Gr; is representable, so is X N Y.
X N'Y isomorphic to R — REU~) | which is not representable.
|

>
>
| 4
| 2




Further Descent Properties

Definition

X is an fpqc sheaf if (1) it is a Zariski sheaf and (2) for every
faithfully flat ring homomorphism R — S, the following
diagram of sets is an equalizer.

X(R) = X(S) = X(S ®g S).

> Note: Representable — fqpc sheaf.

Theorem
Gr; and FY; are fpqc sheaves.

Proof.
Results of Raynaud, Gruson, and Perry cover the fpqc case too! [3]
[4] u
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