Shor	HSP	Complexity	Rationals	Free groups	Lattices	Epilogue
0000	000	00000	000	000	00000	0

The hidden subgroup problem for infinite groups

Greg Kuperberg

UC Davis

October 29, 2020

(Paper in preparation.)

000

Shor's algorithm

Let $f : \mathbb{Z} \to X$ be a function to a set X such that:

- We can compute f in polynomial time.
- f(x+h) = f(x) for an unknown period h.
- $f(x) \neq f(y)$ when $h \not\mid x y$.

Shor

Finding h from f is the hidden period problem, or the hidden subgroup problem for the integers \mathbb{Z} .

Theorem (Shor) A quantum computer can solve the hidden period problem in time poly(log h).

I.e., in quantum polynomial time in $||h||_{bit}$. Note: If f is black box, then this takes $\Omega(\sqrt{h}) = \exp(\Omega(\|h\|_{\text{bit}}))$ classical queries.

Shor HSP Complexity Rationals Free groups Lattices Epilogue 0 0 0 000 000 000 000 0000 0

Factoring integers

Corollary (Shor) Integers can be factored in quantum polynomial time.

Suppose that N is odd and not a prime power. Shor's algorithm reveals the order ord(a) of a prime residue $a \in (\mathbb{Z}/N)^{\times}$ via

$$f(x) = a^x \in \mathbb{Z}/N.$$

If a is random, then $\operatorname{ord}(a)$ is even and $b = a^{\operatorname{ord}(a)/2} \neq \pm 1$ with good odds, whence

$$N|b^2-1=(b+1)(b-1)$$
 $N \not\mid b\pm 1$

yields a factor of N.

In a second example of HSP, let $f : \mathbb{Z}^k \to X$ be periodic with respect to a finite-index sublattice $H \leq \mathbb{Z}^k$. (So that f(x) = f(y) if and only if $x - y \in H$.) Then

Theorem (Shor-Kitaev) We can calculate H in quantum polynomial time, uniformly in k and $||H||_{\text{bit}}$.

Corollary (Generalized discrete logarithm) If A is an algorithmic finite abelian group, then an isomorphism

$$\phi: A \stackrel{\cong}{\longrightarrow} (\mathbb{Z}/a_1) \times (\mathbb{Z}/a_2) \times \cdots \times (\mathbb{Z}/a_\ell)$$

can be constructed and evaluated in quantum polynomial time.

HSP Complexity Rationals Free groups Lattices Epilogue 000 00000 000 000 00000 0

Effect on cryptography

Shor

Corollary (Generalized discrete logarithm) If A is an algorithmic finite abelian group, then an isomorphism

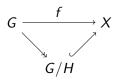
$$\phi: A \stackrel{\cong}{\longrightarrow} (\mathbb{Z}/a_1) \times (\mathbb{Z}/a_2) \times \cdots \times (\mathbb{Z}/a_\ell)$$

can be constructed and evaluated in quantum polynomial time.

E.g., *A* can be an elliptic curve or an abelian variety over a finite field \mathbb{F}_q .

Computer science corollary: Quantum computers can defeat all public key cryptography which is currently standard. The goal of "post-quantum cryptography" is to remedy this with new (classical) cryptographic standards.

Suppose that



where G is a discrete group, f can be computed in polynomial time, and $H \le G$ is a hidden subgroup. Then finding H from f is the hidden subgroup problem (HSP).

- If $G = \mathbb{Z}^k$ or any explicit quotient, this is Shor-Kitaev.
- Most of the other progress for HSP concerns finite groups: *H* normal, *G* almost abelian, *G* Heisenberg, *G* dihedral, etc.
- Some finite G look hard even for QC, e.g., $G = S_n$.

Shor	HSP	Complexity	Rationals	Free groups	Lattices	Epilogue
0000	000	00000	000	000	00000	0

Negative results

Theorem (K.) If $G = (\mathbb{Q}, +)$, then HSP is NP-hard.

Theorem (K.) If $G = F_k$ is non-abelian free, then normal HSP is NP-hard.

Theorem (K.) If $G = \mathbb{Z}^k$ with unary vector encoding, then HSP is uSVP-hard. (Unique short vector in a lattice.)

Note: The nature of HSP for infinite *G* is sensitive to how elements are encoded. We encode elements of \mathbb{Q} as ordinary fractions; elements of F_k as reduced words; and in unary \mathbb{Z}^k as uncompressed commutative words.

 $\frac{993470124}{6798515} \in \mathbb{Q} \qquad \textit{aba}^{-1}\textit{ba} \in \textit{F}_2 \qquad \textit{aaaab}^{-1}\textit{b}^{-1}\textit{b}^{-1}\textit{ccccc} \in \mathbb{Z}^3.$

HSP Complexity Rationals Free groups Lattices E 000 00000 000 0000 00000 0000</

Positive results

Theorem (K.) If $G = \mathbb{Z}^k$ with binary encoding and H has infinite index, then H can be found in quantum polynomial time, uniformly in k and $||H||_{\text{bit}}$.

Corollary If G is finitely generated abelian with efficient encoding of elements, then H can be found in quantum polynomial time.

We also get a result for $G = \mathbb{Z}^{\infty}$, but only with dense encoding of vectors.

Theorem (K.) If G is finitely generated, virtually abelian with efficient encoding of elements, then an arbitrary H can be found in time $\exp(\sqrt{\|H\|_{\text{bit}}})$.

This reuses my earlier result on the dihedral hidden subgroup problem, and refinements found since then.

 Shor
 HSP
 Complexity
 Rationals
 Free groups
 Lattices
 Epilogue

 0000
 000
 000
 000
 000
 00000
 0

Quantum computing in 60 seconds

For hardcore algebraists

The tensor category (set, \times) is generated by the object $\mathbb{Z}/2$ together with morphisms AND, OR, NOT, and COPY called gates. (Karoubi-generated as a \otimes -category.) A digital circuit is then a tensor network. An algorithm in P is equivalent to a doubly periodic tensor network, or cellular automaton, with polynomially many repetitions.

For BPP, we use the category of finite stochastic maps, densely generated by a finite set of gates. For BQP, we use the category of finite quantum maps = TPCP maps acting on matrices:

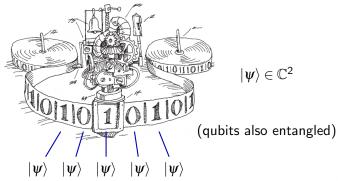
$$E: M(a,\mathbb{C})^{\Delta} \to M(b,\mathbb{C})^{\Delta}$$

We again densely Karoubi-generate the quantum map $\otimes\mbox{-category}$ with a finite set of gates.

Quantum computing in 60 seconds

We can model a quantum computer as a (classical) Turing machine with together with a tape of qubits. The TM can:

- initialize or measure individual qubits
- apply unitary operators to pairs of qubits



Shor	HSP	Complexity	Rationals	Free groups	Lattices	Epilogue
0000	000	00000	000	000	00000	0

A little complexity zoo

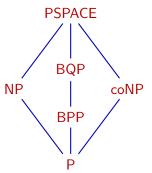
A complexity class is a set of decision or function or decision problems

 $d: \{\text{inputs}\} \rightarrow \{\text{yes}, \text{no}\} \qquad f: \{\text{inputs}\} \rightarrow \{\text{outputs}\}$

reachable with particular complexity resources.

- P = deterministic polynomial time
- BPP = randomized polynomial time, probably correct answer
- NP = yes-no polynomial time the aid of a prover
- coNP = like NP but with a disprover
- BQP = quantum polynomial time
- **PSPACE** = polynomial space, unrestricted time otherwise

A little complexity zoo



- These are the known inclusions.
- Conjecture: **P** = **BPP**
- Conjecture: $\mathsf{BQP} \not\subseteq \mathsf{NP} \not\subseteq \mathsf{BQP}$
- Conjecture: $NP \neq coNP$
- Conjecture: $PSPACE \neq BQP, NP$
- $P \neq PSPACE$ is also open

All of these classes (including P vs BPP) can be distinguished in the presence of oracles or black boxes.

A problem that is NP-hard is unlikely to be in BQP.

Shor	HSP	Complexity	Rationals	Free groups	Lattices	Epilogue
0000	000	0000	000	000	00000	0

NP hardness and HSP

A decision problem

 $d: \{\mathsf{inputs}\} \to \{\mathsf{yes}, \mathsf{no}\}$

is Post-Karp NP-hard means that every $e \in NP$ can be converted to a special case of d:

$$e(x) = d(f(x))$$
 $f \in \mathsf{P}$

There is another standard (Turing-Cook) that e can be computed with polynomially many oracle calls to d.

We must convert HSP to a decision problem for NP-hardness.

• If
$$G = \mathbb{Q}$$
, we choose "Is $H \neq \mathbb{Z}$?"

• In other cases, we choose "Is $H \neq 1$?"

	HSP	Complexity	Rationals	Free groups	Lattices	Epilogue
0	000	00000	•00	000	00000	0

HSP in \mathbb{Q}

 $d \in \mathsf{NP}$ means that there is a predicate $z \in \mathsf{P}$ such that

$$d(x) = \exists y, z(x, y).$$

The data string y, with |y| = poly(|x|), is a certificate.

Step 1: We can take each y to be a prime number, by using the left 1/3 of its bits as a data string certificate. Theorem of Ingham: When n is large enough, there is a prime p such that $n^3 .$

Step 2: We need to make an instance of HSP in \mathbb{Q} from the predicate z, so that if you can learn $H \leq \mathbb{Q}$ from $f : \mathbb{Q} \to X$, then I can use you to evaluate d(x). We generate H by 1 and reciprocals of all witnesses:

$$H = \left\langle \left\{ \frac{1}{y} \mid z(x, y) = yes \right\} \cup \{1\} \right\rangle.$$

 Shor
 HSP
 Complexity
 Rationals
 Free groups
 Lattices
 Epilogue

 0000
 000
 0000
 0●0
 000
 00000
 0

Partial fractions, for actual fractions

Step 3: We need an *H*-periodic function $f : \mathbb{Q} \to X$. We set $X = \mathbb{Q}$ and calculate a canonical representative $f(a/b) \in H + a/b$ for each coset of *H*.

Partial fractions in $\mathbb{R}[x]$, taught in calculus, can also be done in \mathbb{Q} :

$$\frac{x^8 + 5}{x^4 + x} = x^4 - x - \frac{3x - 2}{x^2 - x + 1} - \frac{2}{x + 1} + \frac{5}{x}$$
$$\frac{1}{60} = -2 + \frac{1}{2} + \frac{1}{4} + \frac{2}{3} + \frac{3}{5}$$

The right side is a canonical form with terms r/p^k with $1 \le r < p$ with p prime, plus an integer. Calculating these partial fractions requires integer factorization, but we have that in BQP!

Shor	HSP	Complexity	Rationals	Free groups	Lattices	Epilogue
0000	000	00000	000	000	00000	0

The hiding function

To calculate f(a/b), expand a/b in partial fractions:

$$\frac{1}{60} = -2 + \frac{1}{2} + \frac{1}{4} + \frac{2}{3} + \frac{3}{5}$$

Then strike the integer term, and each term r/p with p an accepted witness:

$$f\left(\frac{1}{60}\right) = -2 + \frac{1}{2} + \frac{1}{4} + \frac{2}{3} + \frac{3}{5} = \frac{1}{2} + \frac{1}{4} + \frac{2}{3} = \frac{17}{12}$$

Key point: You don't need to know the accepted witnesses, you only need to be able to ask the predicate z(x, p).

Conclusion: If you can calculate whether $H \not\supseteq \mathbb{Z}$ from this f, then you can calculate d(x) with $d \in NP$.

Shor	HSP	Complexity	Rationals	Free groups	Lattices	Epilogue
0000	000	00000	000	000	00000	0

HSP in F_k

If $G = F_k$, the general outline is the same. Given $d \in NP$ with a predicate $z \in P$, we make a hidden subgroup $N \trianglelefteq G$ which is normally generated by witnesses. We then define $f : G \to G$ as a canonical rep. function $f(w) \in wN$. Since N is normal, f(w) is a canonical word for w in the presented group F_k/N .

We can express a witness y as a word:

y(a,b) = ababbbaabb

Let k = 14, and let N be generated by the relator

$$r_y = y(a_1, b_1)y(a_2, b_2)\cdots y(a_7, b_7)$$

for each accepted y. Claim: We can compute canonical words in F_{14}/N without seeing relators, only with guess-and-check.

Small cancellation

Free groups

Our group is

$$F_{14}/N = \langle a_1, b_1, \dots, a_7, b_7 | \{ y(a_1, b_1) y(a_2, b_2) \cdots y(a_7, b_7) \} \rangle.$$

By construction, it has C'(1/6) small cancellation.

Theorem (Greendlinger) The word problem in any C'(1/6) group can be solved by the greedy algorithm (Dehn's algorithm).

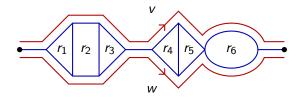
Theorem (Partly folklore) A word w in any C'(1/6) group K can be canonicalized into shortlex form with an extended greedy algorithm.

We can also canonicalize w in polynomial time with the presentation and w as input. If $K = F_{14}/N$, it is still poly time with only guess-and-check access to relators.

horHSPComplexityRationalsFree groupsLatticesEpilogue0000000000000000000

Thin diagrams

A key concept in the proof is a thin equality diagram for a word equivalence $v \sim w$ modulo N. An equality (or van Kampen) diagram is a tree of disks cellulated by relators to indicate equivalence. It is thin when each relator borders both v and w.



- If $v \sim w$ are Dehn-reduced, then they have a thin diagram.
- All shortest words for w live in one thin equality diagram.
- We can build these diagrams by guess-and-check because $|r \cap v| \ge |r|/6$ for every r in the diagram.

HSP Complexity Rationals Free groups Lattices Epilogue 000 0000 000 000 000 0

An HSP algorithm in \mathbb{Z}^k

Suppose that $f : \mathbb{Z}^k \to X$ hides a sublattice $H \leq \mathbb{Z}^k$ of some rank $\ell \leq k$. Given two parameters $Q \gg S \gg 1$, a standard first part of a quantum algorithm for this HSP goes as follows.

1. Prepare an approximate Gaussian state on a cube in \mathbb{Z}^k :

$$|\psi_G
angle \propto \sum_{\substack{ec{x} \in \mathbb{Z}^k \ \|ec{x}\|_{\infty} < Q/2}} \exp(-\pi \|ec{x}\|_2^2/S^2) |ec{x}
angle$$

2. Apply the hiding function f to $|\psi_G
angle$ to obtain:

$$U_f |\psi_G\rangle \propto \sum_{\vec{x}} \exp(-\pi ||\vec{x}||_2^2/S^2) |\vec{x}, f(\vec{x})\rangle$$

Throw away the output, leaving a mixed state on $\mathbb{C}[(\mathbb{Z}/Q)^k]$.

3. Apply the quantum Fourier operator $F_{(\mathbb{Z}/Q)^k}$ and measure a Fourier mode $\vec{y}_0 \in (\mathbb{Z}/Q)^k$.

horHSPComplexityRationalsFree groupsLatticesEpilogue00000000000000000000

Dual samples

The quantum part of the algorithm produces a sample $\vec{y}_0 \in (\mathbb{Z}/Q)^k$ which we can rescale to obtain:

$$ec{y}_1 = rac{ec{y}_0}{Q} \in (\mathbb{R}/\mathbb{Z})^k$$

Then \vec{y}_1 is approximately a randomly chosen element of the dual group

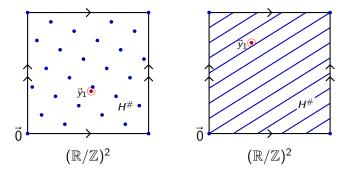
$$\mathsf{H}^{\#} = \widehat{\mathbb{Z}^k/H} \leq (\mathbb{R}/\mathbb{Z})^k,$$

Explicitly, $H^{\#}$ consists of those \vec{y} such that $\vec{x} \cdot \vec{y} \in \mathbb{Z}$ for all $\vec{x} \in H$.

The sample \vec{y}_1 also has noise due to both Gaussian blur and discretization. This noise is exponentially small, but so is the feature scale of $H^{\#}$ when the generators of H are exponentially large.

Examples of $H^{\#}$

Here are two examples of $H^{\#}$ and a sample $\vec{y}_1 \lesssim H^{\#}$.



On the left, *H* has full rank and $H^{\#}$ is a finite group. On the right, *H* has lower rank and $H^{\#}$ is a Lie group with fine stripes.

Solving for $H^{\#}$ from random samples The easy case

Goal: Find $H^{\#} \leq (\mathbb{R}/\mathbb{Z})^k$ from noisy random samples $\vec{y}_1 \lesssim H^{\#}$.

Shor-Kitaev: If *H* has full rank and $H^{\#}$ is finite, then we can find rational approximations to the coordinates of \vec{y}_1 using the continued fraction algorithm. In this case, $O(\log |H^{\#}|)$ samples are enough to probably generate $H^{\#}$. This includes Shor's case $H = h\mathbb{Z} \leq \mathbb{Z}$, whence $H^{\#} = \frac{1}{h}\mathbb{Z}/h \leq \mathbb{R}/\mathbb{Z}$.

New: If *H* has rank $\ell < k$, then dim $H^{\#} = k - \ell$. In this case, any one coordinate of \vec{y}_1 is uniformly random in \mathbb{R}/\mathbb{Z} . Rational approximation of the coordinates does not work. Happily, a higher-dimensional "continued fraction" algorithm called LLL (Lenstra-Lenstra-Lovasz) does work.

Lattices

Solving for $H^{\#}$ from random samples

Idea: An ideal random $\vec{y}_0 \in H^{\#}$ almost surely densely generates the connected subgroup $H_1^{\#}$, so look for multiples of $\vec{y}_1 \lesssim H^{\#}$ near $\vec{0}$.

• Using a single sample \vec{y}_1 , make a lattice $L \leq \mathbb{R}^{k+1}$ with basis

$$\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_k, (\widetilde{\vec{y}}_1, 1/T),$$

where $S \gg T \gg R$, and 1/R is the feature scale of $H^{\#}$.

• Find a LLL basis of short vectors of L:

$$\vec{b}_1, \vec{b}_2, \dots, \vec{b}_{k+1} \in L \leq \mathbb{R}^{k+1}$$

The first $k - \ell + 1$ vectors are approx. tangent to $H^{\#} \oplus \mathbb{R}$ at $\vec{0}$.

• Put the first $k + \ell - 1$ LLL vectors in RREF form, then clean them up with rational approximation to find $T_{\vec{0}}(H^{\#} \oplus \mathbb{R})$ and $H_{\mathbb{R}} = H \otimes \mathbb{R}$. This reduces the problem to Shor-Kitaev.

Lattices

Last comments and open problems

- The QC difficulty of HSP is a novel property of a discrete group *G*, which depends on element encoding.
- HSP is probably hard for most infinite groups, but they have a wide variety of behaviors.
- There might be a good quantum algorithm for HSP in nilpotent groups.
- Unary vs binary notation for $\vec{x} \in \mathbb{Z}^k$ is related to canonical words vs canonical compressed words in groups. There is a crazy theorem from the computer science of text editors that compressed words in F_k can be efficiently canonicalized. My NP-hardness might extend to this encoding.
- Efficient algorithms for canonical compressed words are another good question in combinatorial group theory.