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Shor’s algorithm

Let f : Z→ X be a function to a set X such that:

• We can compute f in polynomial time.

• f (x +h) = f (x) for an unknown period h.

• f (x) 6= f (y) when h 6 | x−y .

Finding h from f is the hidden period problem, or the hidden
subgroup problem for the integers Z.

Theorem (Shor) A quantum computer can solve the hidden
period problem in time poly(logh).

I.e., in quantum polynomial time in ‖h‖bit. Note: If f is black box,
then this takes Ω̃(

√
h) = exp(Ω(‖h‖bit)) classical queries.
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Factoring integers

Corollary (Shor) Integers can be factored in quantum polynomial
time.

Suppose that N is odd and not a prime power. Shor’s algorithm
reveals the order ord(a) of a prime residue a ∈ (Z/N)× via

f (x) = ax ∈ Z/N.

If a is random, then ord(a) is even and b = aord(a)/2 6=±1 with
good odds, whence

N|b2−1 = (b+ 1)(b−1) N 6 | b±1

yields a factor of N.
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Shor-Kitaev

In a second example of HSP, let f : Zk → X be periodic with
respect to a finite-index sublattice H ≤ Zk . (So that f (x) = f (y) if
and only if x−y ∈ H.) Then

Theorem (Shor-Kitaev) We can calculate H in quantum
polynomial time, uniformly in k and ‖H‖bit.

Corollary (Generalized discrete logarithm) If A is an algorithmic
finite abelian group, then an isomorphism

φ : A
∼=−→ (Z/a1)× (Z/a2)×·· ·× (Z/a`)

can be constructed and evaluated in quantum polynomial time.
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Effect on cryptography

Corollary (Generalized discrete logarithm) If A is an algorithmic
finite abelian group, then an isomorphism

φ : A
∼=−→ (Z/a1)× (Z/a2)×·· ·× (Z/a`)

can be constructed and evaluated in quantum polynomial time.

E.g., A can be an elliptic curve or an abelian variety over a finite
field Fq.

Computer science corollary: Quantum computers can defeat all
public key cryptography which is currently standard. The goal of
“post-quantum cryptography” is to remedy this with new
(classical) cryptographic standards.
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The hidden subgroup problem

Suppose that

G X

G/H

f

where G is a discrete group, f can be computed in polynomial
time, and H ≤ G is a hidden subgroup. Then finding H from f is
the hidden subgroup problem (HSP).

• If G = Zk or any explicit quotient, this is Shor-Kitaev.

• Most of the other progress for HSP concerns finite groups: H
normal, G almost abelian, G Heisenberg, G dihedral, etc.

• Some finite G look hard even for QC, e.g., G = Sn.
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Negative results

Theorem (K.) If G = (Q,+), then HSP is NP-hard.

Theorem (K.) If G = Fk is non-abelian free, then normal HSP is
NP-hard.

Theorem (K.) If G = Zk with unary vector encoding, then HSP is
uSVP-hard. (Unique short vector in a lattice.)

Note: The nature of HSP for infinite G is sensitive to how
elements are encoded. We encode elements of Q as ordinary
fractions; elements of Fk as reduced words; and in unary Zk as
uncompressed commutative words.

993470124

6798515
∈Q aba−1ba ∈ F2 aaaab−1b−1b−1ccccc ∈ Z3.
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Positive results

Theorem (K.) If G = Zk with binary encoding and H has infinite
index, then H can be found in quantum polynomial time, uniformly
in k and ‖H‖bit.

Corollary If G is finitely generated abelian with efficient encoding
of elements, then H can be found in quantum polynomial time.

We also get a result for G = Z∞, but only with dense encoding of
vectors.

Theorem (K.) If G is finitely generated, virtually abelian with
efficient encoding of elements, then an arbitrary H can be found in
time exp(

√
‖H‖bit).

This reuses my earlier result on the dihedral hidden subgroup
problem, and refinements found since then.
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Quantum computing in 60 seconds
For hardcore algebraists

The tensor category (set,×) is generated by the object Z/2
together with morphisms AND, OR, NOT, and COPY called gates.
(Karoubi-generated as a ⊗-category.) A digital circuit is then a
tensor network. An algorithm in P is equivalent to a doubly
periodic tensor network, or cellular automaton, with polynomially
many repetitions.

For BPP, we use the category of finite stochastic maps, densely
generated by a finite set of gates. For BQP, we use the category of
finite quantum maps = TPCP maps acting on matrices:

E : M(a,C)∆→M(b,C)∆

We again densely Karoubi-generate the quantum map ⊗-category
with a finite set of gates.
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Quantum computing in 60 seconds
For hardcore CS theorists

We can model a quantum computer as a (classical) Turing
machine with together with a tape of qubits. The TM can:

• initialize or measure individual qubits

• apply unitary operators to pairs of qubits

|ψ〉 |ψ〉 |ψ〉 |ψ〉 |ψ〉

|ψ〉 ∈ C2

(qubits also entangled)
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A little complexity zoo

A complexity class is a set of decision or function or decision
problems

d : {inputs}→ {yes,no} f : {inputs}→ {outputs}

reachable with particular complexity resources.

• P = deterministic polynomial time

• BPP = randomized polynomial time, probably correct answer

• NP = yes-no polynomial time the aid of a prover

• coNP = like NP but with a disprover

• BQP = quantum polynomial time

• PSPACE = polynomial space, unrestricted time otherwise
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A little complexity zoo

P

BPP

NP

BQP

coNP

PSPACE

• These are the known inclusions.

• Conjecture: P = BPP

• Conjecture: BQP 6⊆ NP 6⊆ BQP

• Conjecture: NP 6= coNP

• Conjecture: PSPACE 6= BQP,NP

• P 6= PSPACE is also open

All of these classes (including P vs BPP) can be distinguished in
the presence of oracles or black boxes.

A problem that is NP-hard is unlikely to be in BQP.
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NP hardness and HSP
A decision problem

d : {inputs}→ {yes,no}

is Post-Karp NP-hard means that every e ∈ NP can be converted
to a special case of d :

e(x) = d(f (x)) f ∈ P

There is another standard (Turing-Cook) that e can be computed
with polynomially many oracle calls to d .

We must convert HSP to a decision problem for NP-hardness.

• If G = Q, we choose “Is H 6= Z?”

• In other cases, we choose “Is H 6= 1?”
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HSP in Q
d ∈ NP means that there is a predicate z ∈ P such that

d(x) = ∃y ,z(x ,y).

The data string y , with |y |= poly(|x |), is a certificate.

Step 1: We can take each y to be a prime number, by using the
left 1/3 of its bits as a data string certificate. Theorem of Ingham:
When n is large enough, there is a prime p such that
n3 < p < (n+ 1)3.

Step 2: We need to make an instance of HSP in Q from the
predicate z , so that if you can learn H ≤Q from f : Q→ X , then I
can use you to evaluate d(x). We generate H by 1 and reciprocals
of all witnesses:

H =
〈{1

y
| z(x ,y) = yes

}
∪{1}

〉
.
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Partial fractions, for actual fractions

Step 3: We need an H-periodic function f : Q→ X . We set X = Q
and calculate a canonical representative f (a/b) ∈ H +a/b for each
coset of H.

Partial fractions in R[x ], taught in calculus, can also be done in Q:

x8 + 5

x4 + x
= x4−x− 3x−2

x2−x + 1
− 2

x + 1
+

5

x

1

60
=−2 +

1

2
+

1

4
+

2

3
+

3

5

The right side is a canonical form with terms r/pk with 1≤ r < p
with p prime, plus an integer. Calculating these partial fractions
requires integer factorization, but we have that in BQP!
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The hiding function

To calculate f (a/b), expand a/b in partial fractions:

1

60
=−2 +

1

2
+

1

4
+

2

3
+

3

5

Then strike the integer term, and each term r/p with p an
accepted witness:

f
( 1

60

)
=−2 +

1

2
+

1

4
+

2

3
+

3

5
=

1

2
+

1

4
+

2

3
=

17

12

Key point: You don’t need to know the accepted witnesses, you
only need to be able to ask the predicate z(x ,p).

Conclusion: If you can calculate whether H 6⊇ Z from this f , then
you can calculate d(x) with d ∈ NP.
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HSP in Fk
If G = Fk , the general outline is the same. Given d ∈ NP with a
predicate z ∈ P, we make a hidden subgroup NEG which is
normally generated by witnesses. We then define f : G → G as a
canonical rep. function f (w) ∈ wN. Since N is normal, f (w) is a
canonical word for w in the presented group Fk/N.

We can express a witness y as a word:

y(a,b) = ababbbaabb

Let k = 14, and let N be generated by the relator

ry = y(a1,b1)y(a2,b2) · · ·y(a7,b7)

for each accepted y . Claim: We can compute canonical words in
F14/N without seeing relators, only with guess-and-check.
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Small cancellation
Our group is

F14/N = 〈a1,b1, . . . ,a7,b7|{y(a1,b1)y(a2,b2) · · ·y(a7,b7)}〉.

By construction, it has C ′(1/6) small cancellation.

Theorem (Greendlinger) The word problem in any C ′(1/6) group
can be solved by the greedy algorithm (Dehn’s algorithm).

Theorem (Partly folklore) A word w in any C ′(1/6) group K can
be canonicalized into shortlex form with an extended greedy
algorithm.

We can also canonicalize w in polynomial time with the
presentation and w as input. If K = F14/N, it is still poly time
with only guess-and-check access to relators.
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Thin diagrams

A key concept in the proof is a thin equality diagram for a word
equivalence v ∼ w modulo N. An equality (or van Kampen)
diagram is a tree of disks cellulated by relators to indicate
equivalence. It is thin when each relator borders both v and w .

v

w

r1 r2 r3 r4 r5 r6

• If v ∼ w are Dehn-reduced, then they have a thin diagram.

• All shortest words for w live in one thin equality diagram.

• We can build these diagrams by guess-and-check because
|r ∩v | ≥ |r |/6 for every r in the diagram.
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An HSP algorithm in Zk

Suppose that f : Zk → X hides a sublattice H ≤ Zk of some rank
`≤ k . Given two parameters Q� S � 1, a standard first part of a
quantum algorithm for this HSP goes as follows.

1. Prepare an approximate Gaussian state on a cube in Zk :

|ψG 〉 ∝ ∑
~x∈Zk

‖~x‖∞<Q/2

exp(−π‖~x‖2
2/S

2)|~x〉

2. Apply the hiding function f to |ψG 〉 to obtain:

Uf |ψG 〉 ∝ ∑
~x

exp(−π‖~x‖2
2/S

2)|~x , f (~x)〉

Throw away the output, leaving a mixed state on C[(Z/Q)k ].

3. Apply the quantum Fourier operator F(Z/Q)k and measure a

Fourier mode ~y0 ∈ (Z/Q)k .
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Dual samples

The quantum part of the algorithm produces a sample
~y0 ∈ (Z/Q)k which we can rescale to obtain:

~y1 =
~y0

Q
∈ (R/Z)k

Then ~y1 is approximately a randomly chosen element of the dual
group

H# = Ẑk/H ≤ (R/Z)k ,

Explicitly, H# consists of those ~y such that ~x ·~y ∈ Z for all ~x ∈ H.

The sample ~y1 also has noise due to both Gaussian blur and
discretization. This noise is exponentially small, but so is the
feature scale of H# when the generators of H are exponentially
large.
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Examples of H#

Here are two examples of H# and a sample ~y1 ∈∼ H#.

~y1

~0

H#

(R/Z)2

~y1

~0

H#

(R/Z)2

On the left, H has full rank and H# is a finite group. On the right,
H has lower rank and H# is a Lie group with fine stripes.
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Solving for H# from random samples
The easy case

Goal: Find H# ≤ (R/Z)k from noisy random samples ~y1 ∈∼ H#.

Shor-Kitaev: If H has full rank and H# is finite, then we can find
rational approximations to the coordinates of ~y1 using the
continued fraction algorithm. In this case, O(log |H#|) samples are
enough to probably generate H#. This includes Shor’s case
H = hZ≤ Z, whence H# = 1

hZ/h ≤ R/Z.

New: If H has rank ` < k, then dimH# = k− `. In this case, any
one coordinate of ~y1 is uniformly random in R/Z. Rational
approximation of the coordinates does not work. Happily, a
higher-dimensional “continued fraction” algorithm called LLL
(Lenstra-Lenstra-Lovasz) does work.
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Solving for H# from random samples
The hard case

Idea: An ideal random ~y0 ∈H# almost surely densely generates the
connected subgroup H#

1 , so look for multiples of ~y1 ∈∼ H# near ~0.

• Using a single sample ~y1, make a lattice L≤ Rk+1 with basis

~e1,~e2, . . . ,~ek ,(~̃y1,1/T ),

where S � T � R, and 1/R is the feature scale of H#.

• Find a LLL basis of short vectors of L:

~b1,~b2, . . . ,~bk+1 ∈ L≤ Rk+1

The first k−`+ 1 vectors are approx. tangent to H#⊕R at~0.

• Put the first k + `−1 LLL vectors in RREF form, then clean
them up with rational approximation to find T~0(H#⊕R) and
HR = H⊗R. This reduces the problem to Shor-Kitaev.
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Last comments and open problems

• The QC difficulty of HSP is a novel property of a discrete
group G , which depends on element encoding.

• HSP is probably hard for most infinite groups, but they have a
wide variety of behaviors.

• There might be a good quantum algorithm for HSP in
nilpotent groups.

• Unary vs binary notation for ~x ∈ Zk is related to canonical
words vs canonical compressed words in groups. There is a
crazy theorem from the computer science of text editors that
compressed words in Fk can be efficiently canonicalized. My
NP-hardness might extend to this encoding.

• Efficient algorithms for canonical compressed words are
another good question in combinatorial group theory.
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