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Shor's algorithm
Let f : Z — X be a function to a set X such that:

e We can compute f in polynomial time.
o f(x+h)=f(x) for an unknown period h.

o f(x)#f(y) when h [ x—y.

Finding h from f is the hidden period problem, or the hidden
subgroup problem for the integers Z.

Theorem (Shor) A quantum computer can solve the hidden
period problem in time poly(log h).

Le., in quantum polynomial time in |/h[[,it. Note: If f is black box,
then this takes Q(v/h) = exp(Q(||hl|bit)) classical queries.
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Factoring integers

Corollary (Shor) Integers can be factored in quantum polynomial
time.

Suppose that N is odd and not a prime power. Shor's algorithm
reveals the order ord(a) of a prime residue a € (Z/N)* via

f(x)=a*e€Z/N.

If a is random, then ord(a) is even and b= a%4(2)/2 £ +1 with
good odds, whence

N> —1=(b+1)(b—1) N Jb+1

yields a factor of N.
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Shor-Kitaev

In a second example of HSP, let f : ZX — X be periodic with
respect to a finite-index sublattice H < Z*. (So that f(x) = f(y) if
and only if x—y € H.) Then

Theorem (Shor-Kitaev) We can calculate H in quantum
polynomial time, uniformly in k and || H||pjt.

Corollary (Generalized discrete logarithm) If A is an algorithmic
finite abelian group, then an isomorphism

0:A—(Z)a1) % (Z)a) x -+ x (Z]a)

can be constructed and evaluated in quantum polynomial time.
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Effect on cryptography

Corollary (Generalized discrete logarithm) If A is an algorithmic
finite abelian group, then an isomorphism

0:A—(Z/)a1) % (Z)a) x -+ x (Z]a)
can be constructed and evaluated in quantum polynomial time.

E.g., A can be an elliptic curve or an abelian variety over a finite
field IFy.

Computer science corollary: Quantum computers can defeat all
public key cryptography which is currently standard. The goal of
“post-quantum cryptography” is to remedy this with new
(classical) cryptographic standards.
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The hidden subgroup problem

Suppose that
f

NS

G/H

G

X

where G is a discrete group, f can be computed in polynomial
time, and H < G is a hidden subgroup. Then finding H from f is
the hidden subgroup problem (HSP).

e If G =7Z* or any explicit quotient, this is Shor-Kitaev.

e Most of the other progress for HSP concerns finite groups: H
normal, G almost abelian, G Heisenberg, G dihedral, etc.

e Some finite G look hard even for QC, e.g., G = 5,.
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Negative results
Theorem (K.) If G =(Q,+), then HSP is NP-hard.

Theorem (K.) If G = Fy is non-abelian free, then normal HSP is
NP-hard.

Theorem (K.) If G =Z* with unary vector encoding, then HSP is
uSVP-hard. (Unique short vector in a lattice.)

Note: The nature of HSP for infinite G is sensitive to how
elements are encoded. We encode elements of QQ as ordinary
fractions; elements of F, as reduced words; and in unary 7k as
uncompressed commutative words.

993470124

—1 -1,-1,-1 3
F- VAR
6793515 cQ aba“bac F; aaaab™ b~ b “ccccc €
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Positive results

Theorem (K.) If G = Z* with binary encoding and H has infinite

index, then H can be found in quantum polynomial time, uniformly
in k and ||H||pit-

Corollary If G is finitely generated abelian with efficient encoding
of elements, then H can be found in quantum polynomial time.

We also get a result for G = Z*, but only with dense encoding of
vectors.

Theorem (K.) If G is finitely generated, virtually abelian with
efficient encoding of elements, then an arbitrary H can be found in

time exp(y/[H]bt):

This reuses my earlier result on the dihedral hidden subgroup
problem, and refinements found since then.
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Quantum computing in 60 seconds

For hardcore algebraists

The tensor category (set, X) is generated by the object Z/2
together with morphisms AND, OR, NOT, and COPY called gates.
(Karoubi-generated as a ®-category.) A digital circuit is then a
tensor network. An algorithm in P is equivalent to a doubly
periodic tensor network, or cellular automaton, with polynomially
many repetitions.

For BPP, we use the category of finite stochastic maps, densely
generated by a finite set of gates. For BQP, we use the category of
finite quantum maps = TPCP maps acting on matrices:

E : M(a,C)2 — M(b,C)A

We again densely Karoubi-generate the quantum map ®-category
with a finite set of gates.
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Quantum computing in 60 seconds
For hardcore CS theorists

We can model a quantum computer as a (classical) Turing
machine with together with a tape of qubits. The TM can:

e initialize or measure individual qubits

e apply unitary operators to pairs of qubits

7 “;, DO JE\ a = 0
ﬂ@ y) e C?
- L) N f

Sz \ \ (qubits also entangled)

vy lv) [v) [v) |v)
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A little complexity zoo

A complexity class is a set of decision or function or decision
problems

d: {inputs} — {yes,no} f : {inputs} — {outputs}
reachable with particular complexity resources.
e P = deterministic polynomial time
e BPP = randomized polynomial time, probably correct answer

e NP = yes-no polynomial time the aid of a prover
e coNP = like NP but with a disprover

BQP = quantum polynomial time

PSPACE = polynomial space, unrestricted time otherwise
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A little complexity zoo

PSPACE
e These are the known inclusions.
BQP e Conjecture: P =BPP
NP coNp ® Conjecture: BQP € NP Z BQP
e Conjecture: NP # coNP
BPP e Conjecture: PSPACE # BQP,NP
o e P = PSPACE is also open

All of these classes (including P vs BPP) can be distinguished in

the presence of oracles or black boxes.

A problem that is NP-hard is unlikely to be in BQP.

Epilogue
o]
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NP hardness and HSP

A decision problem
d : {inputs} — {yes,no}

is Post-Karp NP-hard means that every e € NP can be converted
to a special case of d:

e(x) =d(f(x)) fePbP

There is another standard (Turing-Cook) that e can be computed
with polynomially many oracle calls to d.

We must convert HSP to a decision problem for NP-hardness.

o If G=Q, we choose “Is H# Z?"

e In other cases, we choose “Is H #£ 17"
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HSP in Q

d € NP means that there is a predicate z € P such that
d(x) =3y, z(x,y).
The data string y, with |y| = poly(|x|), is a certificate.

Step 1: We can take each y to be a prime number, by using the
left 1/3 of its bits as a data string certificate. Theorem of Ingham:
When n is large enough, there is a prime p such that

nd < p<(n+1)3.

Step 2: We need to make an instance of HSP in Q from the
predicate z, so that if you can learn H < Q from f : Q — X, then |
can use you to evaluate d(x). We generate H by 1 and reciprocals
of all witnesses:

H= <{i | z(x,y) :yes}u{1}>.
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Partial fractions, for actual fractions

Step 3: We need an H-periodic function f: Q — X. We set X =Q
and calculate a canonical representative f(a/b) € H+ a/b for each
coset of H.

Partial fractions in R[x], taught in calculus, can also be done in Q:

xB+5 3x—2 2 5
X*ix _X_x2—x+l_x+1+;
1, 1,123
60 2 4 3 5

The right side is a canonical form with terms r/p* with 1 <r < p
with p prime, plus an integer. Calculating these partial fractions
requires integer factorization, but we have that in BQP!
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The hiding function

To calculate f(a/b), expand a/b in partial fractions:

60 2 4 3 5

Then strike the integer term, and each term r/p with p an
accepted witness:

f(l) ey 1+1 e
60 2 4 3 /5 43 12

Key point: You don't need to know the accepted witnesses, you
only need to be able to ask the predicate z(x, p).

Conclusion: If you can calculate whether H 2 Z from this f, then
you can calculate d(x) with d € NP.
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HSP in F,

If G = F, the general outline is the same. Given d € NP with a
predicate z € P, we make a hidden subgroup N <G which is
normally generated by witnesses. We then define f : G — G as a
canonical rep. function f(w) € whN. Since N is normal, f(w) is a
canonical word for w in the presented group Fy/N.

We can express a witness y as a word:
y(a, b) = ababbbaabb
Let k =14, and let N be generated by the relator
ry = y(a1,b1)y(az, b2) - y(az, br)

for each accepted y. Claim: We can compute canonical words in
F14/N without seeing relators, only with guess-and-check.
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Small cancellation
Our group is

Fi4a/N = (a1, b1,...,a7,b7|{y(a1, b1)y(az, b2) - --y(a7, b7)}).

By construction, it has C’(1/6) small cancellation.

Theorem (Greendlinger) The word problem in any C’(1/6) group
can be solved by the greedy algorithm (Dehn's algorithm).

Theorem (Partly folklore) A word w in any C'(1/6) group K can
be canonicalized into shortlex form with an extended greedy
algorithm.

We can also canonicalize w in polynomial time with the
presentation and w as input. If K = Fi4/N, it is still poly time

with only guess-and-check access to relators.
18/25
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Thin diagrams

A key concept in the proof is a thin equality diagram for a word
equivalence v ~ w modulo N. An equality (or van Kampen)
diagram is a tree of disks cellulated by relators to indicate
equivalence. It is thin when each relator borders both v and w.

M
—<Nn| Nn|KX3 °
W

e If v~ w are Dehn-reduced, then they have a thin diagram.

o All shortest words for w live in one thin equality diagram.

e We can build these diagrams by guess-and-check because
|[rOv| > |r|/6 for every r in the diagram.

Epilogue
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An HSP algorithm in Z*

Suppose that f : Z¥ — X hides a sublattice H < Z* of some rank
¢ < k. Given two parameters Q@ > S > 1, a standard first part of a
quantum algorithm for this HSP goes as follows.

1. Prepare an approximate Gaussian state on a cube in Zk:
We) o< Y, exp(—7[|%[3/5%)I%)
XEZX
[1%[lo<Q/2
2. Apply the hiding function f to |yg) to obtain:
Urlwe) = Y exp(—[[%]3/S?)[%, F(%))

Throw away the output, leaving a mixed state on C[(Z/Q)¥].
3. Apply the quantum Fourier operator F(Z/Q)k and measure a
Fourier mode yo € (Z/ Q).
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Dual samples

The quantum part of the algorithm produces a sample
Yo € (Z/Q)* which we can rescale to obtain:

. Yo

y1 =2 € (R/2)"
Q

Then y; is approximately a randomly chosen element of the dual

group
H#* =7k /H < (R/Z)*,

Explicitly, H# consists of those y such that X-y € Z for all X € H.

The sample y; also has noise due to both Gaussian blur and
discretization. This noise is exponentially small, but so is the
feature scale of H# when the generators of H are exponentially
large.
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Examples of H7

Here are two examples of H# and a sample y; € H7.

. e, A
. H# . H#
0 0
(R/Z)? (R/Z)?

On the left, H has full rank and H# is a finite group. On the right,
H has lower rank and H# is a Lie group with fine stripes.
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Solving for H# from random samples

The easy case
Goal: Find H# < (R/Z) from noisy random samples y; € H#.

Shor-Kitaev: If H has full rank and H# is finite, then we can find
rational approximations to the coordinates of y; using the
continued fraction algorithm. In this case, O(log|H#|) samples are
enough to probably generate H#. This includes Shor’s case

H = hZ < 7, whence H# = $7./h <R/Z.

New: If H has rank ¢ < k, then dim H# = k —/¢. In this case, any
one coordinate of y; is uniformly random in R/Z. Rational
approximation of the coordinates does not work. Happily, a
higher-dimensional “continued fraction” algorithm called LLL
(Lenstra-Lenstra-Lovasz) does work.
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Solving for H# from random samples
The hard case

Idea: An ideal random yo € H# almost surely densely generates the
connected subgroup HZ, so look for multiples of y; € H# near 0.

e Using a single sample y1, make a lattice L < R¥*1 with basis
617627"'7ék7(y171/7_)7

where S>> T > R, and 1/R is the feature scale of H# .
e Find a LLL basis of short vectors of L:

517527"'52‘;/(4-1 €L SRk+1

The first k — £+ 1 vectors are approx. tangent to H# &R at 0.

e Put the first k+£¢—1 LLL vectors in RREF form, then clean
them up with rational approximation to find TG(H# ®R) and
Hr = HRR. This reduces the problem to Shor-Kitaev.
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Last comments and open problems

The QC difficulty of HSP is a novel property of a discrete
group G, which depends on element encoding.

HSP is probably hard for most infinite groups, but they have a
wide variety of behaviors.

There might be a good quantum algorithm for HSP in
nilpotent groups.

Unary vs binary notation for X € Z¥ is related to canonical
words vs canonical compressed words in groups. There is a
crazy theorem from the computer science of text editors that
compressed words in Fi can be efficiently canonicalized. My
NP-hardness might extend to this encoding.

Efficient algorithms for canonical compressed words are
another good question in combinatorial group theory.
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